import os
from typing import Iterator
import gradio as gr
import torch
import spaces
from transformers import AutoTokenizer
from openai import OpenAI
import json
import uuid
EXAONE_TOKEN = os.environ.get("EXAONE_TOKEN", None)
EXAONE_2_4B = os.environ.get("EXAONE_2_4B", None)
EXAONE_7_8B = os.environ.get("EXAONE_7_8B", None)
EXAONE_32B = os.environ.get("EXAONE_32B", None)
MODEL = "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct"
MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "16384"))
DESCRIPTION = """\
#
EXAONE 3.5: Series of Large Language Models for Real-world Use Cases
##### We hope EXAONE continues to advance Expert AI with its effectiveness and bilingual skills.
👋 For more details, please check EXAONE-3.5 collections, our blog or technical report
"""
EXAMPLES = [
["Explain how wonderful you are"],
["스스로를 자랑해 봐"],
]
BOT_AVATAR = "EXAONE_logo.png"
selected_model = gr.Radio(value=["2.4B", EXAONE_2_4B],visible=False)
id_ = {"id": str(uuid.uuid4())}
model_history = {"model_history": []}
ADDITIONAL_INPUTS = [
gr.Textbox(
value="You are EXAONE model from LG AI Research, a helpful assistant.",
label="System Prompt",
render=False,
),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
step=0.1,
value=0.7,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
selected_model
]
tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct")
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 512,
temperature: float = 0.6,
top_p: float = 0.9,
selected_model: list = ["2.4b", EXAONE_2_4B],
) -> Iterator[str]:
messages = [{"role":"system","content": system_prompt}]
for user, assistant in chat_history:
messages.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
messages.append({"role": "user", "content": message})
if not chat_history:
id_['id'] = str(uuid.uuid4())
model_history["model_history"] = []
model_history["model_history"].append(selected_model[0])
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
)
client = OpenAI(api_key=EXAONE_TOKEN, base_url="https://api.friendli.ai/dedicated/v1")
response = client.chat.completions.create(
messages=messages,
model=selected_model[1],
max_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
)
outputs = ''
for r in response:
token = r.choices[0].delta.content
if token is not None:
outputs += token
yield outputs
print(json.dumps({"id": id_['id'], "messages": messages, "output": outputs, "model": model_history}, ensure_ascii=False))
def radio1_change(model_size):
return f"EXAONE-3.5-{model_size}-instruct"
def choices_model(model_size):
endpoint_url_dict = {
"2.4B": ["2.4B", EXAONE_2_4B],
"7.8B": ["7.8B", EXAONE_7_8B],
"32B": ["32B", EXAONE_32B],
}
return endpoint_url_dict[model_size]
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(
label="EXAONE-3.5-Instruct",
avatar_images=[None, BOT_AVATAR],
layout="bubble",
bubble_full_width=False
),
additional_inputs=ADDITIONAL_INPUTS,
stop_btn=None,
examples=EXAMPLES,
cache_examples=False,
)
with gr.Blocks(fill_height=True) as demo:
gr.Markdown("""""")
gr.Markdown(DESCRIPTION)
markdown = gr.Markdown("
EXAONE-3.5-2.4B-instruct")
with gr.Row():
model_size = ["2.4B", "7.8B", "32B"]
radio1 = gr.Radio(choices=model_size, label="EXAONE-3.5-Instruct", value=model_size[0])
radio1.change(radio1_change, inputs=radio1, outputs=markdown)
radio1.change(choices_model, inputs=radio1, outputs=selected_model)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=25).launch()