lkm2835's picture
Update app.py
36ad9f9 verified
import os
from typing import Iterator
import gradio as gr
import torch
import spaces
from transformers import AutoTokenizer
from openai import OpenAI
import json
import uuid
EXAONE_TOKEN = os.environ.get("EXAONE_TOKEN", None)
EXAONE_2_4B = os.environ.get("EXAONE_2_4B", None)
EXAONE_7_8B = os.environ.get("EXAONE_7_8B", None)
EXAONE_32B = os.environ.get("EXAONE_32B", None)
FRIENDLIAI = "https://friendli.ai"
FRIENDLIAI_LOGO = "https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo/resolve/main/friendliai-logo.png"
MODEL = "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct"
MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "16384"))
DESCRIPTION = """\
<h1 style="text-align: center; margin-top: -23px; margin-bottom: -5px;"> EXAONE 3.5: Series of Large Language Models for Real-world Use Cases</h1>
#### <center> We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills. </center>
<center>πŸ‘‹ For more details, please check <a href=https://huggingface.co/collections/LGAI-EXAONE/exaone-35-674d0e1bb3dcd2ab6f39dbb4>EXAONE-3.5 collections</a>, <a href=https://www.lgresearch.ai/blog/view?seq=507>our blog</a> or <a href=https://arxiv.org/abs/2412.04862>technical report</a></center>
"""
EXAMPLES = [
["Explain how wonderful you are"],
["슀슀둜λ₯Ό μžλž‘ν•΄ 봐"],
]
BOT_AVATAR = "EXAONE_logo.png"
selected_model = gr.Radio(value=["2.4B", EXAONE_2_4B],visible=False)
id_ = {"id": str(uuid.uuid4())}
model_history = {"model_history": []}
ADDITIONAL_INPUTS = [
gr.Textbox(
value="You are EXAONE model from LG AI Research, a helpful assistant.",
label="System Prompt",
render=False,
),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
step=0.1,
value=0.7,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
selected_model
]
tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct")
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 512,
temperature: float = 0.6,
top_p: float = 0.9,
selected_model: list = ["2.4b", EXAONE_2_4B],
) -> Iterator[str]:
messages = [{"role":"system","content": system_prompt}]
for user, assistant in chat_history:
messages.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
messages.append({"role": "user", "content": message})
if not chat_history:
id_['id'] = str(uuid.uuid4())
model_history["model_history"] = []
model_history["model_history"].append(selected_model[0])
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
)
client = OpenAI(api_key=EXAONE_TOKEN, base_url="https://api.friendli.ai/dedicated/v1")
response = client.chat.completions.create(
messages=messages,
model=selected_model[1],
max_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
)
outputs = ''
for r in response:
token = r.choices[0].delta.content
if token is not None:
outputs += token
yield outputs
print(json.dumps({"id": id_['id'], "messages": messages, "output": outputs, "model": model_history}, ensure_ascii=False))
def radio1_change(model_size):
markdown_ = f"""
<div style="display: flex; width: 450px; margin-left: 535px; font-size: 20px;">
<span style="margin-top: 6px; margin-right: -2px">EXAONE-3.5-{model_size}-instruct </span>
<span style="margin-top: 10px; margin-left: 7px; font-size: 16px;">powered by</span>
<a href={FRIENDLIAI}><img src={FRIENDLIAI_LOGO} style="margin-left: -4px; height: 41px;"/></a>
</div>
"""
return markdown_
def choices_model(model_size):
endpoint_url_dict = {
"2.4B": ["2.4B", EXAONE_2_4B],
"7.8B": ["7.8B", EXAONE_7_8B],
"32B": ["32B", EXAONE_32B],
}
return endpoint_url_dict[model_size]
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(
label="EXAONE-3.5-Instruct",
avatar_images=[None, BOT_AVATAR],
layout="bubble",
bubble_full_width=False
),
additional_inputs=ADDITIONAL_INPUTS,
stop_btn=None,
examples=EXAMPLES,
cache_examples=False,
)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown("""<p align="center"><img src="https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-Instruct-Demo/resolve/main/EXAONE_Symbol%2BBI_3d.png" style="margin-right: 20px; height: 50px"/><p>""")
gr.Markdown(DESCRIPTION)
markdown = gr.Markdown(
f"""
<div style="display: flex; width: 450px; margin-left: 535px; font-size: 20px;">
<span style="margin-top: 6px; margin-right: -2px">EXAONE-3.5-2.4B-instruct </span>
<span style="margin-top: 10px; margin-left: 7px; font-size: 16px;">powered by</span>
<a href={FRIENDLIAI}><img src={FRIENDLIAI_LOGO} style="margin-left: -4px; height: 41px;"/></a>
</div>
"""
)
with gr.Row():
model_size = ["2.4B", "7.8B", "32B"]
radio1 = gr.Radio(choices=model_size, label="EXAONE-3.5-Instruct", value=model_size[0])
radio1.change(radio1_change, inputs=radio1, outputs=markdown)
radio1.change(choices_model, inputs=radio1, outputs=selected_model)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=25).launch()