import glob import json import math import os from dataclasses import dataclass import dateutil import numpy as np from src.display.formatting import make_clickable_model from src.display.utils import AutoEvalColumn, Tasks, Groups @dataclass class EvalResult: eval_name: str # org_model_date (uid) full_model: str # org/model (path on hub) org: str model: str results: dict date: str = "" # submission date of request file @classmethod def init_from_json_file(self, json_filepath): """Inits the result from the specific model result file""" with open(json_filepath) as fp: data = json.load(fp) config = data.get("config") # Get model and org org_and_model = config.get("model_name", None) org_and_model = org_and_model.split("/", 1) org = org_and_model[0] model = org_and_model[1] date = config.get("submitted_time", None) result_key = f"{org}_{model}_{date}" full_model = "/".join(org_and_model) # Extract results available in this file (some results are split in several files) results = {} for task in Tasks: # We average all scores of a given metric (not all metrics are present in all files) accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k]) if accs.size == 0 or any([acc is None for acc in accs]): continue mean_acc = np.mean(accs) * 100.0 results[task.benchmark] = mean_acc return self( eval_name=result_key, full_model=full_model, org=org, model=model, results=results, date=date ) def to_dict(self): """Converts the Eval Result to a dict compatible with our dataframe display""" average = sum([v for v in self.results.values() if v is not None]) / len(Tasks) data_dict = { "eval_name": self.eval_name, # not a column, just a save name, AutoEvalColumn.model_submission_date.name: self.date, AutoEvalColumn.model.name: make_clickable_model(self.full_model), AutoEvalColumn.dummy.name: self.full_model, AutoEvalColumn.average.name: average, } for task in Tasks: data_dict[task.col_name] = self.results[task.benchmark] return data_dict @dataclass class EvalResultGroup: eval_name: str # org_model_date (uid) full_model: str # org/model (path on hub) org: str model: str results: dict date: str = "" # submission date of request file @classmethod def init_from_json_file(self, json_filepath): """Inits the result from the specific model result file""" with open(json_filepath) as fp: data = json.load(fp) config = data.get("config") # Get model and org org_and_model = config.get("model_name", None) org_and_model = org_and_model.split("/", 1) org = org_and_model[0] model = org_and_model[1] date = config.get("submitted_time", None) result_key = f"{org}_{model}_{date}" full_model = "/".join(org_and_model) # Extract results available in this file (some results are split in several files) results = {} for task in Groups: # We average all scores of a given metric (not all metrics are present in all files) accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k]) if accs.size == 0 or any([acc is None for acc in accs]): continue mean_acc = np.mean(accs) * 100.0 results[task.benchmark] = mean_acc return self( eval_name=result_key, full_model=full_model, org=org, model=model, results=results, date=date ) def to_dict(self): """Converts the Eval Result to a dict compatible with our dataframe display""" average = sum([v for v in self.results.values() if v is not None]) / len(Groups) data_dict = { "eval_name": self.eval_name, # not a column, just a save name, AutoEvalColumn.model_submission_date.name: self.date, AutoEvalColumn.model.name: make_clickable_model(self.full_model), AutoEvalColumn.dummy.name: self.full_model, AutoEvalColumn.average.name: average, } for task in Groups: data_dict[task.col_name] = self.results[task.benchmark] return data_dict def get_raw_eval_results(results_path: str) -> list[EvalResult]: """From the path of the results folder root, extract all needed info for results""" model_result_filepaths = [] for root, _, files in os.walk(results_path): # We should only have json files in model results if len(files) == 0 or any([not f.endswith(".json") for f in files]): continue # Sort the files by date files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) for file in files: model_result_filepaths.append(os.path.join(root, file)) eval_results = {} for model_result_filepath in model_result_filepaths: # Creation of result eval_result = EvalResult.init_from_json_file(model_result_filepath) # Store results of same eval together eval_name = eval_result.eval_name eval_results[eval_name] = eval_result results = [] for v in eval_results.values(): try: v.to_dict() # we test if the dict version is complete results.append(v) except KeyError: # not all eval values present continue return results def get_group_eval_results(results_path: str) -> list[EvalResultGroup]: """From the path of the results folder root, extract all needed info for results""" model_result_filepaths = [] for root, _, files in os.walk(results_path): # We should only have json files in model results if len(files) == 0 or any([not f.endswith(".json") for f in files]): continue # Sort the files by date files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) for file in files: model_result_filepaths.append(os.path.join(root, file)) eval_results = {} for model_result_filepath in model_result_filepaths: # Creation of result eval_result = EvalResultGroup.init_from_json_file(model_result_filepath) # Store results of same eval together eval_name = eval_result.eval_name eval_results[eval_name] = eval_result results = [] print(eval_results) for v in eval_results.values(): try: v.to_dict() # we test if the dict version is complete results.append(v) except KeyError: # not all eval values present print("key error") continue return results