File size: 4,893 Bytes
537fd2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Based on https://github.com/xuebinqin/DIS/blob/main/Colab_Demo.ipynb
import os
from huggingface_hub import hf_hub_download

from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import matplotlib.pyplot as plt

device = None
ISNetDIS = None
normalize = None
im_preprocess = None
hypar = None
net = None


def init():
    global device, ISNetDIS, normalize, im_preprocess, hypar, net

    print("Initializing segmenter...")

    if not os.path.exists("saved_models"):
        os.mkdir("saved_models")
        os.mkdir("git")
        os.system(
            "git clone https://github.com/xuebinqin/DIS git/xuebinqin/DIS")
        hf_hub_download(repo_id="NimaBoscarino/IS-Net_DIS-general-use",
                        filename="isnet-general-use.pth", local_dir="saved_models")
        os.system("rm -r git/xuebinqin/DIS/IS-Net/__pycache__")
        os.system(
            "mv git/xuebinqin/DIS/IS-Net/* .")

    import models
    import data_loader_cache

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    ISNetDIS = models.ISNetDIS
    normalize = data_loader_cache.normalize
    im_preprocess = data_loader_cache.im_preprocess

    # Set Parameters
    hypar = {}  # paramters for inferencing

    # load trained weights from this path
    hypar["model_path"] = "./saved_models"
    # name of the to-be-loaded weights
    hypar["restore_model"] = "isnet-general-use.pth"
    # indicate if activate intermediate feature supervision
    hypar["interm_sup"] = False

    # choose floating point accuracy --
    # indicates "half" or "full" accuracy of float number
    hypar["model_digit"] = "full"
    hypar["seed"] = 0

    # cached input spatial resolution, can be configured into different size
    hypar["cache_size"] = [1024, 1024]

    # data augmentation parameters ---
    # mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
    hypar["input_size"] = [1024, 1024]
    # random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
    hypar["crop_size"] = [1024, 1024]

    hypar["model"] = ISNetDIS()

    # Build Model
    net = build_model(hypar, device)


class GOSNormalize(object):
    '''
    Normalize the Image using torch.transforms
    '''

    def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
        self.mean = mean
        self.std = std

    def __call__(self, image):
        image = normalize(image, self.mean, self.std)
        return image


transform = transforms.Compose(
    [GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])


def load_image(im_pil, hypar):
    im = np.array(im_pil)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im, 255.0)
    shape = torch.from_numpy(np.array(im_shp))
    # make a batch of image, shape
    return transform(im).unsqueeze(0), shape.unsqueeze(0)


def build_model(hypar, device):
    net = hypar["model"]  # GOSNETINC(3,1)

    # convert to half precision
    if (hypar["model_digit"] == "half"):
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()

    net.to(device)

    if (hypar["restore_model"] != ""):
        net.load_state_dict(torch.load(
            hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
        net.to(device)
    net.eval()
    return net


def predict(net, inputs_val, shapes_val, hypar, device):
    '''
    Given an Image, predict the mask
    '''
    net.eval()

    if (hypar["model_digit"] == "full"):
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)

    inputs_val_v = Variable(inputs_val, requires_grad=False).to(
        device)  # wrap inputs in Variable

    ds_val = net(inputs_val_v)[0]  # list of 6 results

    # B x 1 x H x W    # we want the first one which is the most accurate prediction
    pred_val = ds_val[0][0, :, :, :]

    # recover the prediction spatial size to the orignal image size
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(
        pred_val, 0), (shapes_val[0][0], shapes_val[0][1]), mode='bilinear'))

    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val-mi)/(ma-mi)  # max = 1

    if device == 'cuda':
        torch.cuda.empty_cache()
    # it is the mask we need
    return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)


def segment(image):
    image_tensor, orig_size = load_image(image, hypar)
    mask = predict(net, image_tensor, orig_size, hypar, device)

    mask = Image.fromarray(mask).convert('L')
    im_rgb = image.convert("RGB")

    cropped = im_rgb.copy()
    cropped.putalpha(mask)

    return [cropped, mask]