File size: 7,595 Bytes
02c5426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import functools
import random
import math
from PIL import Image

import numpy as np
import torch
from torch.utils.data import Dataset
from torchvision import transforms

from datasets import register
from utils import to_pixel_samples


@register('liff_test_warp')
class LIIFTestWarp(Dataset):
    def __init__(self, dataset, scale_ratio, val_mode=False, sample_q=None):
        self.dataset = dataset
        self.scale_ratio = scale_ratio
        self.val_mode = val_mode
        self.sample_q = sample_q
        print('hr_scale: ', int(scale_ratio*32))

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        img_lr, img_hr = self.dataset[idx]
        if img_hr.shape[-1] < 256:
            img_hr = transforms.Resize([256, 256])(img_hr)

        img_hr = transforms.Resize([self.scale_ratio*32, self.scale_ratio*32])(img_hr)

        hr_coord, hr_rgb = to_pixel_samples(img_hr.contiguous())

        if self.sample_q is not None:
            sample_lst = np.random.choice(len(hr_coord), self.sample_q, replace=False)
            hr_coord = hr_coord[sample_lst]
            hr_rgb = hr_rgb[sample_lst]

        cell = torch.ones_like(hr_coord)
        cell[:, 0] *= 2 / img_hr.shape[-2]
        cell[:, 1] *= 2 / img_hr.shape[-1]

        return {
            'inp': img_lr,
            'coord': hr_coord,
            'cell': cell,
            'gt': hr_rgb
        }

@register('sr-implicit-paired')
class SRImplicitPaired(Dataset):

    def __init__(self, dataset, inp_size=None, augment=False, sample_q=None):
        self.dataset = dataset
        self.inp_size = inp_size
        self.augment = augment
        self.sample_q = sample_q

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        img_lr, img_hr = self.dataset[idx]
        if img_hr.shape[-1] < 256:
            img_hr = transforms.Resize([256, 256])(img_hr)

        s = img_hr.shape[-2] // img_lr.shape[-2]  # assume int scale
        if self.inp_size is None:
            h_lr, w_lr = img_lr.shape[-2:]
            img_hr = img_hr[:, :h_lr * s, :w_lr * s]
            crop_lr, crop_hr = img_lr, img_hr
        else:
            w_lr = self.inp_size
            x0 = random.randint(0, img_lr.shape[-2] - w_lr)
            y0 = random.randint(0, img_lr.shape[-1] - w_lr)
            crop_lr = img_lr[:, x0: x0 + w_lr, y0: y0 + w_lr]
            w_hr = w_lr * s
            x1 = x0 * s
            y1 = y0 * s
            crop_hr = img_hr[:, x1: x1 + w_hr, y1: y1 + w_hr]

        if self.augment:
            hflip = random.random() < 0.5
            vflip = random.random() < 0.5
            dflip = random.random() < 0.5

            def augment(x):
                if hflip:
                    x = x.flip(-2)
                if vflip:
                    x = x.flip(-1)
                if dflip:
                    x = x.transpose(-2, -1)
                return x

            crop_lr = augment(crop_lr)
            crop_hr = augment(crop_hr)

        hr_coord, hr_rgb = to_pixel_samples(crop_hr.contiguous())

        if self.sample_q is not None:
            sample_lst = np.random.choice(
                len(hr_coord), self.sample_q, replace=False)
            hr_coord = hr_coord[sample_lst]
            hr_rgb = hr_rgb[sample_lst]

        cell = torch.ones_like(hr_coord)
        cell[:, 0] *= 2 / crop_hr.shape[-2]
        cell[:, 1] *= 2 / crop_hr.shape[-1]

        return {
            'inp': crop_lr,
            'coord': hr_coord,
            'cell': cell,
            'gt': hr_rgb
        }


def resize_fn(img, size):
    return transforms.ToTensor()(
        transforms.Resize(size, Image.BICUBIC)(
            transforms.ToPILImage()(img)))


@register('sr-implicit-downsampled')
class SRImplicitDownsampled(Dataset):

    def __init__(self, dataset, inp_size=None, scale_min=1, scale_max=None,
                 augment=False, sample_q=None):
        self.dataset = dataset
        self.inp_size = inp_size
        self.scale_min = scale_min
        if scale_max is None:
            scale_max = scale_min
        self.scale_max = scale_max
        self.augment = augment
        self.sample_q = sample_q

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        img = self.dataset[idx]
        s = random.uniform(self.scale_min, self.scale_max)

        if self.inp_size is None:
            h_lr = math.floor(img.shape[-2] / s + 1e-9)
            w_lr = math.floor(img.shape[-1] / s + 1e-9)
            img = img[:, :round(h_lr * s), :round(w_lr * s)] # assume round int
            img_down = resize_fn(img, (h_lr, w_lr))
            crop_lr, crop_hr = img_down, img
        else:
            w_lr = self.inp_size
            w_hr = round(w_lr * s)
            x0 = random.randint(0, img.shape[-2] - w_hr)
            y0 = random.randint(0, img.shape[-1] - w_hr)
            crop_hr = img[:, x0: x0 + w_hr, y0: y0 + w_hr]
            crop_lr = resize_fn(crop_hr, w_lr)

        if self.augment:
            hflip = random.random() < 0.5
            vflip = random.random() < 0.5
            dflip = random.random() < 0.5

            def augment(x):
                if hflip:
                    x = x.flip(-2)
                if vflip:
                    x = x.flip(-1)
                if dflip:
                    x = x.transpose(-2, -1)
                return x

            crop_lr = augment(crop_lr)
            crop_hr = augment(crop_hr)

        hr_coord, hr_rgb = to_pixel_samples(crop_hr.contiguous())

        if self.sample_q is not None:
            sample_lst = np.random.choice(
                len(hr_coord), self.sample_q, replace=False)
            hr_coord = hr_coord[sample_lst]
            hr_rgb = hr_rgb[sample_lst]

        cell = torch.ones_like(hr_coord)
        cell[:, 0] *= 2 / crop_hr.shape[-2]
        cell[:, 1] *= 2 / crop_hr.shape[-1]

        return {
            'inp': crop_lr,
            'coord': hr_coord,
            'cell': cell,
            'gt': hr_rgb
        }


@register('sr-implicit-uniform-varied')
class SRImplicitUniformVaried(Dataset):

    def __init__(self, dataset, size_min, size_max=None,
                 augment=False, gt_resize=None, sample_q=None):
        self.dataset = dataset
        self.size_min = size_min
        if size_max is None:
            size_max = size_min
        self.size_max = size_max
        self.augment = augment
        self.gt_resize = gt_resize
        self.sample_q = sample_q

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        img_lr, img_hr = self.dataset[idx]
        # p = idx / (len(self.dataset) - 1)
        p = random.random()
        w_hr = round(self.size_min + (self.size_max - self.size_min) * p)
        img_hr = resize_fn(img_hr, w_hr)

        if self.augment:
            if random.random() < 0.5:
                img_lr = img_lr.flip(-1)
                img_hr = img_hr.flip(-1)

        if self.gt_resize is not None:
            img_hr = resize_fn(img_hr, self.gt_resize)

        hr_coord, hr_rgb = to_pixel_samples(img_hr)

        if self.sample_q is not None:
            sample_lst = np.random.choice(
                len(hr_coord), self.sample_q, replace=False)
            hr_coord = hr_coord[sample_lst]
            hr_rgb = hr_rgb[sample_lst]

        cell = torch.ones_like(hr_coord)
        cell[:, 0] *= 2 / img_hr.shape[-2]
        cell[:, 1] *= 2 / img_hr.shape[-1]

        return {
            'inp': img_lr,
            'coord': hr_coord,
            'cell': cell,
            'gt': hr_rgb
        }