File size: 6,729 Bytes
02c5426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from .transenet import *
from .srcnn import SRCNN
from .fsrcnn import FSRCNN
from .lgcnet import LGCNET
from .dcm import DIM
from .vdsr import VDSR
# import os
# from importlib import import_module
#
# import torch
# import torch.nn as nn
#
#
# class Model(nn.Module):
#     def __init__(self, args, ckp):
#         super(Model, self).__init__()
#         print('Making model...')
#
#         self.scale = args.scale
#         self.idx_scale = 0
#         self.self_ensemble = args.self_ensemble
#         self.chop = args.chop
#         self.precision = args.precision
#         self.cpu = args.cpu
#         self.device = torch.device('cpu' if args.cpu else 'cuda')
#         self.n_GPUs = args.n_GPUs
#         self.save_models = args.save_models
#
#         module = import_module('model.' + args.model.lower())
#         self.model = module.make_model(args).to(self.device)
#         if args.precision == 'half': self.model.half()
#
#         if not args.cpu and args.n_GPUs > 1:
#             self.model = nn.DataParallel(self.model, range(args.n_GPUs))
#
#         self.load(
#             ckp.dir,
#             pre_train=args.pre_train,
#             resume=args.resume,
#             cpu=args.cpu
#         )
#         if args.print_model: print(self.model)
#
#     def forward(self, x):
#         target = self.get_model()
#
#         if self.self_ensemble and not self.training:
#             if self.chop:
#                 forward_function = self.forward_chop
#             else:
#                 forward_function = self.model.forward
#
#             return self.forward_x8(x, forward_function)
#         elif self.chop and not self.training:
#             return self.forward_chop(x)
#         else:
#             return self.model(x)
#
#     def get_model(self):
#         if self.n_GPUs == 1:
#             return self.model
#         else:
#             return self.model.module
#
#     def state_dict(self, **kwargs):
#         target = self.get_model()
#         return target.state_dict(**kwargs)
#
#     def save(self, apath, epoch, is_best=False):
#         target = self.get_model()
#         torch.save(
#             target.state_dict(),
#             os.path.join(apath, 'model', 'model_latest.pt')
#         )
#         if is_best:
#             torch.save(
#                 target.state_dict(),
#                 os.path.join(apath, 'model', 'model_best.pt')
#             )
#
#         if self.save_models:
#             torch.save(
#                 target.state_dict(),
#                 os.path.join(apath, 'model', 'model_{}.pt'.format(epoch))
#             )
#
#     def load(self, apath, pre_train='.', resume=-1, cpu=False):
#         if cpu:
#             kwargs = {'map_location': lambda storage, loc: storage}
#         else:
#             kwargs = {}
#
#         if resume == 1:  # loading model from model_latest.pt file
#             print('loading model from the model_latest.pt file...')
#             self.get_model().load_state_dict(
#                 torch.load(
#                     os.path.join(apath, 'model', 'model_latest.pt'),
#                     **kwargs
#                 ),
#                 strict=False
#             )
#         elif resume == 0: # loading model from a pre-trained model file ...
#             if pre_train != '.':
#                 print('Loading model from {}'.format(pre_train))
#                 self.get_model().load_state_dict(
#                     torch.load(pre_train, **kwargs),
#                     strict=False
#                 )
#         else:
#             self.get_model().load_state_dict(
#                 torch.load(
#                     os.path.join(apath, 'model', 'model_{}.pt'.format(resume)),
#                     **kwargs
#                 ),
#                 strict=False
#             )
#
#     def forward_chop(self, x, shave=10, min_size=160000):
#         scale = self.scale[self.idx_scale]
#         n_GPUs = min(self.n_GPUs, 4)
#         b, c, h, w = x.size()
#         h_half, w_half = h // 2, w // 2
#         h_size, w_size = h_half + shave, w_half + shave
#         lr_list = [
#             x[:, :, 0:h_size, 0:w_size],
#             x[:, :, 0:h_size, (w - w_size):w],
#             x[:, :, (h - h_size):h, 0:w_size],
#             x[:, :, (h - h_size):h, (w - w_size):w]]
#
#         if w_size * h_size < min_size:
#             sr_list = []
#             for i in range(0, 4, n_GPUs):
#                 lr_batch = torch.cat(lr_list[i:(i + n_GPUs)], dim=0)
#                 sr_batch = self.model(lr_batch)
#                 sr_list.extend(sr_batch.chunk(n_GPUs, dim=0))
#         else:
#             sr_list = [
#                 self.forward_chop(patch, shave=shave, min_size=min_size) \
#                 for patch in lr_list
#             ]
#
#         h, w = scale * h, scale * w
#         h_half, w_half = scale * h_half, scale * w_half
#         h_size, w_size = scale * h_size, scale * w_size
#         shave *= scale
#
#         output = x.new(b, c, h, w)
#         output[:, :, 0:h_half, 0:w_half] \
#             = sr_list[0][:, :, 0:h_half, 0:w_half]
#         output[:, :, 0:h_half, w_half:w] \
#             = sr_list[1][:, :, 0:h_half, (w_size - w + w_half):w_size]
#         output[:, :, h_half:h, 0:w_half] \
#             = sr_list[2][:, :, (h_size - h + h_half):h_size, 0:w_half]
#         output[:, :, h_half:h, w_half:w] \
#             = sr_list[3][:, :, (h_size - h + h_half):h_size, (w_size - w + w_half):w_size]
#
#         return output
#
#     def forward_x8(self, x, forward_function):
#         def _transform(v, op):
#             if self.precision != 'single': v = v.float()
#
#             v2np = v.data.cpu().numpy()
#             if op == 'v':
#                 tfnp = v2np[:, :, :, ::-1].copy()
#             elif op == 'h':
#                 tfnp = v2np[:, :, ::-1, :].copy()
#             elif op == 't':
#                 tfnp = v2np.transpose((0, 1, 3, 2)).copy()
#
#             ret = torch.Tensor(tfnp).to(self.device)
#             if self.precision == 'half': ret = ret.half()
#
#             return ret
#
#         lr_list = [x]
#         for tf in 'v', 'h', 't':
#             lr_list.extend([_transform(t, tf) for t in lr_list])
#
#         sr_list = [forward_function(aug) for aug in lr_list]
#         for i in range(len(sr_list)):
#             if i > 3:
#                 sr_list[i] = _transform(sr_list[i], 't')
#             if i % 4 > 1:
#                 sr_list[i] = _transform(sr_list[i], 'h')
#             if (i % 4) % 2 == 1:
#                 sr_list[i] = _transform(sr_list[i], 'v')
#
#         output_cat = torch.cat(sr_list, dim=0)
#         output = output_cat.mean(dim=0, keepdim=True)
#
#         return output
#
#
#
#
#
#
#
#
#
#
#
#
#
#