File size: 10,703 Bytes
02c5426 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
import models
from models import register
from utils import make_coord, to_coordinates
from mmcv.cnn import ConvModule
from .blocks.CSPLayer import CSPLayer
@register('rs_multiscale_super')
class RSMultiScaleSuper(nn.Module):
def __init__(self,
encoder_spec,
multiscale=False,
neck=None,
decoder=None,
has_bn=True,
input_rgb=False,
n_forward_times=1,
global_decoder=None,
encode_scale_ratio=False
):
super().__init__()
self.encoder = models.make(encoder_spec)
self.multiscale = multiscale
self.encoder_out_dim = self.encoder.out_dim
self.encode_scale_ratio = encode_scale_ratio
conv_cfg = None
if has_bn:
norm_cfg = dict(type='BN', momentum=0.03, eps=0.001)
else:
norm_cfg = None
act_cfg = dict(type='ReLU')
if self.multiscale:
self.multiscale_layers = nn.ModuleList()
# 32->16->8->4
num_blocks = [2, 4, 6]
for n_idx in range(3):
conv_layer = ConvModule(
self.encoder.out_dim,
self.encoder.out_dim*2,
3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg
)
csp_layer = CSPLayer(
self.encoder.out_dim*2,
self.encoder.out_dim,
num_blocks=num_blocks[n_idx],
add_identity=True,
use_depthwise=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.multiscale_layers.append(nn.Sequential(conv_layer, csp_layer))
if neck is not None:
self.neck = models.make(neck, args={'in_dim': self.encoder.out_dim})
modulation_dim = self.neck.d_dim
else:
modulation_dim = self.encoder.out_dim
self.n_forward_times = n_forward_times
self.input_rgb = input_rgb
decoder_in_dim = 5 if self.input_rgb else 2
if encode_scale_ratio:
decoder_in_dim += 2
if decoder is not None:
self.decoder = models.make(decoder, args={'modulation_dim': modulation_dim, 'in_dim': decoder_in_dim})
if global_decoder is not None:
decoder_in_dim = 5 if self.input_rgb else 2
if encode_scale_ratio:
decoder_in_dim += 2
self.decoder_is_proj = global_decoder.get('is_proj', False)
self.grid_global = global_decoder.get('grid_global', False)
self.global_decoder = models.make(global_decoder, args={'modulation_dim': modulation_dim, 'in_dim': decoder_in_dim})
if self.decoder_is_proj:
self.input_proj = nn.Sequential(
nn.Linear(modulation_dim, modulation_dim)
)
self.output_proj = nn.Sequential(
nn.Linear(3, 3)
)
def query_rgb(self, coord, cell=None):
feat = self.feat
if self.imnet is None:
ret = F.grid_sample(feat, coord.flip(-1).unsqueeze(1),
mode='nearest', align_corners=False)[:, :, 0, :] \
.permute(0, 2, 1)
return ret
if self.feat_unfold:
# if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2)
feat = F.unfold(feat, 3, padding=1).view(
feat.shape[0], feat.shape[1] * 9, feat.shape[2], feat.shape[3])
if self.local_ensemble:
vx_lst = [-1, 1]
vy_lst = [-1, 1]
eps_shift = 1e-6
else:
vx_lst, vy_lst, eps_shift = [0], [0], 0
# field radius (global: [-1, 1])
rx = 2 / feat.shape[-2] / 2
ry = 2 / feat.shape[-1] / 2
feat_coord = make_coord(feat.shape[-2:], flatten=False).cuda() \
.permute(2, 0, 1) \
.unsqueeze(0).expand(feat.shape[0], 2, *feat.shape[-2:])
preds = []
areas = []
for vx in vx_lst:
for vy in vy_lst:
coord_ = coord.clone()
coord_[:, :, 0] += vx * rx + eps_shift
coord_[:, :, 1] += vy * ry + eps_shift
coord_.clamp_(-1 + 1e-6, 1 - 1e-6)
q_feat = F.grid_sample(
feat, coord_.flip(-1).unsqueeze(1),
mode='nearest', align_corners=False)[:, :, 0, :] \
.permute(0, 2, 1)
q_coord = F.grid_sample(
feat_coord, coord_.flip(-1).unsqueeze(1),
mode='nearest', align_corners=False)[:, :, 0, :] \
.permute(0, 2, 1)
rel_coord = coord - q_coord
rel_coord[:, :, 0] *= feat.shape[-2]
rel_coord[:, :, 1] *= feat.shape[-1]
inp = torch.cat([q_feat, rel_coord], dim=-1)
if self.cell_decode:
rel_cell = cell.clone()
rel_cell[:, :, 0] *= feat.shape[-2]
rel_cell[:, :, 1] *= feat.shape[-1]
inp = torch.cat([inp, rel_cell], dim=-1)
bs, q = coord.shape[:2]
pred = self.imnet(inp.view(bs * q, -1)).view(bs, q, -1)
preds.append(pred)
area = torch.abs(rel_coord[:, :, 0] * rel_coord[:, :, 1])
areas.append(area + 1e-9)
tot_area = torch.stack(areas).sum(dim=0)
if self.local_ensemble:
t = areas[0]; areas[0] = areas[3]; areas[3] = t
t = areas[1]; areas[1] = areas[2]; areas[2] = t
ret = 0
for pred, area in zip(preds, areas):
ret = ret + pred * (area / tot_area).unsqueeze(-1)
return ret
def forward_step(self,
ori_img,
coord,
func_map,
global_content,
pred_rgb_value=None,
scale_ratio=None
):
weight_gen_func = 'bilinear' # 'bilinear'
# grid: 先x再y
coord_ = coord.clone().unsqueeze(1).flip(-1) # Bx1xNxC
funcs = F.grid_sample(
func_map, coord_, padding_mode='border', mode=weight_gen_func, align_corners=True).squeeze(2) # B C N
funcs = rearrange(funcs, 'B C N -> (B N) C')
feat_coord = to_coordinates(func_map.shape[-2:], return_map=True).to(func_map.device)
feat_coord = repeat(feat_coord, 'H W C -> B C H W', B=coord.size(0)) # 坐标是[y, x]
nearest_coord = F.grid_sample(feat_coord, coord_, mode='nearest', align_corners=True).squeeze(2) # B 2 N
nearest_coord = rearrange(nearest_coord, 'B C N -> B N C') # B N 2
relative_coord = coord - nearest_coord
relative_coord[:, :, 0] *= func_map.shape[-2]
relative_coord[:, :, 1] *= func_map.shape[-1]
relative_coord = rearrange(relative_coord, 'B N C -> (B N) C')
decoder_input = relative_coord
interpolated_rgb = None
if self.input_rgb:
if pred_rgb_value is not None:
interpolated_rgb = rearrange(pred_rgb_value, 'B N C -> (B N) C')
else:
interpolated_rgb = F.grid_sample(
ori_img, coord_, padding_mode='border', mode='bilinear', align_corners=True).squeeze(2) # B 3 N
interpolated_rgb = rearrange(interpolated_rgb, 'B C N -> (B N) C')
decoder_input = torch.cat((decoder_input, interpolated_rgb), dim=-1)
if self.encode_scale_ratio:
scale_ratio = rearrange(scale_ratio, 'B N C -> (B N) C')
decoder_input = torch.cat((decoder_input, scale_ratio), dim=-1)
decoder_output = self.decoder(decoder_input, funcs)
decoder_output = rearrange(decoder_output, '(B N) C -> B N C', B=func_map.size(0))
if hasattr(self, 'global_decoder'):
# coord: BxNx2
# global_content: Bx1xC
if self.decoder_is_proj:
global_content = self.input_proj(global_content) # B 1 C
global_funcs = repeat(global_content, 'B C -> B N C', N=coord.size(1))
global_funcs = rearrange(global_funcs, 'B N C -> (B N) C')
if self.grid_global:
global_decoder_input = decoder_input
else:
global_decoder_input = rearrange(coord, 'B N C -> (B N) C')
if self.input_rgb:
global_decoder_input = torch.cat((global_decoder_input, interpolated_rgb), dim=-1)
if self.encode_scale_ratio:
global_decoder_input = torch.cat((global_decoder_input, scale_ratio), dim=-1)
global_decoder_output = self.global_decoder(global_decoder_input, global_funcs)
global_decoder_output = rearrange(global_decoder_output, '(B N) C -> B N C', B=func_map.size(0))
if self.decoder_is_proj:
decoder_output = self.output_proj(global_decoder_output + decoder_output)
else:
decoder_output = global_decoder_output + decoder_output
return decoder_output
def forward_backbone(self, inp):
# inp: img-BxCxHxW
return self.encoder(inp)
def forward_multiscale(self, feats, keep_ori_featmap=False):
if keep_ori_featmap:
output_feats = feats
else:
output_feats = []
x = feats[0]
for layer in self.multiscale_layers:
x = layer(x)
output_feats.append(x)
return output_feats
def forward(self, inp, coord, scale_ratio=None):
output_feats = [self.forward_backbone(inp)]
if self.multiscale:
output_feats = self.forward_multiscale(output_feats)
if hasattr(self, 'neck'):
global_content, func_maps = self.neck(output_feats)
else:
global_content = None
func_maps = output_feats[0]
pred_rgb_value = None
return_pred_rgb_value = []
for n_time in range(self.n_forward_times):
pred_rgb_value = self.forward_step(inp, coord, func_maps, global_content, pred_rgb_value, scale_ratio)
return_pred_rgb_value.append(pred_rgb_value)
return return_pred_rgb_value
|