update
Browse files- app.py +80 -30
- src/display/utils.py +1 -0
- src/leaderboard/read_evals.py +9 -0
- src/results/models_2024-11-08-08:36:00.464224.json +0 -0
app.py
CHANGED
@@ -100,7 +100,8 @@ def init_leaderboard(dataframe):
|
|
100 |
)
|
101 |
|
102 |
# model_result_path = "./src/results/models_2024-10-20-23:34:57.242641.json"
|
103 |
-
model_result_path = "./src/results/models_2024-10-24-08:08:59.127307.json"
|
|
|
104 |
# model_leaderboard_df = get_model_leaderboard_df(model_result_path)
|
105 |
|
106 |
|
@@ -192,7 +193,8 @@ with demo:
|
|
192 |
|
193 |
TEXT = (
|
194 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
195 |
-
'<b>Total #models: 57 (Last updated: 2024-10-21)</b>'
|
|
|
196 |
'</p>'
|
197 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
198 |
'This page prvovides a comprehensive overview of model ranks across various dimensions, based on their averaged ranks or scores.'
|
@@ -218,6 +220,9 @@ with demo:
|
|
218 |
AutoEvalColumn.rank_reason_logical.name,
|
219 |
AutoEvalColumn.rank_reason_social.name,
|
220 |
AutoEvalColumn.rank_chemistry.name,
|
|
|
|
|
|
|
221 |
AutoEvalColumn.rank_overall.name,
|
222 |
# AutoEvalColumn.rank_cpp.name,
|
223 |
],
|
@@ -242,6 +247,9 @@ with demo:
|
|
242 |
AutoEvalColumn.score_reason_logical.name,
|
243 |
AutoEvalColumn.score_reason_social.name,
|
244 |
AutoEvalColumn.score_chemistry.name,
|
|
|
|
|
|
|
245 |
AutoEvalColumn.score_overall.name,
|
246 |
# AutoEvalColumn.score_cpp.name,
|
247 |
|
@@ -278,11 +286,19 @@ with demo:
|
|
278 |
|
279 |
TEXT = (
|
280 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
281 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
'</p>'
|
283 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
284 |
-
'
|
285 |
-
'(Missing values are due to the slow or problemtic model responses to be fixed soom.)'
|
286 |
'</p>'
|
287 |
# '<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
288 |
# 'We present '
|
@@ -534,18 +550,19 @@ with demo:
|
|
534 |
get_model_leaderboard_df(
|
535 |
model_result_path,
|
536 |
benchmark_cols=[
|
537 |
-
AutoEvalColumn.model.name,
|
538 |
-
|
539 |
-
AutoEvalColumn.
|
540 |
-
AutoEvalColumn.
|
541 |
-
AutoEvalColumn.
|
542 |
-
|
543 |
-
AutoEvalColumn.
|
544 |
],
|
545 |
-
rank_col=['sort_by_rank',
|
546 |
)
|
547 |
)
|
548 |
-
|
|
|
549 |
with gr.TabItem("⭐ Sort by Score", elem_id="science_overview_sort_by_score_subtab", id=1, elem_classes="subtab"):
|
550 |
leaderboard = overall_leaderboard(
|
551 |
get_model_leaderboard_df(
|
@@ -553,14 +570,15 @@ with demo:
|
|
553 |
benchmark_cols=[
|
554 |
AutoEvalColumn.model.name,
|
555 |
|
556 |
-
AutoEvalColumn.license.name,
|
557 |
-
AutoEvalColumn.organization.name,
|
558 |
-
AutoEvalColumn.knowledge_cutoff.name,
|
559 |
|
560 |
-
AutoEvalColumn.score_chemistry.name,
|
561 |
-
|
|
|
562 |
],
|
563 |
-
rank_col=['sort_by_score', 4,
|
564 |
)
|
565 |
)
|
566 |
|
@@ -583,18 +601,50 @@ with demo:
|
|
583 |
)
|
584 |
)
|
585 |
|
586 |
-
with gr.TabItem("⚛️ Physics", elem_id="physics_subtab", id=2, elem_classes="subtab"):
|
587 |
-
CURRENT_TEXT = """
|
588 |
-
# Coming soon!
|
589 |
-
"""
|
590 |
-
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
|
591 |
-
|
592 |
|
593 |
with gr.TabItem("🧬 Biology", elem_id="biology_subtab", id=3, elem_classes="subtab"):
|
594 |
-
CURRENT_TEXT = """
|
595 |
-
# Coming soon!
|
596 |
-
"""
|
597 |
-
gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
|
599 |
|
600 |
with gr.TabItem("</> Coding", elem_id="coding-table", id=5):
|
|
|
100 |
)
|
101 |
|
102 |
# model_result_path = "./src/results/models_2024-10-20-23:34:57.242641.json"
|
103 |
+
# model_result_path = "./src/results/models_2024-10-24-08:08:59.127307.json"
|
104 |
+
model_result_path = "./src/results/models_2024-11-08-08:36:00.464224.json"
|
105 |
# model_leaderboard_df = get_model_leaderboard_df(model_result_path)
|
106 |
|
107 |
|
|
|
193 |
|
194 |
TEXT = (
|
195 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
196 |
+
# '<b>Total #models: 57 (Last updated: 2024-10-21)</b>'
|
197 |
+
'<b>Total #models: 62 (Last updated: 2024-11-08)</b>'
|
198 |
'</p>'
|
199 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
200 |
'This page prvovides a comprehensive overview of model ranks across various dimensions, based on their averaged ranks or scores.'
|
|
|
220 |
AutoEvalColumn.rank_reason_logical.name,
|
221 |
AutoEvalColumn.rank_reason_social.name,
|
222 |
AutoEvalColumn.rank_chemistry.name,
|
223 |
+
AutoEvalColumn.rank_biology.name,
|
224 |
+
AutoEvalColumn.rank_physics.name,
|
225 |
+
|
226 |
AutoEvalColumn.rank_overall.name,
|
227 |
# AutoEvalColumn.rank_cpp.name,
|
228 |
],
|
|
|
247 |
AutoEvalColumn.score_reason_logical.name,
|
248 |
AutoEvalColumn.score_reason_social.name,
|
249 |
AutoEvalColumn.score_chemistry.name,
|
250 |
+
AutoEvalColumn.score_biology.name,
|
251 |
+
AutoEvalColumn.score_physics.name,
|
252 |
+
|
253 |
AutoEvalColumn.score_overall.name,
|
254 |
# AutoEvalColumn.score_cpp.name,
|
255 |
|
|
|
286 |
|
287 |
TEXT = (
|
288 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
289 |
+
'Algebra, Geometry, and Probability are the current three main math domains in the leaderboard. '
|
290 |
+
'To mitigate the potential impact of data contimination, we have carefully selected the datasets from various sources. '
|
291 |
+
'We prioritize <b>recent math datasets</b> and focus on <b>college and beyond level</b> math questions. '
|
292 |
+
'The current datasets include</b>'
|
293 |
+
'<a href="https://arxiv.org/abs/2103.03874">MATH</a>, '
|
294 |
+
'<a href="htt ps://github.com/openai/prm800k/tree/main/prm800k/math_splits">MATH-500</a>, '
|
295 |
+
'<a href="https://omni-math.github.io/">Omni</a>, '
|
296 |
+
'<a href="https://arxiv.org/abs/1905.13319">MathQA</a>, '
|
297 |
+
'<a href="https://arxiv.org/abs/2405.12209">MathBench</a>, '
|
298 |
+
'<a href="https://arxiv.org/abs/2307.10635">SciBench</a>, and more! '
|
299 |
'</p>'
|
300 |
f'<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
301 |
+
'We plan to include more math domains, such as calculus, number theory, and more in the future. '
|
|
|
302 |
'</p>'
|
303 |
# '<p style="font-size:{INTRODUCTION_TEXT_FONT_SIZE}px;">'
|
304 |
# 'We present '
|
|
|
550 |
get_model_leaderboard_df(
|
551 |
model_result_path,
|
552 |
benchmark_cols=[
|
553 |
+
AutoEvalColumn.model.name,
|
554 |
+
# AutoEvalColumn.license.name,
|
555 |
+
# AutoEvalColumn.organization.name,
|
556 |
+
# AutoEvalColumn.knowledge_cutoff.name,
|
557 |
+
AutoEvalColumn.rank_chemistry.name,
|
558 |
+
AutoEvalColumn.rank_biology.name,
|
559 |
+
AutoEvalColumn.rank_physics.name,
|
560 |
],
|
561 |
+
rank_col=['sort_by_rank', 1, 4, 'Science'],
|
562 |
)
|
563 |
)
|
564 |
+
|
565 |
+
|
566 |
with gr.TabItem("⭐ Sort by Score", elem_id="science_overview_sort_by_score_subtab", id=1, elem_classes="subtab"):
|
567 |
leaderboard = overall_leaderboard(
|
568 |
get_model_leaderboard_df(
|
|
|
570 |
benchmark_cols=[
|
571 |
AutoEvalColumn.model.name,
|
572 |
|
573 |
+
# AutoEvalColumn.license.name,
|
574 |
+
# AutoEvalColumn.organization.name,
|
575 |
+
# AutoEvalColumn.knowledge_cutoff.name,
|
576 |
|
577 |
+
AutoEvalColumn.score_chemistry.name,
|
578 |
+
AutoEvalColumn.score_biology.name,
|
579 |
+
AutoEvalColumn.score_physics.name,
|
580 |
],
|
581 |
+
rank_col=['sort_by_score', 1, 4, 'Science'], # two numbers are index to select the columns to average and sort
|
582 |
)
|
583 |
)
|
584 |
|
|
|
601 |
)
|
602 |
)
|
603 |
|
|
|
|
|
|
|
|
|
|
|
|
|
604 |
|
605 |
with gr.TabItem("🧬 Biology", elem_id="biology_subtab", id=3, elem_classes="subtab"):
|
606 |
+
# CURRENT_TEXT = """
|
607 |
+
# # Coming soon!
|
608 |
+
# """
|
609 |
+
# gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
|
610 |
+
leaderboard = overall_leaderboard(
|
611 |
+
get_model_leaderboard_df(
|
612 |
+
model_result_path,
|
613 |
+
benchmark_cols=[
|
614 |
+
AutoEvalColumn.rank_biology.name,
|
615 |
+
AutoEvalColumn.model.name,
|
616 |
+
AutoEvalColumn.score_biology.name,
|
617 |
+
# AutoEvalColumn.sd_reason_social.name,
|
618 |
+
AutoEvalColumn.license.name,
|
619 |
+
AutoEvalColumn.organization.name,
|
620 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
621 |
+
],
|
622 |
+
rank_col=[AutoEvalColumn.rank_biology.name],
|
623 |
+
)
|
624 |
+
)
|
625 |
+
|
626 |
+
|
627 |
+
with gr.TabItem("⚛️ Physics", elem_id="physics_subtab", id=2, elem_classes="subtab"):
|
628 |
+
# CURRENT_TEXT = """
|
629 |
+
# # Coming soon!
|
630 |
+
# """
|
631 |
+
# gr.Markdown(CURRENT_TEXT, elem_classes="markdown-text")
|
632 |
+
leaderboard = overall_leaderboard(
|
633 |
+
get_model_leaderboard_df(
|
634 |
+
model_result_path,
|
635 |
+
benchmark_cols=[
|
636 |
+
AutoEvalColumn.rank_physics.name,
|
637 |
+
AutoEvalColumn.model.name,
|
638 |
+
AutoEvalColumn.score_physics.name,
|
639 |
+
# AutoEvalColumn.sd_reason_social.name,
|
640 |
+
AutoEvalColumn.license.name,
|
641 |
+
AutoEvalColumn.organization.name,
|
642 |
+
AutoEvalColumn.knowledge_cutoff.name,
|
643 |
+
],
|
644 |
+
rank_col=[AutoEvalColumn.rank_physics.name],
|
645 |
+
)
|
646 |
+
)
|
647 |
+
|
648 |
|
649 |
|
650 |
with gr.TabItem("</> Coding", elem_id="coding-table", id=5):
|
src/display/utils.py
CHANGED
@@ -101,6 +101,7 @@ auto_eval_column_dict.append(["sd_biology", ColumnContent, field(default_factory
|
|
101 |
auto_eval_column_dict.append(["rank_biology", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Biology)", "number", True))])
|
102 |
|
103 |
|
|
|
104 |
auto_eval_column_dict.append(["score_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Score (C++)", "number", True))])
|
105 |
auto_eval_column_dict.append(["sd_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (C++)", "number", True))])
|
106 |
auto_eval_column_dict.append(["rank_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (C++)", "number", True))])
|
|
|
101 |
auto_eval_column_dict.append(["rank_biology", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Biology)", "number", True))])
|
102 |
|
103 |
|
104 |
+
|
105 |
auto_eval_column_dict.append(["score_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Score (C++)", "number", True))])
|
106 |
auto_eval_column_dict.append(["sd_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (C++)", "number", True))])
|
107 |
auto_eval_column_dict.append(["rank_cpp", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (C++)", "number", True))])
|
src/leaderboard/read_evals.py
CHANGED
@@ -188,6 +188,15 @@ class ModelResult:
|
|
188 |
AutoEvalColumn.score_chemistry.name: self.results.get("Chemistry").get("Average Score", None) if self.results.get("Chemistry") else None,
|
189 |
AutoEvalColumn.sd_chemistry.name: self.results.get("Chemistry").get("Standard Deviation", None) if self.results.get("Chemistry") else None,
|
190 |
AutoEvalColumn.rank_chemistry.name: self.results.get("Chemistry").get("Rank", None) if self.results.get("Chemistry") else None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
AutoEvalColumn.score_cpp.name: self.results.get("CPP").get("Average Score", None) if self.results.get("CPP") else None,
|
193 |
AutoEvalColumn.sd_cpp.name: self.results.get("CPP").get("Standard Deviation", None) if self.results.get("CPP") else None,
|
|
|
188 |
AutoEvalColumn.score_chemistry.name: self.results.get("Chemistry").get("Average Score", None) if self.results.get("Chemistry") else None,
|
189 |
AutoEvalColumn.sd_chemistry.name: self.results.get("Chemistry").get("Standard Deviation", None) if self.results.get("Chemistry") else None,
|
190 |
AutoEvalColumn.rank_chemistry.name: self.results.get("Chemistry").get("Rank", None) if self.results.get("Chemistry") else None,
|
191 |
+
|
192 |
+
AutoEvalColumn.score_biology.name: self.results.get("Biology").get("Average Score", None) if self.results.get("Biology") else None,
|
193 |
+
AutoEvalColumn.sd_biology.name: self.results.get("Biology").get("Standard Deviation", None) if self.results.get("Biology") else None,
|
194 |
+
AutoEvalColumn.rank_biology.name: self.results.get("Biology").get("Rank", None) if self.results.get("Biology") else None,
|
195 |
+
|
196 |
+
AutoEvalColumn.score_physics.name: self.results.get("Physics").get("Average Score", None) if self.results.get("Physics") else None,
|
197 |
+
AutoEvalColumn.sd_physics.name: self.results.get("Physics").get("Standard Deviation", None) if self.results.get("Physics") else None,
|
198 |
+
AutoEvalColumn.rank_physics.name: self.results.get("Physics").get("Rank", None) if self.results.get("Physics") else None,
|
199 |
+
|
200 |
|
201 |
AutoEvalColumn.score_cpp.name: self.results.get("CPP").get("Average Score", None) if self.results.get("CPP") else None,
|
202 |
AutoEvalColumn.sd_cpp.name: self.results.get("CPP").get("Standard Deviation", None) if self.results.get("CPP") else None,
|
src/results/models_2024-11-08-08:36:00.464224.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|