import os from threading import Thread from typing import Iterator import gradio as gr import torch import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from huggingface_hub import InferenceClient HF_TOKEN = os.environ.get("HF_TOKEN", None) MODEL = "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct" MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 512 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "16384")) DESCRIPTION = """\ #
EXAONE 3.5: Series of Large Language Models for Real-world Use Cases
#####
We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills.
👋 For more details, please check EXAONE-3.5 collections, our blog or technical report
####
EXAONE-3.5-32B-Instruct Demo Coming Soon..
""" EXAMPLES = [ ["Explain how wonderful you are"], ["스스로를 자랑해 봐"], ] BOT_AVATAR = "EXAONE_logo.png" selected_model = gr.Radio(value="https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud",visible=False) ADDITIONAL_INPUTS = [ gr.Textbox( value="You are EXAONE model from LG AI Research, a helpful assistant.", label="System Prompt", render=False, ), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=1, ), selected_model ] tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct") def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 512, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, selected_model: str = "https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud", ) -> Iterator[str]: print(f'model: {selected_model}') messages = [{"role":"system","content": system_prompt}] print(f'message: {message}') print(f'chat_history: {chat_history}') for user, assistant in chat_history: messages.extend( [ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ] ) messages.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ) if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from messages as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") messages = tokenizer.decode(input_ids[0]) client = InferenceClient(selected_model, token=HF_TOKEN) gen_kwargs = dict( max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k, temperature=temperature, stop=["[|endofturn|]"] ) output = client.text_generation(messages, **gen_kwargs) return output def radio1_change(model_size): return f"
EXAONE-3.5-{model_size}-instruct
" def choices_model(model_size): endpoint_url_dict = { "2.4B": "https://jps6tfdq34ydttbh.us-east4.gcp.endpoints.huggingface.cloud", # L4 "7.8B": "https://wafz6im0d595g715.us-east-1.aws.endpoints.huggingface.cloud", # L40S } return endpoint_url_dict[model_size] chat_interface = gr.ChatInterface( fn=generate, chatbot=gr.Chatbot( label="EXAONE-3.5-Instruct", avatar_images=[None, BOT_AVATAR], layout="bubble", bubble_full_width=False ), additional_inputs=ADDITIONAL_INPUTS, stop_btn=None, examples=EXAMPLES, cache_examples=False, ) with gr.Blocks(fill_height=True) as demo: gr.Markdown("""

""") gr.Markdown(DESCRIPTION) markdown = gr.Markdown("

EXAONE-3.5-2.4B-instruct
") with gr.Row(): model_size = ["2.4B", "7.8B"] radio1 = gr.Radio(choices=model_size, label="EXAONE-3.5-Instruct", value=model_size[0]) radio1.change(radio1_change, inputs=radio1, outputs=markdown) radio1.change(choices_model, inputs=radio1, outputs=selected_model) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=25).launch()