import torch import torch.nn as nn from torch.hub import load_state_dict_from_url from typing import Union, List, Dict, Any, cast __all__ = ['get_vgg'] model_urls = { 'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth', 'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth', 'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth', 'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth', 'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth', 'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth', 'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth', 'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth', } class VGG(nn.Module): def __init__( self, num_classes, out_keys, output_make_layers, init_weights: bool = True, **kwargs ) -> None: super(VGG, self).__init__() self.stage_id = output_make_layers[0] self.features = output_make_layers[1] self.num_classes = num_classes self.out_keys = out_keys if num_classes is not None: self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), ) if init_weights: self._initialize_weights() def forward(self, x: torch.Tensor): out_blocks = dict() stage = 0 out_blocks['block%d' % stage] = x for idx, op in enumerate(self.features): if idx in self.stage_id: stage += 1 x = op(x) out_blocks['block%d' % stage] = x continue x = op(x) if self.num_classes is not None: x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) if self.out_keys is not None: out_blocks = {key: out_blocks[key] for key in self.out_keys} return x, out_blocks def _initialize_weights(self) -> None: for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def make_layers(in_channels, out_keys, cfg: List[Union[str, int]], batch_norm: bool = False): layer_list = [] idx = 0 stage_ids = [] for v in cfg: if isinstance(v, int) and v in [1, 2, 3, 4, 5]: if v > int(out_keys[-1].replace('block', '')): break continue if v == 'M': layer_list += [nn.MaxPool2d(kernel_size=2, stride=2)] stage_ids += [idx] idx += 1 else: v = cast(int, v) conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layer_list += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] idx += 3 else: layer_list += [conv2d, nn.ReLU(inplace=True)] idx += 2 in_channels = v return stage_ids, nn.Sequential(*layer_list) cfgs: Dict[str, List[Union[str, int]]] = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [1, 64, 64, 'M', 2, 128, 128, 'M', 3, 256, 256, 256, 'M', 4, 512, 512, 512, 'M', 5, 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } def _vgg(in_channels, num_classes, out_keys, arch: str, cfg: str, batch_norm: bool, pretrained: bool, progress: bool, **kwargs: Any) -> VGG: if pretrained: kwargs['init_weights'] = False stage_id, ops = make_layers(in_channels, out_keys, cfgs[cfg], batch_norm=batch_norm) model = VGG(num_classes, out_keys, (stage_id, ops), **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) if in_channels != 3: keys = state_dict.keys() keys = [x for x in keys if 'features.0.' in x] for key in keys: del state_dict[key] if num_classes != 1000: keys = state_dict.keys() keys = [x for x in keys if 'classifier' in x] for key in keys: del state_dict[key] if 'block5' not in out_keys: keys = list(state_dict.keys()) for key in keys: key_layer_id = int(key.split('.')[1]) if key_layer_id >= stage_id[-1]: del state_dict[key] model.load_state_dict(state_dict) return model def vgg11(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: r"""VGG 11-layer model (configuration "A") from `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg11', 'A', False, pretrained, progress, **kwargs) def vgg11_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: r"""VGG 11-layer model (configuration "A") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg11_bn', 'A', True, pretrained, progress, **kwargs) def vgg13(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: r"""VGG 13-layer model (configuration "B") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg13', 'B', False, pretrained, progress, **kwargs) def vgg13_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: r"""VGG 13-layer model (configuration "B") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg13_bn', 'B', True, pretrained, progress, **kwargs) def vgg16(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: r"""VGG 16-layer model (configuration "D") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs) def vgg16_bn(in_channels, num_classes, out_keys, pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: r"""VGG 16-layer model (configuration "D") with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg(in_channels, num_classes, out_keys,'vgg16_bn', 'D', True, pretrained, progress, **kwargs) def vgg19(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: r"""VGG 19-layer model (configuration "E") `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg19', 'E', False, pretrained, progress, **kwargs) def vgg19_bn(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> VGG: r"""VGG 19-layer model (configuration 'E') with batch normalization `"Very Deep Convolutional Networks For Large-Scale Image Recognition" `._ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _vgg('vgg19_bn', 'E', True, pretrained, progress, **kwargs) def get_vgg(name='vgg16_bn', pretrained=True, progress=True, num_classes=None, out_keys=None, in_channels=3, **kwargs): if pretrained and num_classes != 1000: print('warning: num_class is not equal to 1000, which will cause some parameters to fail to load!') if pretrained and in_channels != 3: print('warning: in_channels is not equal to 3, which will cause some parameters to fail to load!') if name == 'vgg16_bn': return vgg16_bn(in_channels=in_channels, num_classes=num_classes, out_keys=out_keys, pretrained=pretrained, progress=progress, **kwargs) elif name == 'resnet50': return _resnet50(name=name, pretrained=pretrained, progress=progress, num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) elif name == 'resnet101': return _resnet101(name=name, pretrained=pretrained, progress=progress, num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) elif name == 'resnet152': return _resnet152(name=name, pretrained=pretrained, progress=progress, num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) else: raise NotImplementedError(r'''{0} is not an available values. \ Please choose one of the available values in [resnet18, reset50, resnet101, resnet152]'''.format(name)) if __name__ == '__main__': model = get_vgg('vgg16_bn', pretrained=True, num_classes=None, in_channels=4, out_keys=['block3']) x = torch.rand([2, 3, 512, 512]) x = model(x) torch.save(model.state_dict(), '../../vgg16bns4.pth')