File size: 68,599 Bytes
e137e27
 
 
 
 
 
 
87a6313
e137e27
 
4028499
90b43c6
e137e27
aba6489
 
 
 
 
4cc0103
aba6489
 
 
 
 
 
25a9fcb
b16daa1
25a9fcb
aba6489
 
25a9fcb
3d4aecc
4cc0103
aba6489
4cc0103
 
 
 
 
aba6489
 
4cc0103
aba6489
3d4aecc
 
25a9fcb
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a7bc42
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25a9fcb
aba6489
 
 
 
 
 
 
 
 
 
 
25a9fcb
 
aba6489
b9f2fad
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6475c3e
aba6489
 
6475c3e
aba6489
 
 
b9f2fad
67e65d7
2dd50ea
25a9fcb
5e5aef1
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62d7958
aba6489
 
62d7958
aba6489
 
 
5e5aef1
 
2dd50ea
5e5aef1
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6475c3e
aba6489
 
6475c3e
aba6489
 
 
5e5aef1
 
2dd50ea
5e5aef1
 
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6475c3e
aba6489
 
8825bba
aba6489
 
 
5e5aef1
 
2dd50ea
5e5aef1
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6475c3e
aba6489
 
6475c3e
aba6489
 
 
5e5aef1
 
2dd50ea
5e5aef1
 
 
aba6489
 
 
 
 
 
 
 
8825bba
aba6489
 
 
 
 
 
 
 
6475c3e
aba6489
 
8825bba
aba6489
 
 
5e5aef1
 
2dd50ea
5e5aef1
 
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6475c3e
aba6489
 
8825bba
aba6489
 
 
5e5aef1
 
2dd50ea
5e5aef1
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6475c3e
aba6489
 
6475c3e
aba6489
 
 
5e5aef1
 
2dd50ea
5e5aef1
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6475c3e
aba6489
 
6475c3e
aba6489
 
 
5e5aef1
 
2dd50ea
5e5aef1
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6475c3e
aba6489
 
8825bba
aba6489
 
 
5e5aef1
 
2dd50ea
5e5aef1
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6475c3e
aba6489
 
6475c3e
aba6489
 
 
5e5aef1
 
3ed48b8
5e5aef1
2c39f2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e5aef1
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6475c3e
aba6489
 
8825bba
aba6489
 
 
5e5aef1
 
2dd50ea
5e5aef1
2c39f2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e5aef1
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6475c3e
aba6489
 
8825bba
aba6489
 
 
5e5aef1
 
2dd50ea
d4c2068
25a9fcb
ee43c81
d4c2068
87a6313
aba6489
 
 
 
 
 
 
 
 
 
f44dec9
aba6489
 
 
e3fd33e
 
aba6489
 
 
 
 
 
 
 
 
 
e3fd33e
 
d4c2068
 
8a16e84
1630e9d
3d4aecc
aba6489
 
 
 
 
 
 
 
 
 
 
6a336ca
aba6489
 
 
 
0e12ce8
aba6489
 
 
 
 
 
 
 
1630e9d
aba6489
0e12ce8
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
6a336ca
aba6489
 
 
 
 
 
 
1630e9d
3d4aecc
0698fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d4aecc
0698fac
 
 
 
 
 
 
 
 
1630e9d
 
24b53c0
8feeca0
b72b785
aba6489
 
 
0698fac
aba6489
0e12ce8
aba6489
8feeca0
24b53c0
103b5cf
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a336ca
aba6489
 
 
 
 
 
 
 
 
c9bd480
 
 
 
aba6489
 
ee43c81
583d7c5
 
5094bb7
aba6489
 
 
 
 
 
860a948
79041d0
 
 
 
aba6489
79041d0
 
aba6489
79041d0
aba6489
6a336ca
79041d0
 
 
aba6489
 
79041d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aba6489
 
 
 
 
79041d0
 
aba6489
 
 
 
 
 
 
 
 
 
 
6a336ca
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bd480
 
 
 
aba6489
 
5094bb7
583d7c5
 
5094bb7
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316946b
 
 
 
 
 
 
 
 
 
 
 
 
5094bb7
583d7c5
e3ed423
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
5f4285e
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c39f2b
316946b
 
 
 
 
 
 
 
 
 
 
 
 
e3ed423
 
583d7c5
5094bb7
aba6489
 
 
 
 
 
 
 
 
79041d0
 
 
 
 
aba6489
6a336ca
aba6489
 
79041d0
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c39f2b
aba6489
 
 
 
 
 
 
c9bd480
 
 
 
aba6489
 
5094bb7
583d7c5
 
5094bb7
aba6489
 
 
 
 
 
6a9172e
aba6489
 
 
 
 
 
 
6a9172e
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bd480
 
 
 
aba6489
 
5094bb7
583d7c5
 
5094bb7
aba6489
 
 
 
 
 
6a9172e
aba6489
 
 
 
 
 
 
 
 
 
 
 
913dc7b
 
 
 
 
aba6489
 
 
 
 
 
913dc7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
c9bd480
 
 
 
aba6489
 
8a16e84
583d7c5
 
5094bb7
aba6489
 
6a9172e
aba6489
 
 
6a9172e
aba6489
 
 
 
 
 
 
4cc0103
aba6489
6a336ca
aba6489
4cc0103
 
 
 
 
 
 
 
 
 
 
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5094bb7
583d7c5
 
5094bb7
aba6489
 
 
 
6a9172e
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5094bb7
583d7c5
 
5094bb7
aba6489
 
 
 
 
 
6a9172e
aba6489
 
 
 
 
 
 
 
9c1b63e
 
 
5672cf7
aba6489
6a9172e
aba6489
 
0e12ce8
aba6489
6a336ca
4cc0103
9c1b63e
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cc0103
 
 
 
 
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bd480
 
 
 
aba6489
 
5094bb7
583d7c5
 
5094bb7
aba6489
 
 
 
 
 
 
 
 
 
6a9172e
 
5672cf7
583d7c5
 
 
 
 
 
 
6a9172e
 
 
 
6a336ca
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bd480
 
 
 
aba6489
 
5094bb7
583d7c5
 
5094bb7
aba6489
 
 
 
 
 
6a9172e
aba6489
 
 
 
 
 
 
 
 
ff67812
 
 
 
 
666337a
 
ff67812
 
 
aba6489
 
 
 
6a336ca
aba6489
 
 
 
 
4cc0103
 
 
aba6489
 
 
 
 
 
 
 
5094bb7
583d7c5
 
aba6489
 
 
 
 
 
 
0e12ce8
aba6489
 
 
 
 
 
 
 
5672cf7
6a9172e
aba6489
 
 
6a336ca
aba6489
 
4cc0103
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bd480
 
 
 
aba6489
 
8a16e84
583d7c5
 
5094bb7
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
6a336ca
9c1b63e
aba6489
4cc0103
 
 
 
 
aba6489
 
 
4cc0103
 
 
 
 
 
 
aba6489
 
 
4cc0103
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9bd480
 
 
 
aba6489
 
5094bb7
24b53c0
 
 
 
aba6489
 
 
9f87a47
 
31b08ca
aba6489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31b08ca
 
 
 
e137e27
09bef6a
e137e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79041d0
 
e137e27
 
 
 
 
 
5dd5e15
e137e27
 
79041d0
 
e137e27
 
aba6489
 
9cbd894
aba6489
 
 
 
9cbd894
aba6489
 
 
09bef6a
aba6489
 
 
09bef6a
aba6489
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
from fasthtml.common import *
from fasthtml.components import *
from plotly import graph_objects as go
from fh_plotly import plotly2fasthtml
import pandas as pd
import json
from data_viewer import view_data, gen_random_id
from data_viewer import DV, DV2, DVS
from rich import print
import uuid
import plotly.express as px
from fasthtml.components import D_code, D_bibliography, D_appendix, D_cite

overview = (
    Div(
        H2("Curated Sources Processing"),
        H3("What This Section Contains"),
        P(
            "This section provides a complete discussion on the filtering applied to the 14 curated sources that comprise the non-Common Crawl data section of TxT360. The section is split into the following topic areas: "
        ),
        Ul(
            Li("Curated Sources Data Processing Summary", style="margin-bottom: 5px"),
            Li(
                "Individual Filtering Discussion for Each Source",
                style="margin-bottom: 5px",
            ),
            Li(B("Estimated Reading Time: 25 minutes"),style="margin-bottom: 5px", ),
        ),
    ),
)

curated_sources_intro = Div(
    H2("Domain Specific Curated Sources"),
    P(
        "While massive amount of data can be crawled and obtained from the Internet, there are certain sources contain data in additional formats (e.g. PDF documents), or organized and published as official dumps (e.g. Wikipedia). We refer to these sources as curated sources. These dataset often comprises high-quality data that contain domain-specificity, such as academic publications or domain specific discussions. TxT360 was strongly influenced by The Pile",
        D_cite(bibtex_key="thepile"),
        " regarding both inclusion of the dataset and filtering techniques.",        
    ),
    P("These sources, such as Arxiv, Wikipedia, and Stack Exchange, provide high quality data. And as mentioned above, they are excluded from the web dataset via URL matching. Details about each of the sources are provided below. ",
    ),
    P(
        "TxT360 respects the copyright of the data sources and have not included the controversial data that was used in The Pile like YouTube and Opensubtitles, Reddit threads, and book3."
    ),
)


treemap_data = {
    "Source": [
        "ArXiv",
        "PubMed Central",
        "PubMed Abstract",
        "S2ORC Full Text",
        "S2ORC Abstract",
        "PhilPapers",
        "Wikipedia",
        "StackExchange",
        "EuroParl",
        "Ubuntu IRC",
        "Freelaw",
        "PG19",
        "USPTO",
        "HackerNews",
        "DM Maths",
    ],
    "Category": [
        "Papers",
        "Papers",
        "Papers",
        "Papers",
        "Papers",
        "Papers",
        "Internet",
        "Conversational",
        "Legal/Formal",
        "Conversational",
        "Legal/Formal",
        "Books",
        "Legal/Formal",
        "Conversational",
        "Reasoning",
    ],
    "Count": [100, 200, 150, 120, 80, 90, 199, 79, 6.1, 4.7, 71, 11, 45, 4.1, 22],
    "Details": [
        "A repository of scientific papers in various disciplines, including computer science, physics, mathematics, and more.",
        "A database of biomedical and life sciences research articles.",
        "Abstracts of biomedical literature from various sources.",
        "Full-text articles from the Semantic Scholar Open Research Corpus.",
        "Abstracts of articles from the Semantic Scholar Open Research Corpus.",
        "Papers from the PhilPapers database, a comprehensive index and bibliography of philosophy research.",
        "A collaborative online encyclopedia that covers a wide range of topics.",
        "A network of question-and-answer websites on various subjects, including programming, science, mathematics, and more.",
        "A collection of multilingual parallel corpora of parliamentary debates from the European Parliament.",
        "Chat logs from the Ubuntu Internet Relay Chat (IRC) channels.",
        "Legal documents and court cases from various jurisdictions.",
        "A collection of books from Project Gutenberg, a digital library of public domain works.",
        "Patent documents from the United States Patent and Trademark Office.",
        "User-generated news and discussion platform focused on technology and startups.",
        "Deep Mind Maths dataset with generated questions.",
    ],
}
total_count = sum(treemap_data["Count"])
treemap_data["Percentage"] = [
    count / total_count * 100 for count in treemap_data["Count"]
]
fig = px.treemap(
    treemap_data,
    path=["Category", "Source"],
    values="Count",
    hover_data=["Details", "Percentage"],
    hover_name="Source",
)
treemap_chart = fig

# start individual tables showing filterin
wikipedia_filter = pd.DataFrame(
    {
        "Dataset": [
            "Wikipedia",
        ],
        "Lines Downloaded": [
            "61614907",
        ],
        "Percent Removed After Language Filter": [
            "0.00%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "1.86%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.00%",
        ],
        "Percent Removed After Local Dedup": [
            "0.31%",
        ],
        "Total Percentage Remaining": [
            "97.84%",
        ],
    }
)

table_html_wikipedia = wikipedia_filter.to_html(index=False, border=0)
table_div_wikipedia = Div(NotStr(table_html_wikipedia))

freelaw_filter = pd.DataFrame(
    {
        "Dataset": [
            "FreeLaw",
        ],
        "Lines Downloaded": [
            "75971288",
        ],
        "Percent Removed After Language Filter": [
            "3.00%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "7.49%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.07%",
        ],
        "Percent Removed After Local Dedup": [
            "82.73%",
        ],
        "Total Percentage Remaining": [
            "6.71%",
        ],
    }
)

table_html_freelaw = freelaw_filter.to_html(index=False, border=0)
table_div_freelaw = Div(NotStr(table_html_freelaw))

dmm_filter = pd.DataFrame(
    {
        "Dataset": [
            "DM Math",
        ],
        "Lines Downloaded": [
            "112559888",
        ],
        "Percent Removed After Language Filter": [
            "0.00%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "0.00%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.00%",
        ],
        "Percent Removed After Local Dedup": [
            "0.00%",
        ],
        "Total Percentage Remaining": [
            "100.00%",
        ],
    }
)

table_html_dmm = dmm_filter.to_html(index=False, border=0)
table_div_dmm = Div(NotStr(table_html_dmm))


uspto_filter = pd.DataFrame(
    {
        "Dataset": [
            "USPTO",
        ],
        "Lines Downloaded": [
            "6880276",
        ],
        "Percent Removed After Language Filter": [
            "0.02%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "1.88%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.01%",
        ],
        "Percent Removed After Local Dedup": [
            "22.94%",
        ],
        "Total Percentage Remaining": [
            "75.15%",
        ],
    }
)

table_html_uspto = uspto_filter.to_html(index=False, border=0)
table_div_uspto = Div(NotStr(table_html_uspto))

pg19_filter = pd.DataFrame(
    {
        "Dataset": [
            "PG-19",
        ],
        "Lines Downloaded": [
            "28752",
        ],
        "Percent Removed After Language Filter": [
            "0.24%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "0.00%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.17%",
        ],
        "Percent Removed After Local Dedup": [
            "0.80%",
        ],
        "Total Percentage Remaining": [
            "98.78%",
        ],
    }
)

table_html_pg19 = pg19_filter.to_html(index=False, border=0)
table_div_pg19 = Div(NotStr(table_html_pg19))


hn_filter = pd.DataFrame(
    {
        "Dataset": [
            "HackerNews",
        ],
        "Lines Downloaded": [
            "2064931",
        ],
        "Percent Removed After Language Filter": [
            "2.62%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "0.02%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.34%",
        ],
        "Percent Removed After Local Dedup": [
            "61.84%",
        ],
        "Total Percentage Remaining": [
            "35.18%",
        ],
    }
)

table_html_hn = hn_filter.to_html(index=False, border=0)
table_div_hn = Div(NotStr(table_html_hn))


uirc_filter = pd.DataFrame(
    {
        "Dataset": [
            "Ubunutu IRC",
        ],
        "Lines Downloaded": [
            "37966",
        ],
        "Percent Removed After Language Filter": [
            "38.10%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "0.14%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "1.12%",
        ],
        "Percent Removed After Local Dedup": [
            "0.66%",
        ],
        "Total Percentage Remaining": [
            "59.98%",
        ],
    }
)

table_html_uirc = uirc_filter.to_html(index=False, border=0)
table_div_uirc = Div(NotStr(table_html_uirc))

up_filter = pd.DataFrame(
    {
        "Dataset": [
            "EuroParl",
        ],
        "Lines Downloaded": [
            "69814",
        ],
        "Percent Removed After Language Filter": [
            "0.00%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "0.00%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.00%",
        ],
        "Percent Removed After Local Dedup": [
            "1.00%",
        ],
        "Total Percentage Remaining": [
            "99.00%",
        ],
    }
)

table_html_up = up_filter.to_html(index=False, border=0)
table_div_up = Div(NotStr(table_html_up))

se_filter = pd.DataFrame(
    {
        "Dataset": [
            "StackExchange",
        ],
        "Lines Downloaded": [
            "23246548",
        ],
        "Percent Removed After Language Filter": [
            "0.00%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "0.00%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.00%",
        ],
        "Percent Removed After Local Dedup": [
            "0.00%",
        ],
        "Total Percentage Remaining": [
            "100.00%",
        ],
    }
)

table_html_se = se_filter.to_html(index=False, border=0)
table_div_se = Div(NotStr(table_html_se))

arx_filter = pd.DataFrame(
    {
        "Dataset": [
            "ArXiv",
        ],
        "Lines Downloaded": [
            "1911867",
        ],
        "Percent Removed After Language Filter": [
            "2.22%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "5.65%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.07%",
        ],
        "Percent Removed After Local Dedup": [
            "0.00%",
        ],
        "Total Percentage Remaining": [
            "92.06%",
        ],
    }
)

table_html_arx = arx_filter.to_html(index=False, border=0)
table_div_arx = Div(NotStr(table_html_arx))

s2o_filter = pd.DataFrame(
    {
        "Dataset": [
            "S2ORC",
        ],
        "Lines Downloaded": [
            "12963563",
        ],
        "Percent Removed After Language Filter": [
            "0.00%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "0.00%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.00%",
        ],
        "Percent Removed After Local Dedup": [
            "0.00%",
        ],
        "Total Percentage Remaining": [
            "100.00%",
        ],
    }
)

table_html_s2o = s2o_filter.to_html(index=False, border=0)
table_div_s2o = Div(NotStr(table_html_s2o))

s2oa_filter = pd.DataFrame(
    {
        "Dataset": [
            "S2ORC Abstract",
        ],
        "Lines Downloaded": [
            "102324176",
        ],
        "Percent Removed After Language Filter": [
            "18.04%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "1.17%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.00%",
        ],
        "Percent Removed After Local Dedup": [
            "0.13%",
        ],
        "Total Percentage Remaining": [
            "80.66%",
        ],
    }
)

table_html_s2oa = s2oa_filter.to_html(index=False, border=0)
table_div_s2oa = Div(NotStr(table_html_s2oa))

med_filter = pd.DataFrame(
    {
        "Dataset": [
            "PubMed - Central",
        ],
        "Lines Downloaded": [
            "5230932",
        ],
        "Percent Removed After Language Filter": [
            "7.66%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "1.29%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.02%",
        ],
        "Percent Removed After Local Dedup": [
            "0.00%",
        ],
        "Total Percentage Remaining": [
            "91.03%",
        ],
    }
)

table_html_med = med_filter.to_html(index=False, border=0)
table_div_med = Div(NotStr(table_html_med))

pma_filter = pd.DataFrame(
    {
        "Dataset": [
            "PubMed - Abstract",
        ],
        "Lines Downloaded": [
            "25787474",
        ],
        "Percent Removed After Language Filter": [
            "0.01%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "0.14%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.00%",
        ],
        "Percent Removed After Local Dedup": [
            "0.00%",
        ],
        "Total Percentage Remaining": [
            "98.85%",
        ],
    }
)

table_html_pma = pma_filter.to_html(index=False, border=0)
table_div_pma = Div(NotStr(table_html_pma))

phil_filter = pd.DataFrame(
    {
        "Dataset": [
            "Phil Papers",
        ],
        "Lines Downloaded": [
            "49389",
        ],
        "Percent Removed After Language Filter": [
            "20.68%",
        ],
        "Percent Removed After Min Word Count Filter": [
            "0.00%",
        ],
        "Percent Removed After Unigram Probability Filter": [
            "0.12%",
        ],
        "Percent Removed After Local Dedup": [
            "0.00%",
        ],
        "Total Percentage Remaining": [
            "79.20%",
        ],
    }
)

table_html_phil = phil_filter.to_html(index=False, border=0)
table_div_phil = Div(NotStr(table_html_phil))
## end individual tables showing filterin


## start filtered examples
wiki_examples = DV("data/curated_samples/wiki.json", 0, "Wikipedia")
freelaw_examples = DV2(
    "data/curated_samples/freelaw_raw.json",
    "data/curated_samples/freelaw_extract.json",
    2,
)
se_examples = DV2(
    "data/curated_samples/stackexchange_raw.json",
    "data/curated_samples/stackexchange_extract.json",
    3,
)
phil_examples = DV("data/curated_samples/philpapers_raw.json", 2, "PhilPapers")
arx_examples = DV2(
    "data/curated_samples/arxiv_raw.json", "data/curated_samples/arxiv_extract.json", 3
)
s2o_examples = DV("data/curated_samples/s2orc_raw.json", 0, "S2ORC")
s2oa_examples = DV("data/curated_samples/s2orc_abstract_raw.json", 0, "S2ORC Abstract")
pubmed_examples = DV2(
    "data/curated_samples/pubmed_raw.json",
    "data/curated_samples/pubmed_extract.json",
    3,
)
dmm_examples = DV2(
    "data/curated_samples/dm_maths_raw.json",
    "data/curated_samples/dm_maths_extract.json",
    3,
)
pg19_examples = DV("data/curated_samples/pg19_raw.json", 0, "PG19")
eu_examples = DV("data/curated_samples/europarl_raw.json", 0, "Europarl")
## end filtered examples


data_preprocessing_div = Div(
    H2("Filtering Steps and Definitions"),
    P(
        "Data preprocessing is a crucial step in the data science pipeline. It involves cleaning and transforming raw data into a format that is suitable for analysis. This process includes handling missing values, normalizing data, encoding categorical variables, and more."
    ),
    P(
        "The ",
        B("Language Filter"),
        " removes documents in unwanted languages. This step improves data quality by removing irrelevant documents.",
    ),
    P(
        "The ",
        B("Minimum Word Count Filter"),
        " sets a threshold for required words within a document. This step filters out low-quality or incomplete documents. However, this step may remove documents that contain valuable information so a proper analysis is important for each data source.",
    ),
    P(
        "The ",
        B("Unigram Log Probability Filter"),
        " calculates the log probability of each unigram to measure the significance of individual words. This step quantifies the importance of individual words but may not capture the semantic meaning of words. To calculate the average log word probability, we use word frequencies extracted from the ",
        A("1T Web-gram corpus", href="https://catalog.ldc.upenn.edu/LDC2006T13"),
        ". Specifically, we use the list available created by ",
        A(
            "Rachel Tatman",
            href="https://www.kaggle.com/datasets/rtatman/english-word-frequency",
        ),
        ".",
    ),
    H3("Data Processing for S2ORC"),
    P(
        "The formatting of the S2ORC dataset required special filters to be applied. These filters were not applied to the other data sources."
    ),
    P(
        "The ",
        B("Title and Abstract Filter"),
        " extracts information from the title and abstract. This step provides additional information for analysis but may introduce bias in the analysis.",
    ),
    P(
        "The ",
        B("Majority Language Filter"),
        " identifies the majority language in the dataset. This step displays the distribution of languages in the dataset to enable language-specific analysis and insights.",
    ),
    P(
        "The ",
        B("Paragraph Count Filter"),
        " counts the number of paragraphs in each document. This step helps to analyze the structure and length of documents which can be a useful heuristic for document complexity.",
    ),
    P(
        "The ",
        B("Frequency Filter"),
        " calculates the frequency of each word in the dataset. This step serves to identify important words and topics in the dataset but may be sensitive to noise and outliers.",
    ),
)


def diff2_stacked_bar():
    # Data for the stacked bar chart
    data = {
        "Filter": [
            "Downloaded Lines",
            "Language Filter",
            "Min Word Count",
            "Unigram Log Probability",
        ],
        "Wikipedia": [61614907, 61614907, 60468491, 60468491],
        "Freelaw": [75971288, 73690766, 68171834, 68123174],
        "DM Maths": [112559888, 112559888, 112559888, 112559888],
        "USPTO": [6880276, 6878964, 6749922, 6749389],
        "PG19": [28752, 28683, 28682, 28632],
        "Hackernews": [2064931, 2010802, 2010488, 2003636],
        "Ubuntu IRC": [37966, 23501, 23468, 23205],
        "Europarl": [69814, 69814, 69814, 69814],
        "StackExchange": [23246548, 23246548, 23246352, 23246352],
        "Arxiv": [1911867, 1869441, 1763840, 1762661],
        "S2ORC": [12963563, 12963563, 12963563, 12963563],
        "S2ORC Abstract": [102324176, 83867601, 82889293, 82777912],
        "Pubmed Central": [5230932, 4830486, 4768310, 4767474],
        "Pubmed Abstract": [25787474, 25784374, 25747955, 25746724],
        "Phil Papers": [49389, 39175, 39175, 39128],
    }

    df = pd.DataFrame(data)

    fig = go.Figure()

    for dataset in df.columns[1:]:
        fig.add_trace(go.Bar(name=dataset, x=df["Filter"], y=df[dataset]))

    fig.update_layout(
        barmode="stack",
        title="Document Reduction by Filter for Each Dataset",
        xaxis_title="Filter",
        yaxis_title="Number of Lines",
        legend_title="Dataset",
        height=600,
    )
    return fig


filtering_process = Div(
    Section(
        H2("Filtering Discussion on All Curated Sources"),
        P(
            "Below is a detail recount of how each dataset was extracted and filtered. If specific challenges were found with a dataset, they are included and discussed to the best of our abilities. The figure below provides a global view of the document filtering results. ~8% of documents were removed during these three steps."
        ),
        plotly2fasthtml(diff2_stacked_bar()),
        H3(
            "This section continues below with the specific filtering steps taken for all 14 curated datasets."
        ),
    ),
    Section(
        Div(
            H3("Wikipedia"),
            P(
                "Wikipedia is an encyclopedia form of high-quality text data used for language modeling. We have included filtered and deduplicated versions of complete Wikipedia data directly provided by the Wikipedia Foundation for more than 350 languages."
            ),
            P(
                B("Download and Extraction: "),
                "The Wikimedia dataset was downloaded from the official snapshot on Huggingface: ",
                A(
                    "https://huggingface.co/datasets/wikimedia/wikipedia/tree/main",
                    href="https://huggingface.co/datasets/wikimedia/wikipedia/tree/main",
                ),
                ". The",
                D_code("huggingface dataset.to_json", language="python"),
                " function was used to convert the original parqet format to the jsonl format.",
            ),
            P(
                B("Filtering: "),
                "Manual inspection of the dataset demonstrated high quality content. Only one filter was used to remove articles with few words. Based normal sentence constructs, the article was kept if it contained 10 or more words. Any article with fewer than 10 words was removed.",
            ),
            table_div_wikipedia,
            Details(
                Summary("Wikipedia Filtering Examples"),
                Div(
                    wiki_examples,
                    style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; ",  # Styling for the DV2 part
                ),
                style="""
            background-color: #FFFAEA; /* Light yellow background */
            padding: 15px;
            border-radius: 12px;
            margin-bottom: 15px
            """,
            ),
        ),
    ),
    Section(
        Div(
            H3("ArXiv"),
            P(
                "The ArXiv dataset is a vast collection of preprint research papers primarily in Mathematics, Computer Science, and Physics. Established in 1991, it offers high-quality text and mathematical knowledge, making it an invaluable resource for academic and scientific research. ArXiv papers are typically written in LaTeX, a popular typesetting system for these fields. We have extracted the information from latex and converted it into a text format."
            ),
            P(
                B("Download and Extraction: "),
                "All the data was downloaded in original latex format from ArXiv official S3 repo: ",
                A("s3://arxiv/src", href="s3://arxiv/src"),
                ". We aim to encode the downloaded data in UTF-8 format, and when necessary, utilize the chardet library to infer the appropriate encoding. After that, we use ",
                A("Pandoc", href="https://pandoc.org/"),
                " to extract information from the latex files into markdown format. The command we use is",
                D_code(
                    "pandoc <raw_tex_path> -s -o <output_markdown_path> -f latex+raw_tex -t markdown_mmd [--lua-filter <lua_filter_path>]",
                    language="bash",
                ),
                ". Finally, all markdowns were combined to create jsonl files.",
            ),
            P(B("Unique Data Preparation Challenges: ")),
            P(
                "When converting LaTeX files into Markdown using Pandoc, it is crucial to account for different data formats to minimize information loss while also filtering out noisy content in LaTeX. Below, we outline our considerations and methods for handling various data types during this conversion process:"
            ),
            Ul(
                Li(
                    B("Tables: "),
                    "The process for handling tables follows three main approaches. First, tables compatible with Pandoc’s built-in formats are directly converted into standard Markdown tables. Notably, LaTeX’s '\\multicolumn' and '\\multirow' commands can be successfully translated into valid Markdown tables. Second, tables unsupported by Pandoc’s native functionality, such as deluxetable or other complex LaTeX types, are preserved in their original LaTeX format to maintain the integrity of complex structures. Third, only a few remaining tables have been converted to HTML web tables.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    B("Mathematical Expressions: "),
                    "Inline mathematical expressions are rendered in Markdown. More complex equations remain unchanged, e.g., presented as '\\begin{aligned}' blocks, to ensure accuracy and readability.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    B("Figures: "),
                    "All figures are removed during the conversion process. Placeholder figures might not contribute to the paper’s data quality and, as such, have been omitted to streamline the output.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    B("Section Headers: "),
                    "Section headers are converted into markdown format, using leading '#' symbols to represent the heading levels.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    B("References: "),
                    "References are removed. Although they may be informative, references often introduce formatting inconsistencies or add little value compared to the core content of the paper.",
                    style="margin-bottom: -3px",
                ),
            ),
            P(
                B(" Filters Applied: "),
                "multiple filters are used here after manually verifying output of all the filters as suggested by peS2o dataset",
                D_cite(bibtex_key="peS2o"),
            ),
            Ul(
                Li(
                    "Language Filter: any language other than English are discarded",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Minimum Word Count Filter: less than 500 words (not inclusive) are discarded",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Unigram Log Probability Filter Threshold: -20",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Note: the Frequency Filter was calculated but not applied. The most frequent word in the paper consists of alpha characters only, and it appears in less than 7.5% of the document. Words are obtained by splitting the text on whitespace.",
                    style="margin-bottom: -3px",
                ),
            ),
            table_div_arx,
            Details(
                Summary("ArXiv Filtering Examples"),
                Div(
                    arx_examples,
                    style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; ",  # Styling for the DV2 part
                ),
                style="""
            background-color: #FFFAEA; /* Light yellow background */
            padding: 15px;
            border-radius: 12px;
            margin-bottom: 15px
            """,
            ),
        ),
    ),
    Section(
        Div(
            H3("S2ORC"),
            P(
                "The Semantic Scholar Open Research Corpus (S2ORC) is a comprehensive dataset designed for natural language processing (NLP) and text-mining research over scientific papers. It includes rich metadata, and abstract and full-text content for millions of academic papers across various disciplines. This dataset is further divided into two components, S2ORC abstract and S2ORC full text."
            ),
            H4(""),
            P(
                B("Download and Extraction: "),
                "S2ORC was downloaded directly in zip format using S2ORC api key and a get() request: ",
                D_code("response = urllib.request.urlopen(url)", language="python"),
            ),
            P(
                B("Filters Applied: "),
                "Multiple filters are used here after manually verifying output of all the filters as suggested by peS2o dataset",
            ),
            Ul(
                Li(
                    "Title and Abstract Filter: must have title and abstract",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Language Filter: The paper must be in English. To determine the language of each document, we use the pycld3 library. We run pycld3 on the first 2000 characters of each paragraph in the paper. The language of the paper is the most common language of the paragraphs.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Word Count Filter: less than 500 words (not inclusive) are discarded",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Paragraph Count Filter: The paper must have at least 5 paragraphs after removing paragraphs with less than -20 average log world probability",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Frequency Filter: The most frequent word in the paper consists of alpha characters only, and it appears in less than 7.5% of the document. Words are obtained by splitting the text on whitespace.",
                    style="margin-bottom: -3px",
                ),
            ),
            table_div_s2o,
           # Details(
           #     Summary("S2ORC Filtering Examples -- need to update"),
           #     Div(
           #         P("examples are missing"),
           #         style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; ",  # Styling for the DV2 part
           #     ),
           #     style="""
           # background-color: #FFFAEA; /* Light yellow background */
           # padding: 15px;
           # border-radius: 12px;
           # margin-bottom: 15px
           # """,
           # ),
        ),
    ),
    Section(
        Div(
            H3("S2ORC Abstract"),
            P(
                "The Semantic Scholar Open Research Corpus (S2ORC) is a comprehensive dataset designed for natural language processing (NLP) and text-mining research over scientific papers. It includes rich metadata, and abstract and full-text content for millions of academic papers across various disciplines. This dataset is further divided into two components, S2ORC abstract and S2ORC full text."
            ),
            P(
                B("Download and Extraction: "),
                "S2ORC was downloaded directly in zip format using S2ORC api key and a get() request: ",
                D_code("response = urllib.request.urlopen(url)", language="python"),
            ),
            P(
                B("Filters Applied: "),
                "multiple filters are used here after manually verifying output of all the filters as suggested by peS2o dataset. The frequency filter was not used as suggested by peS2o because it was removing good samples as inspected manually",
            ),
            Ul(
                Li(
                    "Title and Abstract Filter: must have title and abstract",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Majority Language Filter: abstract must be in English",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Minimum Word Count Filter: less than 20 (not inclusive) are discarded",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Unigram Log Probability Threshold: -20",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Note: Frequency Filter: The most frequent word in the paper consists of alpha characters only, and it appears in less than 7.5% of the document. Words are obtained by splitting the text on whitespace.",
                    style="margin-bottom: -3px",
                ),
            ),
            table_div_s2oa,
            #Details(
            #    Summary("S2ORC Abstract Filtering Examples "),
           #     Div(
           #         P("examples are missing"),
           #         style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; ",  # Styling for the DV2 part
           #     ),
           #     style="""
           # background-color: #FFFAEA; /* Light yellow background */
           # padding: 15px;
           # border-radius: 12px;
           # margin-bottom: 15px
           # """,
           # ),
        )
    ),
    Section(
        Div(
            H3("PubMed Central and PubMed Abstract"),
            P(
                B("Download and Extraction: "),
                "All files were downloaded from",
                A(
                    "ttps://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_package/",
                    href="ttps://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_package/",
                ),
                ". PubMed Central (PMC) files are downloaded in an xml.tar format. The tar files are opened and converted to markdown format using pandoc",
                D_code(
                    "pandoc <raw_xml_path> -s -o <output_markdown_path> -f jats -t markdown_mmd [--lua-filter <lua_filter_path>]",
                    language="bash",
                ),
                ". The markdown files are combined to create jsonl files. PubMed Abstract (PMA) files were downloaded in xml. The BeautifulSoup library was used to extract the abstract, title, and PMID. All files were stored in jsonl format.",
            ),
            P(B("Unique Data Preparation Challenges: ")),
            Ul(
                Li(
                    "We tried similar attempts on PMC as we did on ArXiv. The resulted markdown might have slight difference due to the different structure of the XML files.",
                    style="margin-bottom: -3px",
                ),
            ),
            P(
                B("Filters Applied: "),
                "Multiple filters are used here after manually verifying output of all the filters as suggested by peS2o dataset.",
            ),
            Ul(
                Li(
                    "Minimum Word Count Filter: PMC documents with less than 100 words (not inclusive) are discarded; PMA documents less than 20 words are discarded",
                    style="margin-bottom: -3px",
                ),
                Li("Language Filter: English only", style="margin-bottom: -3px"),
                Li(
                    "Frequency Filter: The most frequent word in the paper consists of alpha characters only, and it appears in less than 7.5% of the document. Words are obtained by splitting the text on whitespace. This filter was not used for PMA",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Unigram Log Probability Threshold: -20",
                    style="margin-bottom: -3px",
                ),
            ),
            table_div_med,
            table_div_pma,
            Details(
                Summary("PubMed Filtering Examples"),
                Div(
                    pubmed_examples,
                    style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; ",  # Styling for the DV2 part
                ),
                style="""
            background-color: #FFFAEA; /* Light yellow background */
            padding: 15px;
            border-radius: 12px;
            margin-bottom: 15px
            """,
            ),
        ),
    ),
    Section(
        Div(
            H3("Phil Papers"),
            P(
                "Papers from the PhilPapers database, a comprehensive index and bibliography of philosophy research maintained by the Center for Digital Philosophy at the University of Western Ontario."
            ),
            P(
                B("Download and Extraction: "),
                "Original PDF files download from ",
                A(
                    "https://philarchive.org/oai.pl",
                    href="https://philarchive.org/oai.pl",
                ),
                ". All available PDF's were downloaded. Each PDF was converted to text using java",
                D_code(
                    "-jar ../philpapers_resources/src/pdfbox-app-2.0.21.jar ExtractText {f0} {FOUT.name}",
                    language="python",
                ),
                ". After converting to text formatting, a language was detected and added using the langdetect (citation needed) library.",
            ),
            P(B("Filters Applied: ")),
            Ul(
                Li(
                    P(
                        "Hyphenation Removal:",
                        D_code("end-of", language="python"),
                        " becomes ",
                        D_code("end of", language="python"),
                    ),
                    style="margin-bottom: -3px",
                ),
                Li(
                    P(
                        "Newline Filtering:",
                        D_code("This is/na sentence.", language="python"),
                        " becomes ",
                        D_code("This is a sentence.", language="python"),
                    ),
                    style="margin-bottom: -3px",
                ),
                Li(
                    P(
                        "Header/Footer Filtering:",
                        D_code("(c) 2023 Company Name.", language="python"),
                        " is removed ",
                    ),
                    style="margin-bottom: -3px",
                ),
                Li(
                    P(
                        "Double Whitespace Filtering:",
                        D_code("This  is  a  test.", language="python"),
                        " becomes ",
                        D_code("This is a test.", language="python"),
                    ),
                    style="margin-bottom: -3px",
                ),
                Li(
                    P(
                        "Mean Line Length Check: ",
                        "removes paragraphs with an average line length of < 2.0",
                    ),
                    style="margin-bottom: -3px",
                ),
                Li(
                    P(
                        "CID Percentage Filter: ",
                        "removes LaTex heavy paragraphs that contain over 10% “CID” font artifacts.",
                    ),
                    style="margin-bottom: -3px",
                ),
                Li(
                    P(
                        "Letterness Filter: ",
                        "discards paragraphs with a low proportion of letters",
                    ),
                    style="margin-bottom: -3px",
                ),
                Li(
                    P(
                        "Removing Leading/Trailing Numbers: ",
                        "removes numbers at the start or end of paragraphs. ",
                        D_code("1 This is a sentence.", language="python"),
                        " becomes ",
                        D_code("This is a sentence.", language="python"),
                    ),
                    style="margin-bottom: -3px",
                ),
                Li(
                    P("Fixing Unicode Issues: ", "fixes Unicode issues."),
                    style="margin-bottom: -3px",
                ),
                Li(
                    P(
                        "Combining Diacritics Correction: ",
                        D_code("a'", language="python"),
                        " becomes ",
                        D_code("å", language="python"),
                    ),
                    style="margin-bottom: -3px",
                ),
                Li(
                    P(
                        "Unigram Log Probability: ",
                        "the document must have higher than -20 average unigram log probability.",
                    ),
                    style="margin-bottom: -3px",
                ),
            ),
            table_div_phil,
            Details(
                Summary("Phil Papers Filtering Examples"),
                Div(
                    phil_examples,
                    style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; ",  # Styling for the DV2 part
                ),
                style="""
            background-color: #FFFAEA; /* Light yellow background */
            padding: 15px;
            border-radius: 12px;
            margin-bottom: 15px
            """,
            ),
        ),
    ),
    Section(
        Div(
            H3("EuroParl"),
            P(
                "A collection of multilingual parallel corpora of parliamentary debates from the European Parliament. This is a high-quality legacy dataset earlier used for translation tasks."
            ),
            P(
                B("Download and Extraction: "),
                "Original dataset was downloaded from ",
                A(
                    "http://www.statmt.org/europarl/v7/europarl.tgz",
                    href="http://www.statmt.org/europarl/v7/europarl.tgz",
                ),
                ". The files were converted to jsonl lines for filtering.",
            ),
            P(
                B("Filters Applied: "),
                "EuroParl was initially filtered during the download process. Documents with fewer than 200 characters were removed. The documents also contained HTML tags which were removed.",
            ),
            D_code(
                """
        Raw single line in data: <P> Hi I am speaker
        After tag removal: P Hi I am speaker
        We remove everything that starts with ["P", "BRK", "CHAPTER", "/P"]
        and only keep tagnae == SPEAKER
        because line starting with <SPEAKER> TEXT TEXT ....... has the relevant text
        """,
                style="block",
                language="python",
            ),
            D_code(
                """
        def process_tag(original_tag):
            tag = original_tag.strip(">").strip("<")
            # Skip empty tags
            if not tag:
                return None
            tagname = tag.split()[0]
            # Skip paragraph, break, and chapter tags
            if tagname in ["P", "BRK", "CHAPTER", "/P"]:
                return None
            # For speaker tags, return the name
            if tagname == "SPEAKER":
                soup = bs4.BeautifulSoup(original_tag, "html.parser")
                name = soup.speaker["name"]
                return name
            # Raise a error here if there is a tag we don't know
                raise ValueError(f"Unknown tag {tag}")
        """,
                style="block",
                language="python",
            ),
            table_div_up,
            Details(
                Summary("EuroParl Filtering Examples"),
                Div(
                    eu_examples,
                    style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; ",  # Styling for the DV2 part
                ),
                style="""
            background-color: #FFFAEA; /* Light yellow background */
            padding: 15px;
            border-radius: 12px;
            margin-bottom: 15px
            """,
            ),
        ),
    ),
    Section(
        Div(
            H3("HackerNews"),
            P(
                "A dialog-based dataset where user comments on the links as the head post aggregated by Y Combinator."
            ),
            P(
                B("Download and Extraction: "),
                "The dataset was downloaded from the HackerNews repo here: ",
                A(
                    "https://hacker-news.firebaseio.com/v0/item/",
                    href="https://hacker-news.firebaseio.com/v0/item/",
                ),
                ". The dataset was parsed using the Story ID. In this dataset each post is a story, and each reply is considered subsequent story. Story IDs were considered between ID 1 to 37500000.  The URL for all Story IDs was pinged. If that ID returned an error, the ID was removed. Each request was given a 2 second wait to account for network time.",
            ),
            P(
                "The HackerNews dataset contains a vast amount of stories and is known for lively discussions. Due to the number of replies a story may contain, only longest comment thread for each story was sampled past level 3. All stories included the title (1st level) and all direct replies (2nd level). We may consider relax this constrain and extract more data."
            ),
            P(B("Unique Data Preparation Challenges: ")),
            Ul(
                Li(
                    "The converesation and forum style structure can be a very helpful signal for language model training. During processing the dataset, we try to encode such structure but without introducing too much noise. We choose to use an", 
                    D_code("<AUTHOR>", language="html"),
                    " tag to encode the main thread text by the original poster, and use a ", 
                    D_code("<COMMENT>", language="html"),
                    " tag to encode the replies. We initially choose ",
                    D_code("<P>", language="html"),
                    " as a tag since it is used by some instruction tuning dataset, but realize the ",
                    D_code("<P>", language="html"),
                    " tag can easily conflict with the original text.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "As discussed above, the comment heirarchies required a thoughful approach to extracting meaningful data. ",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "In the comment thread heirarchy, relationships had to be assigned to between the comments, sub-comments, and original story ID. ",
                    style="margin-bottom: -3px",
                ),
            ),
            P(B("Filters Applied: ")),
            Ul(
                Li("Language Filter: English", style="margin-bottom: -3px"),
                Li("Minimum Word Count Filter: 10", style="margin-bottom: -3px"),
                Li(
                    "Unigram Log Probability Threshold: -20",
                    style="margin-bottom: -3px",
                ),
            ),
            table_div_hn,
        ),
    ),
    Section(
        Div(
            H3("USPTO"),
            P("Patent documents from the United States Patent and Trademark Office."),
            P(
                B("Download and Extraction: "),
                "Data was downloaded and extracted using tags from ",
                A(
                    "https://bulkdata.uspto.gov/data/patent/grant/redbook/fulltext/",
                    href="https://bulkdata.uspto.gov/data/patent/grant/redbook/fulltext/",
                ),
                ". There were three different formats that needed three different functions to download and extract the data based on year:",
                I("Pre_2002"),
                ", ",
                I("2002_to_2004"),
                " and",
                I("post_2004"),
                ". We used the exact code used in The Pile (citation needed).",
            ),
            P(B("Filters Applied: ")),
            Ul(
                Li("Language Filter: English", style="margin-bottom: -3px"),
                Li("Minimum Word Count Filter: 50", style="margin-bottom: -3px"),
                Li("Unigram Log Probability", style="margin-bottom: -3px"),
            ),
            table_div_uspto,
        ),
    ),
    Section(
        Div(
            H3("FreeLaw"),
            P(
                "Legal documents and court cases from various jurisdictions provided by US-registered non-profit firm Free Law Project. We have included data from CourtListener which included millions of legal opinions from federal and state courts."
            ),
            P(
                B("Download and Extraction"),
                "The dataset was downloaded from: ",
                A(
                    "https://storage.courtlistener.com/bulk-data/",
                    href="https://storage.courtlistener.com/bulk-data/",
                ),
                ". There are 19 CSV files which contain overlapping content. CSV files can contain content in multiple columns requiring a holistic extraction approach. Text was extracted from the following using html2text function. The block below shows how each text type was extracted.",
            ),
            D_code(
                """
        ("html", html2text), ("html_lawbox", html2text), 
        ("html_columbia", html2text), ("html_anon_2020", html2text), 
        ("html_with_citations", html2text), ("xml_harvard", html2text), 
        plain_text
        """,
                language="python",
            ),
            P(
                "All content was downloaded leading to high number of documents filtered during local deduplication. Following The Pile, priority was given to plain_text first, followed by the columns in the table in reverse order."
            ),
            P(B("Unique Data Preparation Challenges: ")),
            P("The Freelaw text uses a lot of whitespaces and newlines to format the document visually. These lines are not necessary for language model learning and sometimes have confusing semantic meanings. We attempt to unify how whitespaces appear in this dataset with the following heuristics."),
            Ul(
                Li(
                    "Consecutive whitespaces and tabs were found. Consecutive Whitespaces and tabes were reduce to one, single whitespace.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Whitespaces were found between new lines with no addition text. These whitespaces were removed.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Consecutive new lines were found in some documents without leading to a new paragraph. All consecutive newline to a single new line.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Converted all single new lines to whitespace. If whitespace was found after a new line with no text, the whitespace was removed. All leading and trailing whitespace was removed.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "All form feed (",
                    D_code("\\f", language="bash"), 
                    ")characters were removed.", style="margin-bottom: -3px"
                ),
            ),
            P(B("Filters Applied: ")),
            Ul(
                Li("Language Filter: English", style="margin-bottom: -3px"),
                Li("Minimum Word Count Filter: 50", style="margin-bottom: -3px"),
                Li("Unigram Log Probability", style="margin-bottom: -3px"),
            ),
            P(
                "Note: Local deduplication within FreeLaw itself removed 90%+ of the dataset as duplicate."
            ),
            table_div_freelaw,
            Details(
                Summary("FreeLaw Filtering Examples"),
                Div(
                    freelaw_examples,
                    style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; ",  # Styling for the DV2 part
                ),
                style="""
            background-color: #FFFAEA; /* Light yellow background */
            padding: 15px;
            border-radius: 12px;
            margin-bottom: 15px
            """,
            ),
        ),
    ),
    Section(
        Div(
            H3("StackExchange"),
            P(
                "A network of question-and-answer websites on various subjects, including programming, science, mathematics, and more. This is one of the largest publicly available repositories for question-answer pairs. We have included comments also to include an overall discussion on each post."
            ),
            P(
                B("Download and Extraction: "),
                "The archive dataset was used to download all data from StackExchange and 364 StackExchange's sub URLs including: ",
                A("math.stackexchange.com", href="math.stackexchange.com"),
                ". Raw data was extracted an XML format and only two files Posts.xml and Comments.xml were considered. To match the StackExchange hierarchy, each file was parsed using post_id to connect questions to answers and then to comments. We will include the full list of sub URLs in when the code is released.",
            ),
            D_code(
                """ 
        1. Questions:
  2. Comment1:
  3. Comment2:
  4. Answer1:
  5. Comment1:
  6. Comment2:
  7. Answer2:
  8. Comment1:
  9. Comment2:""",
                block="block",
                language="python",
            ),
            P(B("Unique Data Preparation Challenges: ")),
            Ul(
                Li(
                    "Handling code block was a required finding the specific blocks and exacting the details in one snippet.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Question and Answer formatting had to be rewritten to match the question and the anwer.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Occasionally a title was not included at the beginning of a question. For consistent formatting, a title was added.",
                    style="margin-bottom: -3px",
                ),
            ),
            P(B("Filters Applied: ")),
            Ul(
                Li("Minimum Word Count Filter: 10", style="margin-bottom: -3px"),
            ),
            table_div_se,
            Details(
                Summary("StackExchange Filtering Examples"),
                Div(
                    se_examples,
                    style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; ",  # Styling for the DV2 part
                ),
                style="""
            background-color: #FFFAEA; /* Light yellow background */
            padding: 15px;
            border-radius: 12px;
            margin-bottom: 15px
            """,
            ),
        ),
    ),
    Section(
        Div(
            H3("Ubuntu IRC"),
            P(
                "Chat logs from the Ubuntu Internet Relay Chat (IRC) channels on the Freenode IRC chat server. This data is also another form of dialog dataset on niche topics."
            ),
            P(
                B("Download and Extraction: "),
                "The dataset was downloaded from: ",
                A(
                    "https://irclogs.ubuntu.com/{date.year}/{date.month:02d}/{date.day:02d}/",
                    href="https://irclogs.ubuntu.com/{date.year}/{date.month:02d}/{date.day:02d}/",
                ),
                " based on the year.",
            ),
            P("During extraction, the logs were cleaned using following functions:"),
            D_code(
                """
        def exclude_system(x):
            return '\n'.join(line for line in x.split('\n') if not line.startswith('==='))

        def exclude_select_system(x):
            return '\n'.join(line for line in x.split('\n') if not (line.startswith('===') 
                and any(term in line for term in 
                ['has joined #', 'has left #', 'Topic for #', "Topic (#", "is now known as"]) ))
        
        def clean(x):
            return '\n'.join('* ' + line[4:] if line.startswith('===') else line[8:] for line in x.split('\n'))
        """,
                block="block",
                language="python",
            ),
            P(B("Unique Data Preparation Challenges: ")),
            Ul(
                Li(
                    "Similar to the HackerNews challenges, we had to map comments and sub-comments to the original question.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "The dataset comes with the usernames of post authors. We attempt to replace them with strings such as <USER1> to remove the PII. This step might also reduce the language model's effort to memorizing the user names."
                ),
            ),
            P(B("Filters Applied: ")),
            Ul(
                Li("Language Filter: English", style="margin-bottom: -3px"),
                Li("Minimum Word Count Filter: 10", style="margin-bottom: -3px"),
                Li("Unigram Log Probability", style="margin-bottom: -3px"),
            ),
            table_div_uirc,
        ),
    ),
    Section(
        Div(
            H3("DM Math"),
            P(
                "DeepMind Math dataset with generated questions from various topics like algebra, calculus, geometry, etc. Maths data is included to improve model reasoning abilities in the downstream tasks."
            ),
            P(
                B("Download and Extraction: "),
                "The dataset was downloaded directly from the Huggingface repo: ",
                A(
                    "https://huggingface.co/datasets/deepmind/math_dataset",
                    href="https://huggingface.co/datasets/deepmind/math_dataset",
                ),
                ". The data was converted to the jsonl format where lines is represented as:",
            ),
            D_code(
                """ 
        Question: TEXT
    Answer: TEXT""",
                block="block",
                language="python",
            ),
            P(B("Unique Data Preparation Challenges: ")),
            Ul(
                Li(
                    "In one of our versions, we save the string as a byte string instead of raw text, introducing addition byte indicators at the string level",
                    style="margin-bottom: -3px",
                ),
                Li('No space before keyword "Answer:"', style="margin-bottom: -3px"),
            ),
            P(B("Filters Applied: ")),
            Ul(
                Li("No filtering was applied to DM Math", style="margin-bottom: -3px"),
            ),
            table_div_dmm,
            Details(
                Summary("DM Math Filtering Examples"),
                Div(
                    dmm_examples,
                    style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; ",  # Styling for the DV2 part
                ),
                style="""
            background-color: #FFFAEA; /* Light yellow background */
            padding: 15px;
            border-radius: 12px;
            margin-bottom: 15px
            """,
            ),
        ),
    ),
    Section(
        Div(
            H3("PG-19"),
            P(
                "A collection of books from Project Gutenberg, a digital library of public domain works. This contains all the books that were published before 1919."
            ),
            P(
                B("Download and Extraction: "),
                "The dataset was downloaded directly from Huggingface: ",
                A(
                    "https://huggingface.co/datasets/deepmind/pg19",
                    href="https://huggingface.co/datasets/deepmind/pg19",
                ),
                ".",
            ),
            P(B("Unique Data Preparation Challenges: ")),
            Ul(
                Li(
                    "The original books uses a lot of witespaces to format the text, similar to the case of FreeLaw. Sometimes, 10+ consecutive whitespaces were found. These whitespaces were reduce to one, single whitespace.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "For similar reasons, consecutive new lines were found in some documents. All consecutive news over two were were reduce to two new lines.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "The books are formmated with end-of-line hyphenation and break a single words into two lines. Hence a regular word such as ",
                    D_code("text", language="bash"),
                    " could become ",
                    D_code("te-\\nxt", language="bash"),
                    ". We detect the combination of ",
                    D_code("-\\n", language="bash"),
                    " and remove them to the origin word heuristically.",
                    style="margin-bottom: -3px",
                ),
                Li(
                    "Text delimiters such as * * * * * * * * were used to indicate structures like sections. We removed such known delimiters and replaced them with proper whitespaces and new lines. For others, we make sure there are no additional leading or trailing whitepsaces.",
                    style="margin-bottom: -3px",
                ),
            ),
            P(B("Filters Applied:")),
            Ul(
                Li("Language Filter: English", style="margin-bottom: -3px"),
                Li("Minimum Word Count Filter: 20", style="margin-bottom: -3px"),
                Li("Unigram Log Probability: ", "-20", style="margin-bottom: -3px"),
            ),
            table_div_pg19,
            Details(
                Summary("PG-19 Filtering Examples"),
                Div(
                    pg19_examples,
                    style="background-color: white; padding: 15px; margin-top: 10px; margin-bottom: 10px; border-radius: 8px; border: none; ",  # Styling for the DV2 part
                ),
                style="""
            background-color: #FFFAEA; /* Light yellow background */
            padding: 15px;
            border-radius: 12px;
            margin-bottom: 15px
            """,
            ),
        ),
    ),
)


local_dedup_text = P(
    "Each curated data source has been prepared using its specific rules and has been locally deduped using min-hash near deduplication. Details about the dataset are shown below in the table:"
)


data_pipeline_table = pd.DataFrame(
    {
        "Data Source": [
            "Papers",
            "Wikipedia",
            "StackExchange",
            "Europarl",
            "Ubuntu IRC",
            "HackerNews",
            "PG-19",
            "USPTO",
            "Freelaw",
            "DM Math",
        ],
        "Percent Filtered": [
            "15%",
            "21%",
            "<0.1%",
            "1%",
            "0.4%",
            "60%",
            "0.8%",
            "22.5%",
            "94%",
            "0",
        ],
        "Unique Document Percentage": [
            "75.99%",
            "91.91%",
            "98.02%",
            "98.87%",
            "100%",
            "99.91%",
            "31.81%",
            "99.94%",
            "91.01%",
            "0",
        ],
        "2 - 5 Duplicates": [
            "19.4%",
            "4.7%",
            "1.27%",
            "0.94%",
            "0",
            "0.05%",
            "20.03%",
            "0.05%",
            "6,87%",
            "0",
        ],
        "6 - 10 Duplicates": [
            "2.89%",
            "1.58%",
            "0.35%",
            "0.09%",
            "0",
            "0.02%",
            "24.27%",
            "0.01%",
            "1.07%",
            "0",
        ],
        "11 - 100 Duplicates": [
            "1.17%",
            "1.76%",
            "0.35%",
            "0.1",
            "0",
            "0.02%",
            "22.26%",
            "0.01%",
            "1.05%",
            "0",
        ],
        "101 - 1000 Duplicates": [
            "0.01%",
            "0.05%",
            "0.01%",
            "0",
            "0",
            "<0.01%",
            "1.58%",
            "<0.01%",
            "0.01%",
            "0",
        ],
        "1001+ Duplicates": [
            "<0.01%",
            "<0.01%",
            "<0.01%",
            "0",
            "0",
            "<0.01%",
            "0.06%",
            "0",
            "0",
            "0",
        ],
    }
)

table_html_data_pipe = data_pipeline_table.to_html(index=False, border=0)
table_div_data_pipe = Div(NotStr(table_html_data_pipe), style="margin: 40px;")


def curated():
    data_preparation_steps = pd.DataFrame(
        {
            "Method": [
                "HTTP/FTP dumps",
                "Web crawling",
                "Archive snapshot",
                "Generated",
                "Curated",
            ],
            "Description": [
                "Acquiring data from HTTP/FTP dumps",
                "Crawling websites to extract data",
                "Working with archive dumps",
                "Generating synthetic data",
                "High quality curated data",
            ],
            "Source": [
                "Freelaw | Wikipedia | PhilPapers | Arxiv | S2ORC | Pubmeds",
                "USPTO | Hackernews | Ubuntu IRC",
                "StackExchange",
                "DM Maths",
                "PG19 | Europarl",
            ],
        }
    )

    table_html = data_preparation_steps.to_html(index=False, border=0)
    table_div = Div(NotStr(table_html), style="margin: 40px;")

    text = P(
        """This initial stage serves as the foundation for the entire
    process. Here, we focus on acquiring and extracting the raw data, which can
    come from various sources such as crawling websites, using HTTP/FTP dumps,
    or working with archive dumps.  For instance, to download and prepare a
    dataset, we can specific downloaders based on the data source. Each dataset
    might have its own downloader script which can be updated in real time to
    handle changes in the data source.  Here is a general outline of the data
    preparation process: It is worth noting that some pipelines might require
    invoking additional functions or scripts to handle specific data sources or
    formats.  These helper scripts can be located within specific directories
    or modules dedicated to the dataset."""
    )

    return Div(
        Section(
            overview,
            id="section31",
        ),
        Section(
            curated_sources_intro,
            plotly2fasthtml(treemap_chart),
            # id="section31",
        ),
        Section(
            data_preprocessing_div,
            id="section32",
        ),
        Section(
            filtering_process,
            id="section33",
        ),
        id="inner-text",
    )