import os from typing import Iterator import gradio as gr import torch import spaces from transformers import AutoTokenizer from openai import OpenAI import json import uuid EXAONE_TOKEN = os.environ.get("EXAONE_TOKEN", None) EXAONE_2_4B = os.environ.get("EXAONE_2_4B", None) EXAONE_7_8B = os.environ.get("EXAONE_7_8B", None) EXAONE_32B = os.environ.get("EXAONE_32B", None) MODEL = "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct" MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 512 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "16384")) DESCRIPTION = """\ #
EXAONE 3.5: Series of Large Language Models for Real-world Use Cases
#####
We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills.
👋 For more details, please check EXAONE-3.5 collections, our blog or technical report
""" EXAMPLES = [ ["Explain how wonderful you are"], ["스스로를 자랑해 봐"], ] BOT_AVATAR = "EXAONE_logo.png" selected_model = gr.Radio(value=["2.4B", EXAONE_2_4B],visible=False) id_ = {"id": str(uuid.uuid4())} model_history = {"model_history": []} ADDITIONAL_INPUTS = [ gr.Textbox( value="You are EXAONE model from LG AI Research, a helpful assistant.", label="System Prompt", render=False, ), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), selected_model ] tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct") def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 512, temperature: float = 0.6, top_p: float = 0.9, selected_model: list = ["2.4b", EXAONE_2_4B], ) -> Iterator[str]: messages = [{"role":"system","content": system_prompt}] for user, assistant in chat_history: messages.extend( [ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ] ) messages.append({"role": "user", "content": message}) if not chat_history: id_['id'] = str(uuid.uuid4()) model_history["model_history"] = [] model_history["model_history"].append(selected_model[0]) input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ) client = OpenAI(api_key=EXAONE_TOKEN, base_url="https://api.friendli.ai/dedicated/v1") response = client.chat.completions.create( messages=messages, model=selected_model[1], max_tokens=max_new_tokens, temperature=temperature, top_p=top_p, stream=True, ) outputs = '' for r in response: token = r.choices[0].delta.content if token is not None: outputs += token yield outputs print(json.dumps({"id": id_['id'], "messages": messages, "output": outputs, "model": model_history}, ensure_ascii=False)) def radio1_change(model_size): return f"
EXAONE-3.5-{model_size}-instruct
" def choices_model(model_size): endpoint_url_dict = { "2.4B": ["2.4B", EXAONE_2_4B], "7.8B": ["7.8B", EXAONE_7_8B], "32B": ["32B", EXAONE_32B], } return endpoint_url_dict[model_size] chat_interface = gr.ChatInterface( fn=generate, chatbot=gr.Chatbot( label="EXAONE-3.5-Instruct", avatar_images=[None, BOT_AVATAR], layout="bubble", bubble_full_width=False ), additional_inputs=ADDITIONAL_INPUTS, stop_btn=None, examples=EXAMPLES, cache_examples=False, ) with gr.Blocks(fill_height=True) as demo: gr.Markdown("""

""") gr.Markdown(DESCRIPTION) markdown = gr.Markdown("

EXAONE-3.5-2.4B-instruct
") with gr.Row(): model_size = ["2.4B", "7.8B", "32B"] radio1 = gr.Radio(choices=model_size, label="EXAONE-3.5-Instruct", value=model_size[0]) radio1.change(radio1_change, inputs=radio1, outputs=markdown) radio1.change(choices_model, inputs=radio1, outputs=selected_model) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=25).launch()