import os from threading import Thread from typing import Iterator import gradio as gr import torch import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MODEL_LIST = ["LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"] HF_TOKEN = os.environ.get("HF_TOKEN", None) MODEL = os.environ.get("MODEL_ID") DESCRIPTION = """\ # EXAONE 3.0 7.8B Instruct This is a official demo of [LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct), fine-tuned for instruction following. 👋 For more details, please check [our blog](https://www.lgresearch.ai/blog/view?seq=460) or [technical report](https://arxiv.org/abs/2408.03541) """ MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 128 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "3840")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForCausalLM.from_pretrained( MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) model.eval() @spaces.GPU() def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 128, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, ) -> Iterator[str]: messages = [{"role":"system","content": system_prompt}] print(f'message: {message}') print(f'chat_history: {chat_history}') for user, assistant in chat_history: messages.extend( [ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ] ) messages.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ) if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from messages as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=0.0, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox( value="You are EXAONE model from LG AI Research, a helpful assistant.", label="System Prompt", render=False, ), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), ], stop_btn=None, examples=[ ["Explain who you are"], ["너의 소원을 말해봐"], ], cache_examples=False, ) with gr.Blocks(css="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()