Update app.py
Browse files
app.py
CHANGED
@@ -5,41 +5,73 @@ import gradio as gr
|
|
5 |
import torch
|
6 |
import spaces
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
|
|
8 |
|
9 |
-
MODEL_LIST = ["LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct"]
|
10 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
-
MODEL =
|
|
|
|
|
|
|
|
|
12 |
|
13 |
DESCRIPTION = """\
|
14 |
# <center> EXAONE 3.5: Series of Large Language Models for Real-world Use Cases </center>
|
15 |
|
16 |
-
##### We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills.
|
17 |
-
|
18 |
-
<center>This is an official demo of <a href=https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct>LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct</a>, fine-tuned for instruction following.</center>
|
19 |
|
20 |
-
<center>π For more details, please check <a href=https://www.lgresearch.ai/blog/view?seq=507>our blog</a> or <a href=https://
|
21 |
|
22 |
-
#### <center> EXAONE-3.5-
|
23 |
"""
|
24 |
|
25 |
-
MAX_NEW_TOKENS = 2048
|
26 |
-
DEFAULT_MAX_NEW_TOKENS = 512
|
27 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "16384"))
|
28 |
-
|
29 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
30 |
-
|
31 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
32 |
-
model = AutoModelForCausalLM.from_pretrained(
|
33 |
-
MODEL,
|
34 |
-
torch_dtype=torch.bfloat16,
|
35 |
-
trust_remote_code=True,
|
36 |
-
device_map="auto",
|
37 |
-
)
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
-
@spaces.GPU()
|
43 |
def generate(
|
44 |
message: str,
|
45 |
chat_history: list[tuple[str, str]],
|
@@ -48,7 +80,9 @@ def generate(
|
|
48 |
temperature: float = 0.6,
|
49 |
top_p: float = 0.9,
|
50 |
top_k: int = 50,
|
|
|
51 |
) -> Iterator[str]:
|
|
|
52 |
messages = [{"role":"system","content": system_prompt}]
|
53 |
print(f'message: {message}')
|
54 |
print(f'chat_history: {chat_history}')
|
@@ -69,88 +103,64 @@ def generate(
|
|
69 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
70 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
71 |
gr.Warning(f"Trimmed input from messages as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
72 |
-
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
generate_kwargs = dict(
|
76 |
-
{"input_ids": input_ids},
|
77 |
-
streamer=streamer,
|
78 |
max_new_tokens=max_new_tokens,
|
79 |
-
do_sample=False if top_k == 1 else True,
|
80 |
top_p=top_p,
|
81 |
top_k=top_k,
|
82 |
temperature=temperature,
|
83 |
-
|
84 |
-
repetition_penalty=1.0,
|
85 |
)
|
86 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
87 |
-
t.start()
|
88 |
|
89 |
-
|
90 |
-
for text in streamer:
|
91 |
-
outputs.append(text)
|
92 |
-
yield "".join(outputs)
|
93 |
|
|
|
94 |
|
95 |
-
BOT_AVATAR = "EXAONE_logo.png"
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
chat_interface = gr.ChatInterface(
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
render=False,
|
112 |
-
),
|
113 |
-
gr.Slider(
|
114 |
-
label="Max new tokens",
|
115 |
-
minimum=1,
|
116 |
-
maximum=MAX_NEW_TOKENS,
|
117 |
-
step=1,
|
118 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
119 |
-
),
|
120 |
-
gr.Slider(
|
121 |
-
label="Temperature",
|
122 |
-
minimum=0.1,
|
123 |
-
maximum=2.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.7,
|
126 |
-
),
|
127 |
-
gr.Slider(
|
128 |
-
label="Top-p (nucleus sampling)",
|
129 |
-
minimum=0.05,
|
130 |
-
maximum=1.0,
|
131 |
-
step=0.05,
|
132 |
-
value=0.9,
|
133 |
),
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
examples=[
|
144 |
-
["Explain who you are"],
|
145 |
-
["λμ μμμ λ§ν΄λ΄"],
|
146 |
-
],
|
147 |
-
cache_examples=False,
|
148 |
-
)
|
149 |
-
|
150 |
-
with gr.Blocks(css="style.css", fill_height=True) as demo:
|
151 |
-
gr.Markdown("""<p align="center"><img src="https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct-Demo/resolve/main/EXAONE_Symbol%2BBI_3d.png" style="margin-right: 20px; height: 60px"/><p>""")
|
152 |
gr.Markdown(DESCRIPTION)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
chat_interface.render()
|
154 |
|
|
|
155 |
if __name__ == "__main__":
|
156 |
-
demo.queue(max_size=
|
|
|
5 |
import torch
|
6 |
import spaces
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
8 |
+
from huggingface_hub import InferenceClient
|
9 |
+
|
10 |
|
|
|
11 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
12 |
+
MODEL = "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct"
|
13 |
+
MAX_NEW_TOKENS = 4096
|
14 |
+
DEFAULT_MAX_NEW_TOKENS = 512
|
15 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "16384"))
|
16 |
+
|
17 |
|
18 |
DESCRIPTION = """\
|
19 |
# <center> EXAONE 3.5: Series of Large Language Models for Real-world Use Cases </center>
|
20 |
|
21 |
+
##### <center> We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills. </center>
|
|
|
|
|
22 |
|
23 |
+
<center>π For more details, please check <a href=https://huggingface.co/collections/LGAI-EXAONE/exaone-35-674d0e1bb3dcd2ab6f39dbb4>EXAONE-3.5 collections</a>, <a href=https://www.lgresearch.ai/blog/view?seq=507>our blog</a> or <a href=https://www.lgresearch.ai/data/upload/tech_report/ko/Technical_report_EXAONE_3.5.pdf>technical report</a></center>
|
24 |
|
25 |
+
#### <center> EXAONE-3.5-32B-Instruct Demo Coming Soon.. </center>
|
26 |
"""
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
EXAMPLES = [
|
30 |
+
["Explain how wonderful you are"],
|
31 |
+
["μ€μ€λ‘λ₯Ό μλν΄ λ΄"],
|
32 |
+
]
|
33 |
+
BOT_AVATAR = "EXAONE_logo.png"
|
34 |
+
selected_model = gr.Radio(value="https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud",visible=False)
|
35 |
+
ADDITIONAL_INPUTS = [
|
36 |
+
gr.Textbox(
|
37 |
+
value="You are EXAONE model from LG AI Research, a helpful assistant.",
|
38 |
+
label="System Prompt",
|
39 |
+
render=False,
|
40 |
+
),
|
41 |
+
gr.Slider(
|
42 |
+
label="Max new tokens",
|
43 |
+
minimum=1,
|
44 |
+
maximum=MAX_NEW_TOKENS,
|
45 |
+
step=1,
|
46 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
47 |
+
),
|
48 |
+
gr.Slider(
|
49 |
+
label="Temperature",
|
50 |
+
minimum=0.1,
|
51 |
+
maximum=2.0,
|
52 |
+
step=0.1,
|
53 |
+
value=0.7,
|
54 |
+
),
|
55 |
+
gr.Slider(
|
56 |
+
label="Top-p (nucleus sampling)",
|
57 |
+
minimum=0.05,
|
58 |
+
maximum=1.0,
|
59 |
+
step=0.05,
|
60 |
+
value=0.9,
|
61 |
+
),
|
62 |
+
gr.Slider(
|
63 |
+
label="Top-k",
|
64 |
+
minimum=1,
|
65 |
+
maximum=1000,
|
66 |
+
step=1,
|
67 |
+
value=1,
|
68 |
+
),
|
69 |
+
selected_model
|
70 |
+
]
|
71 |
+
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct")
|
73 |
|
74 |
|
|
|
75 |
def generate(
|
76 |
message: str,
|
77 |
chat_history: list[tuple[str, str]],
|
|
|
80 |
temperature: float = 0.6,
|
81 |
top_p: float = 0.9,
|
82 |
top_k: int = 50,
|
83 |
+
selected_model: str = "https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud",
|
84 |
) -> Iterator[str]:
|
85 |
+
print(f'model: {selected_model}')
|
86 |
messages = [{"role":"system","content": system_prompt}]
|
87 |
print(f'message: {message}')
|
88 |
print(f'chat_history: {chat_history}')
|
|
|
103 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
104 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
105 |
gr.Warning(f"Trimmed input from messages as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
106 |
+
|
107 |
+
messages = tokenizer.decode(input_ids[0])
|
108 |
+
|
109 |
+
client = InferenceClient(selected_model, token=HF_TOKEN)
|
110 |
|
111 |
+
gen_kwargs = dict(
|
|
|
|
|
|
|
112 |
max_new_tokens=max_new_tokens,
|
|
|
113 |
top_p=top_p,
|
114 |
top_k=top_k,
|
115 |
temperature=temperature,
|
116 |
+
stop=["[|endofturn|]"]
|
|
|
117 |
)
|
|
|
|
|
118 |
|
119 |
+
output = client.text_generation(messages, **gen_kwargs)
|
|
|
|
|
|
|
120 |
|
121 |
+
return output
|
122 |
|
|
|
123 |
|
124 |
+
def radio1_change(model_size):
|
125 |
+
return f"<center><font size=5>EXAONE-3.5-{model_size}-instruct</center>"
|
126 |
+
|
127 |
+
|
128 |
+
def choices_model(model_size):
|
129 |
+
endpoint_url_dict = {
|
130 |
+
"2.4B": "https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud", # L4
|
131 |
+
"7.8B": "https://wafz6im0d595g715.us-east-1.aws.endpoints.huggingface.cloud", # L40S
|
132 |
+
}
|
133 |
+
return endpoint_url_dict[model_size]
|
134 |
+
|
135 |
|
136 |
chat_interface = gr.ChatInterface(
|
137 |
+
fn=generate,
|
138 |
+
chatbot=gr.Chatbot(
|
139 |
+
label="EXAONE-3.5-Instruct",
|
140 |
+
avatar_images=[None, BOT_AVATAR],
|
141 |
+
layout="bubble",
|
142 |
+
bubble_full_width=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
),
|
144 |
+
additional_inputs=ADDITIONAL_INPUTS,
|
145 |
+
stop_btn=None,
|
146 |
+
examples=EXAMPLES,
|
147 |
+
cache_examples=False,
|
148 |
+
)
|
149 |
+
|
150 |
+
|
151 |
+
with gr.Blocks(fill_height=True) as demo:
|
152 |
+
gr.Markdown("""<p align="center"><img src="https://huggingface.co/spaces/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct-Demo/resolve/main/EXAONE_Symbol%2BBI_3d.png" style="margin-right: 20px; height: 50px"/><p>""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
gr.Markdown(DESCRIPTION)
|
154 |
+
|
155 |
+
markdown = gr.Markdown("<center><font size=5>EXAONE-3.5-2.4B-instruct</center>")
|
156 |
+
with gr.Row():
|
157 |
+
model_size = ["2.4B", "7.8B"]
|
158 |
+
radio1 = gr.Radio(choices=model_size, label="EXAONE-3.5-Instruct", value=model_size[0])
|
159 |
+
|
160 |
+
radio1.change(radio1_change, inputs=radio1, outputs=markdown)
|
161 |
+
radio1.change(choices_model, inputs=radio1, outputs=selected_model)
|
162 |
chat_interface.render()
|
163 |
|
164 |
+
|
165 |
if __name__ == "__main__":
|
166 |
+
demo.queue(max_size=25).launch()
|