Spaces:
Running
Running
File size: 19,448 Bytes
e137e27 005657d e137e27 8262fca e137e27 005657d 87a6313 e137e27 005657d e137e27 3d1994e e137e27 005657d e137e27 43e1d29 e5180e3 43e1d29 e137e27 5d3f993 e137e27 b2b380b e137e27 b2b380b e137e27 fac35b0 43e1d29 fac35b0 e137e27 fac35b0 43e1d29 fac35b0 e137e27 fac35b0 ec2b3ce fac35b0 43e1d29 fac35b0 e137e27 005657d e137e27 8061116 adcd5e6 8061116 adcd5e6 8061116 adcd5e6 8061116 adcd5e6 8061116 adcd5e6 8061116 adcd5e6 8061116 adcd5e6 8061116 adcd5e6 8061116 adcd5e6 8061116 8580754 fac35b0 8580754 12ce41f fac35b0 b6d74c9 140edc3 8580754 fac35b0 12ce41f fac35b0 b6d74c9 a1001c2 140edc3 8580754 fac35b0 12ce41f a1001c2 fac35b0 0e10a03 a1001c2 140edc3 8580754 fac35b0 1f950b4 fac35b0 3d1994e fac35b0 3d1994e fac35b0 3d1994e fac35b0 8580754 e137e27 5025d3d 8061116 adcd5e6 3d1994e 5025d3d 3d1994e 5025d3d 3d1994e 5025d3d 3d1994e 5025d3d 3d1994e 5025d3d e137e27 005657d 87a6313 e137e27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 |
from fasthtml.common import *
from fasthtml.components import *
from fasthtml.components import (
D_title,
D_article,
D_front_matter,
D_contents,
D_byline,
D_bibliography,
D_appendix,
D_cite,
)
from plotly import graph_objects as go
from fh_plotly import plotly2fasthtml
import pandas as pd
import json
from rich import print
import overview
import curated
import web
import common
import results
from pybtex.database import parse_file
import data_viewer
app, rt = fast_app(
debug=True,
pico=False,
hdrs=(
Meta(charset="UTF-8"),
Meta(name="viewport", content="width=device-width, initial-scale=1.0"),
Script(src="https://distill.pub/template.v2.js"),
Script(src="https://unpkg.com/htmx.org@next/dist/htmx.min.js"),
Script(src="https://cdn.plot.ly/plotly-latest.min.js"),
Link(rel="stylesheet", href="style.css"),
MarkdownJS(),
),
)
front_matter = """
<d-front-matter>
<script id='distill-front-matter' type="text/json">{
"title": "",
"description": "",
"published": "",
"affiliation": {},
"authors": [
{
"author":"",
"authorURL":""
}
],
"katex": {
"delimiters": [
{"left": "$$", "right": "$$", "display": false}
]
}
}
</script>
</d-front-matter>
"""
def read_bibs():
bib_data = parse_file("bibliography.bib")
cits = []
for key in bib_data.entries.keys():
cits.append(D_cite(bibtex_key=key))
return cits
@app.get("/bibliography.bib")
def get():
return FileResponse("bibliography.bib")
@app.get("/")
def main():
return Div(
D_title(
H1(
"TxT360: a globally deduplicated dataset for LLM pretraining",
cls="l-body",
style="text-align: center;",
),
Div(
Img(src="images/llm360_logo.png"),
id="title-plot",
cls="main-plot-container l-page",
),
),
Div(D_byline(), NotStr(front_matter), style="display: none;"),
D_article(
D_contents(
Nav(
H3("Table of Contents"),
Div(
A(
"TxT360",
href="/intro#section1",
hx_get="/intro#section1",
hx_target="#inner-text",
)
),
Div(
Ul(
Li(
A(
"About TxT360",
href="/intro#section1",
hx_get="/intro#section1",
hx_target="#inner-text",
)
),
Li(
A(
"Motivation Behind Txt360",
href="/intro#section2",
hx_get="/intro#section2",
hx_target="#inner-text",
)
),
Li(
A(
"Generalizable Approach to Data Processing",
href="/intro#section3",
hx_get="/intro#section3",
hx_target="#inner-text",
)
),
),
),
Div(
A(
"Web Data Processing",
href="/webdata",
hx_get="/webdata",
hx_target="#inner-text",
)
),
Div(
A(
"Curated Sources Processing",
href="/curated",
hx_get="/curated",
hx_target="#inner-text",
)
),
Div(
A(
"Global Processing Steps",
href="/common#section1",
hx_get="/common#section1",
hx_target="#inner-text",
)
),
Div(
A(
"TxT360 Results",
href="/results",
hx_get="/results",
hx_target="#inner-text",
),
),
role="navigation",
cls="l-text figcaption",
),
),
intro(),
),
D_appendix(D_bibliography(src="bibliography.bib")),
Div(*read_bibs(), style="display: none;"),
)
new_dataset_comparison1 = pd.DataFrame(
{
"Data Source": [
"CommonCrawl Snapshots",
"Papers",
"Wikipedia",
"FreeLaw",
"DM Math",
"USPTO",
"PG-19",
"HackerNews",
"Ubuntu IRC",
"EuroParl",
"StackExchange",
"Code",
],
"TxT360": [
"99",
"5 Sources",
"310+ Languages",
"Included",
"Included",
"Included",
"Included",
"Included",
"Included",
"Included",
"Included",
"**",
],
"FineWeb": [
"96",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
],
"RefinedWeb": [
"90",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
],
"PedPajamaV2": [
"84",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
],
"C4": [
"1",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
"-",
],
"Dolma": [
"24",
"1 Source",
"checkmark",
"-",
"-",
"-",
"Included",
"-",
"-",
"-",
"-",
"Included",
],
"RedPajamaV1": [
"5",
"1 Source",
"checkmark",
"",
" ",
"",
"Included",
"-",
"-",
"-",
"Included",
"Included",
],
"The Pile": [
"0.6% of 74",
"4 Sources",
"English Only",
"Included",
"Included",
"Included",
"Included",
"Included",
"Included",
"Included",
"Included",
"Included",
],
}
)
# Apply table styling: Light green for the header, alternating white and light grey for rows
styled_table = (
new_dataset_comparison1.style.set_properties(
**{"background-color": "#E1EEDB"},
subset=pd.IndexSlice[0, :], # Row 0 with a light green background
)
.apply(
lambda x: [
"background-color: #E1EEDB"
if i == 0
else (
"background-color: rgb(237, 242, 251)"
if i % 2 == 0
else "background-color: white"
)
for i in range(len(x))
],
axis=0,
)
.hide(axis="index")
) # Hide the row index
# Use _repr_html_() method to get the HTML representation of the styled DataFrame
table_html = styled_table._repr_html_()
# table_html = dataset_comparison1.to_html(index=False, border=0)
new_table_div_1 = Div(NotStr(table_html), style="margin: 40px;")
dataset_comparison1 = pd.DataFrame(
{
"Dataset": [
"TxT360",
"FineWeb",
"RefinedWeb",
"RedPajama-v2",
"C4",
"Dolma",
"RedPajama-v1",
"The Pile",
],
"CommonCrawl": [
"99 Snapshots",
"96 Snapshots",
"90 Snapshots",
"84 Snapshots",
"1 Snapshots",
"24 Snapshots",
"5 Snapshots",
"0.6% of 74 Snapshots",
],
"Papers": [
"5 Sources",
"-",
"-",
"-",
"-",
"1 Source",
"1 Source",
"4 Sources",
],
"Wikipedia": [
"310+ Languages",
"-",
"-",
"-",
"-",
"what does a check mark mean?",
"what does a check mark mean?",
"English Only",
],
"FreeLaw": [
"Included",
"-",
"-",
"-",
"-",
"-",
"-",
"Included",
],
"DM Math": [
"Included",
"-",
"-",
"-",
"-",
"-",
"-",
"Included",
],
"USPTO": [
"Included",
"-",
"-",
"-",
"-",
"-",
"-",
"Included",
],
}
)
# Apply table styling: Light green for the header, alternating white and light grey for rows
styled_table = (
dataset_comparison1.style.set_properties(
**{"background-color": "#E1EEDB"},
subset=pd.IndexSlice[0, :], # Row 0 with a light green background
)
.apply(
lambda x: [
"background-color: #E1EEDB"
if i == 0
else (
"background-color: rgb(237, 242, 251)"
if i % 2 == 0
else "background-color: white"
)
for i in range(len(x))
],
axis=0,
)
.hide(axis="index")
) # Hide the row index
# Use _repr_html_() method to get the HTML representation of the styled DataFrame
table_html = styled_table._repr_html_()
# table_html = dataset_comparison1.to_html(index=False, border=0)
table_div_1 = Div(NotStr(table_html), style="margin: 40px;")
dataset_comparison2 = pd.DataFrame(
{
"Dataset": [
"TxT360",
"FineWeb",
"RefinedWeb",
"RedPajama-v2",
"C4",
"Dolma",
"RedPajama-v1",
"The Pile",
],
"PG-19": [
"Included",
"-",
"-",
"-",
"-",
"Included",
"Included",
"Included",
],
"HackerNews": [
"Included",
"-",
"-",
"-",
"-",
"-",
"-",
"Included",
],
"Ubuntu IRC": [
"Included",
"-",
"-",
"-",
"-",
"-",
"-",
"Included",
],
"EuroParl": [
"Included",
"-",
"-",
"-",
"-",
"-",
"-",
"Included",
],
"StackExchange": [
"Included",
"-",
"-",
"-",
"-",
"-",
"Included",
"Included",
],
"Code": [
"- what is this?",
"-",
"-",
"-",
"-",
"Included",
"Included",
"Included",
],
}
)
# Apply table styling: Light green for the header, alternating white and light grey for rows
styled_table = (
dataset_comparison2.style.set_properties(
**{"background-color": "#E1EEDB"},
subset=pd.IndexSlice[0, :], # Row 0 with a light green background
)
.apply(
lambda x: [
"background-color: #E1EEDB"
if i == 0
else (
"background-color: rgb(237, 242, 251)"
if i % 2 == 0
else "background-color: white"
)
for i in range(len(x))
],
axis=0,
)
.hide(axis="index")
) # Hide the row index
# Use _repr_html_() method to get the HTML representation of the styled DataFrame
table_html2 = styled_table._repr_html_()
# table_html2 = dataset_comparison2.to_html(index=False, border=0)
table_div_2 = Div(NotStr(table_html2), style="margin: 40px;")
dataset_sources = pd.DataFrame(
{
"Data Source": [
"CommonCrawl",
"Papers",
"Wikipedia",
"Freelaw",
"DM Math",
"USPTO",
"PG-19",
"HackerNews",
"Ubuntu IRC",
"Europarl",
"StackExchange",
],
"Raw Data Size": [
"11 TB",
"712 GB",
"210 GB",
"23 GB",
"22 GB",
"45 GB",
"11 GB",
"4.1 GB",
"4.7 GB",
"6.1 GB",
"45 GB",
],
"Token Count": [
"5.71T",
"154.96B",
"4.75B",
"7.34B",
"5.23B",
"4.95B",
"2.94B",
"1.08B",
"1.54B",
"1.96B",
"8.37B",
],
"Cut-Off Date": [
"2024-30",
"Q4 2023",
"-",
"Q1 2024",
"-",
"Q4 2023",
"-",
"Q4 2023",
"Q4 2023",
"-",
"Q4 2023",
],
}
)
# Apply table styling: Light green for the header, alternating white and light grey for rows
styled_table = dataset_sources.style.apply(
lambda x: [
"background-color: white"
if i % 2 == 0
else "background-color: rgb(237, 242, 251)"
for i in range(len(x))
],
axis=0,
).hide(axis="index") # Hide the row index
table_html_data = styled_table._repr_html_()
# table_html_data = dataset_sources.to_html(index=False, border=0)
table_div_data = Div(NotStr(table_html_data), style="margin: 40px;")
@app.get("/intro")
def intro():
return Div(
Section(
H2("About TxT360"),
P(
B("We introduce TxT360 (Trillion eXtracted Text) the first dataset to globally deduplicate 99 CommonCrawl snapshots and 14 commonly used non-web data sources (e.g. FreeLaw, PG-19, etc.) providing pretraining teams with a recipe to easily adjust data weighting and train the most performant models.")
),
P(
"Building on top of the prior studies on pre-training data, TxT360 carefully implements data processing steps including extraction, filtering, deduplication, personally identifiable information removal, and other steps."
),
P(
"Metadata is stored to recover the raw distribution for each dataset, enabling fine-grained control to create data distributions and corpus of desired size. As an example, we present one simple upsampling scheme that takes into account the duplication counts, resulting in a 15~16 trillion token corpus, outperforming FineWeb and our non-upsampling baselines, on diverse evaluations. Unlike DCLM and RedPajama V2, we present the final deduplicated dataset that is ready to go."
),
P(
"We documented all implementation details in this blog post and are open sourcing the code. Examples of each filter and rationale supporting each decision are included."
),
id="section1",
),
Section(
H2("Motivation Behind Txt360"),
H3(
"TxT360 is the first dataset to combine both web and curated data sources commonly used in pretraining."
),
new_table_div_1,
#table_div_1,
#table_div_2,
P(
"In pretraining, it is common to combine web data and curated sources (cite). Web data is included to provide a vast quantity of long tail and diverse data, while curated datasets are often information rich and provide the 'deep-dive' domain information. Combining both datasets plays a critical role for effective LLM pre-training. By integrating the reach of web data with the quality of curated sources, TxT360 meets and surpasses the rigorous standards required for state-of-the-art LLM pre-training. See Results section below."
),
#P("Table 2: Basic TxT360 Statistics."),
#table_div_data,
id="section2",
),
Section(
H2("Our Generalizable Approach to Data Processing"),
P(
"To produce TxT360, a comprehensive and transparent data processing pipeline was designed to account for the nuances of both web and curated datasets. The pipeline presents a unified framework for processing both data types, making it convenient and easily adaptive for users to revise and fine-tune the pipeline for their own use cases."
),
P(
"Web datasets are inherently noisy and varied. The TxT360 pipeline implements sophisticated filtering and deduplication techniques to clean and remove redundancies while preserving data integrity."
),
P(
"Curated datasets are typically structured and consistently formatted. TxT360 filters these sources with selective steps to maintain their integrity while providing seamless integration into the larger dataset. Both data source types are globally deduplicated together resulting in 5.7T tokens of high-quality data."
),
P(
"We provide details and context for the choices behind TxT360 in the respective Web Data Processing and Curated Source Processing section. A deep dive in the deduplication [here]. "
),
#Img(src="images/pipeline.png", height="300", width="600"),
#P(
# "Figure 1: Data processing pipeline. All the steps are adopted for processing web data while the yellow blocks are adopted for processing curated sources."
#),
id="section3",
),
id="inner-text",
)
rt("/update/{target}")(data_viewer.update)
rt("/curated")(curated.curated)
rt("/webdata")(web.web_data)
rt("/common")(common.common_steps)
rt("/results")(results.results)
serve()
|