import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat MIN_NUM_PATCHES = 16 """ This is a new remote sensing super-resolution method based on the prevalent transformer ref: https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_pytorch.py """ class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class Residual2(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, m=None, **kwargs): return self.fn(x, m, **kwargs) + x class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class PreNorm2(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, m=None, **kwargs): x = self.norm(x) if m is not None: m = self.norm(m) return self.fn(x, m, **kwargs) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim ** -0.5 self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, mask = None): b, n, _, h = *x.shape, self.heads qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale mask_value = -torch.finfo(dots.dtype).max if mask is not None: mask = F.pad(mask.flatten(1), (1, 0), value = True) assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions' mask = mask[:, None, :] * mask[:, :, None] dots.masked_fill_(~mask, mask_value) del mask attn = dots.softmax(dim=-1) out = torch.einsum('bhij,bhjd->bhid', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out class MixedAttention(nn.Module): def __init__(self, dim, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim ** -0.5 self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_k = nn.Linear(dim, inner_dim, bias=False) self.to_v = nn.Linear(dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, m, mask=None): b, n, _, h = *x.shape, self.heads q = self.to_q(x) k = self.to_k(m) v = self.to_v(m) q = rearrange(q, 'b n (h d) -> b h n d', h=h) k = rearrange(k, 'b n (h d) -> b h n d', h=h) v = rearrange(v, 'b n (h d) -> b h n d', h=h) dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale mask_value = -torch.finfo(dots.dtype).max if mask is not None: mask = F.pad(mask.flatten(1), (1, 0), value = True) assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions' mask = mask[:, None, :] * mask[:, :, None] dots.masked_fill_(~mask, mask_value) del mask attn = dots.softmax(dim=-1) out = torch.einsum('bhij,bhjd->bhid', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out class TransformerEncoder(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Residual(PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout))), Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))) ])) def forward(self, x, mask=None): for attn, ff in self.layers: x = attn(x, mask=mask) x = ff(x) return x class TransformerDecoder(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Residual(PreNorm(dim, Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout))), Residual2(PreNorm2(dim, MixedAttention(dim, heads=heads, dim_head=dim_head, dropout=dropout))), Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout=dropout))) ])) def with_pos_embed(self, tensor, pos=None): return tensor if pos is None else tensor + pos def forward(self, x, m, mask=None): for attn1, attn2, ff in self.layers: x = attn1(x, mask=mask) x = attn2(x, m, mask=mask) x = ff(x) return x