|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
|
|
MIN_NUM_PATCHES = 16 |
|
|
|
""" |
|
This is a new remote sensing super-resolution method based on the prevalent transformer |
|
|
|
ref: |
|
https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_pytorch.py |
|
""" |
|
|
|
class Residual(nn.Module): |
|
def __init__(self, fn): |
|
super().__init__() |
|
self.fn = fn |
|
|
|
def forward(self, x, **kwargs): |
|
return self.fn(x, **kwargs) + x |
|
|
|
|
|
class Residual2(nn.Module): |
|
def __init__(self, fn): |
|
super().__init__() |
|
self.fn = fn |
|
|
|
def forward(self, x, m=None, **kwargs): |
|
return self.fn(x, m, **kwargs) + x |
|
|
|
|
|
class PreNorm(nn.Module): |
|
def __init__(self, dim, fn): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(dim) |
|
self.fn = fn |
|
|
|
def forward(self, x, **kwargs): |
|
return self.fn(self.norm(x), **kwargs) |
|
|
|
|
|
class PreNorm2(nn.Module): |
|
def __init__(self, dim, fn): |
|
super().__init__() |
|
self.norm = nn.LayerNorm(dim) |
|
self.fn = fn |
|
|
|
def forward(self, x, m=None, **kwargs): |
|
x = self.norm(x) |
|
if m is not None: m = self.norm(m) |
|
return self.fn(x, m, **kwargs) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, hidden_dim, dropout = 0.): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(dim, hidden_dim), |
|
nn.GELU(), |
|
nn.Dropout(dropout), |
|
nn.Linear(hidden_dim, dim), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
self.heads = heads |
|
self.scale = dim ** -0.5 |
|
|
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) |
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, dim), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x, mask = None): |
|
b, n, _, h = *x.shape, self.heads |
|
qkv = self.to_qkv(x).chunk(3, dim = -1) |
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) |
|
|
|
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale |
|
mask_value = -torch.finfo(dots.dtype).max |
|
|
|
if mask is not None: |
|
mask = F.pad(mask.flatten(1), (1, 0), value = True) |
|
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions' |
|
mask = mask[:, None, :] * mask[:, :, None] |
|
dots.masked_fill_(~mask, mask_value) |
|
del mask |
|
|
|
attn = dots.softmax(dim=-1) |
|
|
|
out = torch.einsum('bhij,bhjd->bhid', attn, v) |
|
out = rearrange(out, 'b h n d -> b n (h d)') |
|
out = self.to_out(out) |
|
return out |
|
|
|
|
|
class MixedAttention(nn.Module): |
|
def __init__(self, dim, heads=8, dim_head=64, dropout=0.): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
self.heads = heads |
|
self.scale = dim ** -0.5 |
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, dim), |
|
nn.Dropout(dropout) |
|
) |
|
|
|
def forward(self, x, m, mask=None): |
|
|
|
b, n, _, h = *x.shape, self.heads |
|
q = self.to_q(x) |
|
k = self.to_k(m) |
|
v = self.to_v(m) |
|
q = rearrange(q, 'b n (h d) -> b h n d', h=h) |
|
k = rearrange(k, 'b n (h d) -> b h n d', h=h) |
|
v = rearrange(v, 'b n (h d) -> b h n d', h=h) |
|
|
|
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale |
|
mask_value = -torch.finfo(dots.dtype).max |
|
|
|
if mask is not None: |
|
mask = F.pad(mask.flatten(1), (1, 0), value = True) |
|
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions' |
|
mask = mask[:, None, :] * mask[:, :, None] |
|
dots.masked_fill_(~mask, mask_value) |
|
del mask |
|
|
|
attn = dots.softmax(dim=-1) |
|
|
|
out = torch.einsum('bhij,bhjd->bhid', attn, v) |
|
out = rearrange(out, 'b h n d -> b n (h d)') |
|
out = self.to_out(out) |
|
return out |
|
|
|
|
|
class TransformerEncoder(nn.Module): |
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout): |
|
super().__init__() |
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append(nn.ModuleList([ |
|
Residual(PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout))), |
|
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))) |
|
])) |
|
|
|
def forward(self, x, mask=None): |
|
for attn, ff in self.layers: |
|
x = attn(x, mask=mask) |
|
x = ff(x) |
|
return x |
|
|
|
|
|
class TransformerDecoder(nn.Module): |
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout): |
|
super().__init__() |
|
self.layers = nn.ModuleList([]) |
|
for _ in range(depth): |
|
self.layers.append(nn.ModuleList([ |
|
Residual(PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout))), |
|
Residual2(PreNorm2(dim, MixedAttention(dim, heads=heads, dim_head=dim_head, dropout=dropout))), |
|
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))) |
|
])) |
|
|
|
def with_pos_embed(self, tensor, pos=None): |
|
return tensor if pos is None else tensor + pos |
|
|
|
def forward(self, x, m, mask=None): |
|
for attn1, attn2, ff in self.layers: |
|
x = attn1(x, mask=mask) |
|
x = attn2(x, m, mask=mask) |
|
x = ff(x) |
|
return x |