Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from torch.hub import load_state_dict_from_url | |
__all__ = ['get_resnet', 'BasicBlock'] | |
model_urls = { | |
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', | |
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', | |
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', | |
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', | |
} | |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=dilation, groups=groups, bias=False, dilation=dilation) | |
def conv1x1(in_planes, out_planes, stride=1): | |
"""1x1 convolution""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, | |
base_width=64, dilation=1, norm_layer=None): | |
super(BasicBlock, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
if groups != 1 or base_width != 64: | |
raise ValueError('BasicBlock only supports groups=1 and base_width=64') | |
# if dilation > 1: | |
# raise NotImplementedError("Dilation > 1 not supported in BasicBlock") | |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = norm_layer(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes, dilation=dilation) | |
self.bn2 = norm_layer(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, | |
base_width=64, dilation=1, norm_layer=None): | |
super(Bottleneck, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
width = int(planes * (base_width / 64.)) * groups | |
# Both self.conv2 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv1x1(inplanes, width) | |
self.bn1 = norm_layer(width) | |
self.conv2 = conv3x3(width, width, stride, groups, dilation) | |
self.bn2 = norm_layer(width) | |
self.conv3 = conv1x1(width, planes * self.expansion) | |
self.bn3 = norm_layer(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, | |
groups=1, width_per_group=64, replace_stride_with_dilation=None, | |
norm_layer=None, out_keys=None, in_channels=3, **kwargs): | |
super(ResNet, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
self._norm_layer = norm_layer | |
self.out_keys = out_keys | |
self.num_classes = num_classes | |
self.inplanes = 64 | |
self.dilation = 1 | |
if replace_stride_with_dilation is None: | |
# each element in the tuple indicates if we should replace | |
# the 2x2 stride with a dilated convolution instead | |
replace_stride_with_dilation = [False, False, False] | |
if len(replace_stride_with_dilation) != 3: | |
raise ValueError("replace_stride_with_dilation should be None " | |
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) | |
self.groups = groups | |
self.base_width = width_per_group | |
self.conv1 = nn.Conv2d(in_channels, self.inplanes, kernel_size=7, stride=2, padding=3, | |
bias=False) | |
self.bn1 = norm_layer(self.inplanes) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, | |
dilate=replace_stride_with_dilation[0]) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, | |
dilate=replace_stride_with_dilation[1]) | |
if 'block5' in self.out_keys: | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, | |
dilate=replace_stride_with_dilation[2]) | |
if self.num_classes is not None: | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.fc = nn.Linear(512 * block.expansion, self.num_classes) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
# Zero-initialize the last BN in each residual branch, | |
# so that the residual branch starts with zeros, and each residual block behaves like an identity. | |
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | |
if zero_init_residual: | |
for m in self.modules(): | |
if isinstance(m, Bottleneck): | |
nn.init.constant_(m.bn3.weight, 0) | |
elif isinstance(m, BasicBlock): | |
nn.init.constant_(m.bn2.weight, 0) | |
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): | |
norm_layer = self._norm_layer | |
downsample = None | |
previous_dilation = self.dilation | |
if dilate: | |
self.dilation *= stride | |
stride = 1 | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
conv1x1(self.inplanes, planes * block.expansion, stride), | |
norm_layer(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample, self.groups, | |
self.base_width, previous_dilation, norm_layer)) | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append(block(self.inplanes, planes, groups=self.groups, | |
base_width=self.base_width, dilation=self.dilation, | |
norm_layer=norm_layer)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
endpoints = dict() | |
endpoints['block0'] = x | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
endpoints['block1'] = x | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
endpoints['block2'] = x | |
x = self.layer2(x) | |
endpoints['block3'] = x | |
x = self.layer3(x) | |
endpoints['block4'] = x | |
if 'block5' in self.out_keys: | |
x = self.layer4(x) | |
endpoints['block5'] = x | |
if self.num_classes is not None: | |
x = self.avgpool(x) | |
x = torch.flatten(x, 1) | |
x = self.fc(x) | |
if self.out_keys is not None: | |
endpoints = {key: endpoints[key] for key in self.out_keys} | |
return x, endpoints | |
def _resnet(arch, block, layers, pretrained, progress, num_classes=1000, in_channels=3, out_keys=None, **kwargs): | |
model = ResNet(block, layers, num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) | |
if pretrained: | |
state_dict = load_state_dict_from_url(model_urls[arch], | |
progress=progress) | |
if in_channels != 3: | |
keys = state_dict.keys() | |
keys = [x for x in keys if 'conv1.weight' in x] | |
for key in keys: | |
del state_dict[key] | |
if num_classes !=1000: | |
keys = state_dict.keys() | |
keys = [x for x in keys if 'fc' in x] | |
for key in keys: | |
del state_dict[key] | |
if 'block5' not in out_keys: | |
keys = state_dict.keys() | |
keys = [x for x in keys if 'layer4' in x] | |
for key in keys: | |
del state_dict[key] | |
model.load_state_dict(state_dict) | |
print('load resnet model...') | |
return model | |
def _resnet18(name='resnet18', pretrained=True, progress=True, num_classes=1000, out_keys=None, **kwargs): | |
r"""ResNet-18 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet(name, BasicBlock, [2, 2, 2, 2], pretrained, progress, | |
num_classes=num_classes, out_keys=out_keys, **kwargs) | |
def _resnet50(name='resnet50',pretrained=False, progress=True,num_classes=1000,out_keys=None, **kwargs): | |
r"""ResNet-50 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet(name, Bottleneck, [3, 4, 6, 3], pretrained, progress, | |
num_classes=num_classes,out_keys=out_keys, | |
**kwargs) | |
def _resnet101(name='resnet101',pretrained=False, progress=True, num_classes=1000,out_keys=None,**kwargs): | |
r"""ResNet-101 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet(name, Bottleneck, [3, 4, 23, 3], pretrained, progress, | |
num_classes=num_classes, out_keys=out_keys, | |
**kwargs) | |
def _resnet152(name='resnet152',pretrained=False, progress=True,num_classes=1000,out_keys=None,**kwargs): | |
r"""ResNet-152 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet(name, Bottleneck, [3, 8, 36, 3], pretrained, progress, | |
num_classes=num_classes, out_keys=out_keys, | |
**kwargs) | |
def get_resnet(model_name='resnet50', pretrained=True, progress=True, num_classes=1000, out_keys=None, in_channels=3, **kwargs): | |
''' | |
Get resnet model with name. | |
:param name: resnet model name, optional values:[resnet18, reset50, resnet101, resnet152] | |
:param pretrained: If True, returns a model pre-trained on ImageNet | |
''' | |
if pretrained and num_classes != 1000: | |
print('warning: num_class is not equal to 1000, which will cause some parameters to fail to load!') | |
if pretrained and in_channels != 3: | |
print('warning: in_channels is not equal to 3, which will cause some parameters to fail to load!') | |
if model_name == 'resnet18': | |
return _resnet18(name=model_name, pretrained=pretrained, progress=progress, | |
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) | |
elif model_name == 'resnet50': | |
return _resnet50(name=model_name, pretrained=pretrained, progress=progress, | |
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) | |
elif model_name == 'resnet101': | |
return _resnet101(name=model_name, pretrained=pretrained, progress=progress, | |
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) | |
elif model_name == 'resnet152': | |
return _resnet152(name=model_name, pretrained=pretrained, progress=progress, | |
num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) | |
else: | |
raise NotImplementedError(r'''{0} is not an available values. \ | |
Please choose one of the available values in | |
[resnet18, reset50, resnet101, resnet152]'''.format(name)) | |
if __name__ == '__main__': | |
model = get_resnet('resnet18', pretrained=True, num_classes=None, in_channels=3, out_keys=['block4']) | |
x = torch.rand([2, 3, 256, 256]) | |
torch.save(model.state_dict(), 'res18nofc.pth') |