Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,10 @@ import torch
|
|
6 |
import spaces
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
8 |
|
|
|
|
|
|
|
|
|
9 |
DESCRIPTION = """ EXAONE-3.0-7.8B-Instruct Official Demo \
|
10 |
"""
|
11 |
|
@@ -15,10 +19,9 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "3840"))
|
|
15 |
|
16 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
17 |
|
18 |
-
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
20 |
model = AutoModelForCausalLM.from_pretrained(
|
21 |
-
|
22 |
torch_dtype=torch.bfloat16,
|
23 |
trust_remote_code=True,
|
24 |
device_map="auto",
|
|
|
6 |
import spaces
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
8 |
|
9 |
+
MODEL_LIST = ["LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"]
|
10 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
11 |
+
MODEL = os.environ.get("MODEL_ID")
|
12 |
+
|
13 |
DESCRIPTION = """ EXAONE-3.0-7.8B-Instruct Official Demo \
|
14 |
"""
|
15 |
|
|
|
19 |
|
20 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
21 |
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
|
|
23 |
model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
MODEL,
|
25 |
torch_dtype=torch.bfloat16,
|
26 |
trust_remote_code=True,
|
27 |
device_map="auto",
|