File size: 6,729 Bytes
02c5426 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
from .transenet import *
from .srcnn import SRCNN
from .fsrcnn import FSRCNN
from .lgcnet import LGCNET
from .dcm import DIM
from .vdsr import VDSR
# import os
# from importlib import import_module
#
# import torch
# import torch.nn as nn
#
#
# class Model(nn.Module):
# def __init__(self, args, ckp):
# super(Model, self).__init__()
# print('Making model...')
#
# self.scale = args.scale
# self.idx_scale = 0
# self.self_ensemble = args.self_ensemble
# self.chop = args.chop
# self.precision = args.precision
# self.cpu = args.cpu
# self.device = torch.device('cpu' if args.cpu else 'cuda')
# self.n_GPUs = args.n_GPUs
# self.save_models = args.save_models
#
# module = import_module('model.' + args.model.lower())
# self.model = module.make_model(args).to(self.device)
# if args.precision == 'half': self.model.half()
#
# if not args.cpu and args.n_GPUs > 1:
# self.model = nn.DataParallel(self.model, range(args.n_GPUs))
#
# self.load(
# ckp.dir,
# pre_train=args.pre_train,
# resume=args.resume,
# cpu=args.cpu
# )
# if args.print_model: print(self.model)
#
# def forward(self, x):
# target = self.get_model()
#
# if self.self_ensemble and not self.training:
# if self.chop:
# forward_function = self.forward_chop
# else:
# forward_function = self.model.forward
#
# return self.forward_x8(x, forward_function)
# elif self.chop and not self.training:
# return self.forward_chop(x)
# else:
# return self.model(x)
#
# def get_model(self):
# if self.n_GPUs == 1:
# return self.model
# else:
# return self.model.module
#
# def state_dict(self, **kwargs):
# target = self.get_model()
# return target.state_dict(**kwargs)
#
# def save(self, apath, epoch, is_best=False):
# target = self.get_model()
# torch.save(
# target.state_dict(),
# os.path.join(apath, 'model', 'model_latest.pt')
# )
# if is_best:
# torch.save(
# target.state_dict(),
# os.path.join(apath, 'model', 'model_best.pt')
# )
#
# if self.save_models:
# torch.save(
# target.state_dict(),
# os.path.join(apath, 'model', 'model_{}.pt'.format(epoch))
# )
#
# def load(self, apath, pre_train='.', resume=-1, cpu=False):
# if cpu:
# kwargs = {'map_location': lambda storage, loc: storage}
# else:
# kwargs = {}
#
# if resume == 1: # loading model from model_latest.pt file
# print('loading model from the model_latest.pt file...')
# self.get_model().load_state_dict(
# torch.load(
# os.path.join(apath, 'model', 'model_latest.pt'),
# **kwargs
# ),
# strict=False
# )
# elif resume == 0: # loading model from a pre-trained model file ...
# if pre_train != '.':
# print('Loading model from {}'.format(pre_train))
# self.get_model().load_state_dict(
# torch.load(pre_train, **kwargs),
# strict=False
# )
# else:
# self.get_model().load_state_dict(
# torch.load(
# os.path.join(apath, 'model', 'model_{}.pt'.format(resume)),
# **kwargs
# ),
# strict=False
# )
#
# def forward_chop(self, x, shave=10, min_size=160000):
# scale = self.scale[self.idx_scale]
# n_GPUs = min(self.n_GPUs, 4)
# b, c, h, w = x.size()
# h_half, w_half = h // 2, w // 2
# h_size, w_size = h_half + shave, w_half + shave
# lr_list = [
# x[:, :, 0:h_size, 0:w_size],
# x[:, :, 0:h_size, (w - w_size):w],
# x[:, :, (h - h_size):h, 0:w_size],
# x[:, :, (h - h_size):h, (w - w_size):w]]
#
# if w_size * h_size < min_size:
# sr_list = []
# for i in range(0, 4, n_GPUs):
# lr_batch = torch.cat(lr_list[i:(i + n_GPUs)], dim=0)
# sr_batch = self.model(lr_batch)
# sr_list.extend(sr_batch.chunk(n_GPUs, dim=0))
# else:
# sr_list = [
# self.forward_chop(patch, shave=shave, min_size=min_size) \
# for patch in lr_list
# ]
#
# h, w = scale * h, scale * w
# h_half, w_half = scale * h_half, scale * w_half
# h_size, w_size = scale * h_size, scale * w_size
# shave *= scale
#
# output = x.new(b, c, h, w)
# output[:, :, 0:h_half, 0:w_half] \
# = sr_list[0][:, :, 0:h_half, 0:w_half]
# output[:, :, 0:h_half, w_half:w] \
# = sr_list[1][:, :, 0:h_half, (w_size - w + w_half):w_size]
# output[:, :, h_half:h, 0:w_half] \
# = sr_list[2][:, :, (h_size - h + h_half):h_size, 0:w_half]
# output[:, :, h_half:h, w_half:w] \
# = sr_list[3][:, :, (h_size - h + h_half):h_size, (w_size - w + w_half):w_size]
#
# return output
#
# def forward_x8(self, x, forward_function):
# def _transform(v, op):
# if self.precision != 'single': v = v.float()
#
# v2np = v.data.cpu().numpy()
# if op == 'v':
# tfnp = v2np[:, :, :, ::-1].copy()
# elif op == 'h':
# tfnp = v2np[:, :, ::-1, :].copy()
# elif op == 't':
# tfnp = v2np.transpose((0, 1, 3, 2)).copy()
#
# ret = torch.Tensor(tfnp).to(self.device)
# if self.precision == 'half': ret = ret.half()
#
# return ret
#
# lr_list = [x]
# for tf in 'v', 'h', 't':
# lr_list.extend([_transform(t, tf) for t in lr_list])
#
# sr_list = [forward_function(aug) for aug in lr_list]
# for i in range(len(sr_list)):
# if i > 3:
# sr_list[i] = _transform(sr_list[i], 't')
# if i % 4 > 1:
# sr_list[i] = _transform(sr_list[i], 'h')
# if (i % 4) % 2 == 1:
# sr_list[i] = _transform(sr_list[i], 'v')
#
# output_cat = torch.cat(sr_list, dim=0)
# output = output_cat.mean(dim=0, keepdim=True)
#
# return output
#
#
#
#
#
#
#
#
#
#
#
#
#
#
|