import torch import torch.nn as nn from torch.hub import load_state_dict_from_url __all__ = ['get_resnet', 'BasicBlock'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') # if dilation > 1: # raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes, dilation=dilation) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, out_keys=None, in_channels=3, **kwargs): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.out_keys = out_keys self.num_classes = num_classes self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(in_channels, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) if 'block5' in self.out_keys: self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) if self.num_classes is not None: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, self.num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): endpoints = dict() endpoints['block0'] = x x = self.conv1(x) x = self.bn1(x) x = self.relu(x) endpoints['block1'] = x x = self.maxpool(x) x = self.layer1(x) endpoints['block2'] = x x = self.layer2(x) endpoints['block3'] = x x = self.layer3(x) endpoints['block4'] = x if 'block5' in self.out_keys: x = self.layer4(x) endpoints['block5'] = x if self.num_classes is not None: x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) if self.out_keys is not None: endpoints = {key: endpoints[key] for key in self.out_keys} return x, endpoints def _resnet(arch, block, layers, pretrained, progress, num_classes=1000, in_channels=3, out_keys=None, **kwargs): model = ResNet(block, layers, num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) if in_channels != 3: keys = state_dict.keys() keys = [x for x in keys if 'conv1.weight' in x] for key in keys: del state_dict[key] if num_classes !=1000: keys = state_dict.keys() keys = [x for x in keys if 'fc' in x] for key in keys: del state_dict[key] if 'block5' not in out_keys: keys = state_dict.keys() keys = [x for x in keys if 'layer4' in x] for key in keys: del state_dict[key] model.load_state_dict(state_dict) print('load resnet model...') return model def _resnet18(name='resnet18', pretrained=True, progress=True, num_classes=1000, out_keys=None, **kwargs): r"""ResNet-18 model from `"Deep Residual Learning for Image Recognition" `_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet(name, BasicBlock, [2, 2, 2, 2], pretrained, progress, num_classes=num_classes, out_keys=out_keys, **kwargs) def _resnet50(name='resnet50',pretrained=False, progress=True,num_classes=1000,out_keys=None, **kwargs): r"""ResNet-50 model from `"Deep Residual Learning for Image Recognition" `_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet(name, Bottleneck, [3, 4, 6, 3], pretrained, progress, num_classes=num_classes,out_keys=out_keys, **kwargs) def _resnet101(name='resnet101',pretrained=False, progress=True, num_classes=1000,out_keys=None,**kwargs): r"""ResNet-101 model from `"Deep Residual Learning for Image Recognition" `_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet(name, Bottleneck, [3, 4, 23, 3], pretrained, progress, num_classes=num_classes, out_keys=out_keys, **kwargs) def _resnet152(name='resnet152',pretrained=False, progress=True,num_classes=1000,out_keys=None,**kwargs): r"""ResNet-152 model from `"Deep Residual Learning for Image Recognition" `_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet(name, Bottleneck, [3, 8, 36, 3], pretrained, progress, num_classes=num_classes, out_keys=out_keys, **kwargs) def get_resnet(model_name='resnet50', pretrained=True, progress=True, num_classes=1000, out_keys=None, in_channels=3, **kwargs): ''' Get resnet model with name. :param name: resnet model name, optional values:[resnet18, reset50, resnet101, resnet152] :param pretrained: If True, returns a model pre-trained on ImageNet ''' if pretrained and num_classes != 1000: print('warning: num_class is not equal to 1000, which will cause some parameters to fail to load!') if pretrained and in_channels != 3: print('warning: in_channels is not equal to 3, which will cause some parameters to fail to load!') if model_name == 'resnet18': return _resnet18(name=model_name, pretrained=pretrained, progress=progress, num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) elif model_name == 'resnet50': return _resnet50(name=model_name, pretrained=pretrained, progress=progress, num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) elif model_name == 'resnet101': return _resnet101(name=model_name, pretrained=pretrained, progress=progress, num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) elif model_name == 'resnet152': return _resnet152(name=model_name, pretrained=pretrained, progress=progress, num_classes=num_classes, out_keys=out_keys, in_channels=in_channels, **kwargs) else: raise NotImplementedError(r'''{0} is not an available values. \ Please choose one of the available values in [resnet18, reset50, resnet101, resnet152]'''.format(name)) if __name__ == '__main__': model = get_resnet('resnet18', pretrained=True, num_classes=None, in_channels=3, out_keys=['block4']) x = torch.rand([2, 3, 256, 256]) torch.save(model.state_dict(), 'res18nofc.pth')