File size: 6,610 Bytes
02c5426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# modified from: https://github.com/thstkdgus35/EDSR-PyTorch

import math
from argparse import Namespace

import torch
import torch.nn as nn
import torch.nn.functional as F

from models import register


def default_conv(in_channels, out_channels, kernel_size, bias=True):
    return nn.Conv2d(
        in_channels, out_channels, kernel_size,
        padding=(kernel_size//2), bias=bias)

class MeanShift(nn.Conv2d):
    def __init__(
        self, rgb_range,
        rgb_mean=(0.4488, 0.4371, 0.4040), rgb_std=(1.0, 1.0, 1.0), sign=-1):

        super(MeanShift, self).__init__(3, 3, kernel_size=1)
        std = torch.Tensor(rgb_std)
        self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1)
        self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean) / std
        for p in self.parameters():
            p.requires_grad = False

class ResBlock(nn.Module):
    def __init__(
        self, conv, n_feats, kernel_size,
        bias=True, bn=False, act=nn.ReLU(True), res_scale=1):

        super(ResBlock, self).__init__()
        m = []
        for i in range(2):
            m.append(conv(n_feats, n_feats, kernel_size, bias=bias))
            if bn:
                m.append(nn.BatchNorm2d(n_feats))
            if i == 0:
                m.append(act)

        self.body = nn.Sequential(*m)
        self.res_scale = res_scale

    def forward(self, x):
        res = self.body(x).mul(self.res_scale)
        res += x

        return res

class Upsampler(nn.Sequential):
    def __init__(self, conv, scale, n_feats, bn=False, act=False, bias=True):

        m = []
        if (scale & (scale - 1)) == 0:    # Is scale = 2^n?
            for _ in range(int(math.log(scale, 2))):
                m.append(conv(n_feats, 4 * n_feats, 3, bias))
                m.append(nn.PixelShuffle(2))
                if bn:
                    m.append(nn.BatchNorm2d(n_feats))
                if act == 'relu':
                    m.append(nn.ReLU(True))
                elif act == 'prelu':
                    m.append(nn.PReLU(n_feats))

        elif scale == 3:
            m.append(conv(n_feats, 9 * n_feats, 3, bias))
            m.append(nn.PixelShuffle(3))
            if bn:
                m.append(nn.BatchNorm2d(n_feats))
            if act == 'relu':
                m.append(nn.ReLU(True))
            elif act == 'prelu':
                m.append(nn.PReLU(n_feats))
        else:
            raise NotImplementedError

        super(Upsampler, self).__init__(*m)


url = {
    'r16f64x2': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x2-1bc95232.pt',
    'r16f64x3': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x3-abf2a44e.pt',
    'r16f64x4': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_baseline_x4-6b446fab.pt',
    'r32f256x2': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_x2-0edfb8a3.pt',
    'r32f256x3': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_x3-ea3ef2c6.pt',
    'r32f256x4': 'https://cv.snu.ac.kr/research/EDSR/models/edsr_x4-4f62e9ef.pt'
}

class EDSR(nn.Module):
    def __init__(self, args, conv=default_conv):
        super(EDSR, self).__init__()
        self.args = args
        n_resblocks = args.n_resblocks
        n_feats = args.n_feats
        kernel_size = 3
        scale = args.scale[0]
        act = nn.ReLU(True)
        url_name = 'r{}f{}x{}'.format(n_resblocks, n_feats, scale)
        if url_name in url:
            self.url = url[url_name]
        else:
            self.url = None
        self.sub_mean = MeanShift(args.rgb_range)
        self.add_mean = MeanShift(args.rgb_range, sign=1)

        # define head module
        m_head = [conv(args.n_colors, n_feats, kernel_size)]

        # define body module
        m_body = [
            ResBlock(
                conv, n_feats, kernel_size, act=act, res_scale=args.res_scale
            ) for _ in range(n_resblocks)
        ]
        m_body.append(conv(n_feats, n_feats, kernel_size))

        self.head = nn.Sequential(*m_head)
        self.body = nn.Sequential(*m_body)

        if args.no_upsampling:
            self.out_dim = n_feats
        else:
            self.out_dim = args.n_colors
            # define tail module
            m_tail = [
                Upsampler(conv, scale, n_feats, act=False),
                conv(n_feats, args.n_colors, kernel_size)
            ]
            self.tail = nn.Sequential(*m_tail)

        self.load_state_dict('pretrained/'+self.url.split('/')[-1])

    def forward(self, x):
        #x = self.sub_mean(x)
        x = self.head(x)

        res = self.body(x)
        res += x

        if self.args.no_upsampling:
            x = res
        else:
            x = self.tail(res)
        #x = self.add_mean(x)
        return x

    def load_state_dict(self, state_dict, strict=True):
        state_dict = torch.load(state_dict, map_location='cpu')
        own_state = self.state_dict()
        print('loading pretrain model')
        for name, param in state_dict.items():
            if name in own_state:
                if isinstance(param, nn.Parameter):
                    param = param.data
                try:
                    own_state[name].copy_(param)
                except Exception:
                    if name.find('tail') == -1:
                        raise RuntimeError('While copying the parameter named {}, '
                                           'whose dimensions in the model are {} and '
                                           'whose dimensions in the checkpoint are {}.'
                                           .format(name, own_state[name].size(), param.size()))
            elif strict:
                if name.find('tail') == -1:
                    raise KeyError('unexpected key "{}" in state_dict'
                                   .format(name))


@register('edsr-baseline')
def make_edsr_baseline(n_resblocks=16, n_feats=64, res_scale=1,
                       scale=2, no_upsampling=False, rgb_range=1):
    args = Namespace()
    args.n_resblocks = n_resblocks
    args.n_feats = n_feats
    args.res_scale = res_scale

    args.scale = [scale]
    args.no_upsampling = no_upsampling

    args.rgb_range = rgb_range
    args.n_colors = 3
    return EDSR(args)


@register('edsr')
def make_edsr(n_resblocks=32, n_feats=256, res_scale=0.1,
              scale=2, no_upsampling=False, rgb_range=1):
    args = Namespace()
    args.n_resblocks = n_resblocks
    args.n_feats = n_feats
    args.res_scale = res_scale

    args.scale = [scale]
    args.no_upsampling = no_upsampling

    args.rgb_range = rgb_range
    args.n_colors = 3
    return EDSR(args)