Huiwenshi commited on
Commit
0352ede
·
verified ·
1 Parent(s): 435927f

Delete folder svrm/.ipynb_checkpoints with huggingface_hub

Browse files
svrm/.ipynb_checkpoints/predictor-checkpoint.py DELETED
@@ -1,152 +0,0 @@
1
- # Open Source Model Licensed under the Apache License Version 2.0
2
- # and Other Licenses of the Third-Party Components therein:
3
- # The below Model in this distribution may have been modified by THL A29 Limited
4
- # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
5
-
6
- # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
7
- # The below software and/or models in this distribution may have been
8
- # modified by THL A29 Limited ("Tencent Modifications").
9
- # All Tencent Modifications are Copyright (C) THL A29 Limited.
10
-
11
- # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
12
- # except for the third-party components listed below.
13
- # Hunyuan 3D does not impose any additional limitations beyond what is outlined
14
- # in the repsective licenses of these third-party components.
15
- # Users must comply with all terms and conditions of original licenses of these third-party
16
- # components and must ensure that the usage of the third party components adheres to
17
- # all relevant laws and regulations.
18
-
19
- # For avoidance of doubts, Hunyuan 3D means the large language models and
20
- # their software and algorithms, including trained model weights, parameters (including
21
- # optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
22
- # fine-tuning enabling code and other elements of the foregoing made publicly available
23
- # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
24
-
25
- import os
26
- import math
27
- import time
28
- import torch
29
- import numpy as np
30
- from tqdm import tqdm
31
- from PIL import Image, ImageSequence
32
- from omegaconf import OmegaConf
33
- from torchvision import transforms
34
- from safetensors.torch import save_file, load_file
35
- from .ldm.util import instantiate_from_config
36
- from .ldm.vis_util import render
37
-
38
- class MV23DPredictor(object):
39
- def __init__(self, ckpt_path, cfg_path, elevation=15, number_view=60,
40
- render_size=256, device="cuda:0") -> None:
41
- self.device = device
42
- self.elevation = elevation
43
- self.number_view = number_view
44
- self.render_size = render_size
45
-
46
- self.elevation_list = [0, 0, 0, 0, 0, 0, 0]
47
- self.azimuth_list = [0, 60, 120, 180, 240, 300, 0]
48
-
49
- st = time.time()
50
- self.model = self.init_model(ckpt_path, cfg_path)
51
- print(f"=====> mv23d model init time: {time.time() - st}")
52
-
53
- self.input_view_transform = transforms.Compose([
54
- transforms.Resize(504, interpolation=Image.BICUBIC),
55
- transforms.ToTensor(),
56
- ])
57
- self.final_input_view_transform = transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
58
-
59
- def init_model(self, ckpt_path, cfg_path):
60
- config = OmegaConf.load(cfg_path)
61
- model = instantiate_from_config(config.model)
62
-
63
- weights = load_file("./weights/svrm/svrm.safetensors")
64
- model.load_state_dict(weights)
65
-
66
- model.to(self.device)
67
- model = model.eval()
68
- model.render.half()
69
- print(f'Load model successfully')
70
- return model
71
-
72
- def create_camera_to_world_matrix(self, elevation, azimuth, cam_dis=1.5):
73
- # elevation azimuth are radians
74
- # Convert elevation and azimuth angles to Cartesian coordinates on a unit sphere
75
- x = np.cos(elevation) * np.cos(azimuth)
76
- y = np.cos(elevation) * np.sin(azimuth)
77
- z = np.sin(elevation)
78
-
79
- # Calculate camera position, target, and up vectors
80
- camera_pos = np.array([x, y, z]) * cam_dis
81
- target = np.array([0, 0, 0])
82
- up = np.array([0, 0, 1])
83
-
84
- # Construct view matrix
85
- forward = target - camera_pos
86
- forward /= np.linalg.norm(forward)
87
- right = np.cross(forward, up)
88
- right /= np.linalg.norm(right)
89
- new_up = np.cross(right, forward)
90
- new_up /= np.linalg.norm(new_up)
91
- cam2world = np.eye(4)
92
- cam2world[:3, :3] = np.array([right, new_up, -forward]).T
93
- cam2world[:3, 3] = camera_pos
94
- return cam2world
95
-
96
- def refine_mask(self, mask, k=16):
97
- mask /= 255.0
98
- boder_mask = (mask >= -math.pi / 2.0 / k + 0.5) & (mask <= math.pi / 2.0 / k + 0.5)
99
- mask[boder_mask] = 0.5 * np.sin(k * (mask[boder_mask] - 0.5)) + 0.5
100
- mask[mask < -math.pi / 2.0 / k + 0.5] = 0.0
101
- mask[mask > math.pi / 2.0 / k + 0.5] = 1.0
102
- return (mask * 255.0).astype(np.uint8)
103
-
104
- def load_images_and_cameras(self, input_imgs, elevation_list, azimuth_list):
105
- input_image_list = []
106
- input_cam_list = []
107
- for input_view_image, elevation, azimuth in zip(input_imgs, elevation_list, azimuth_list):
108
- input_view_image = self.input_view_transform(input_view_image)
109
- input_image_list.append(input_view_image)
110
-
111
- input_view_cam_pos = self.create_camera_to_world_matrix(np.radians(elevation), np.radians(azimuth))
112
- input_view_cam_intrinsic = np.array([35. / 32, 35. /32, 0.5, 0.5])
113
- input_view_cam = torch.from_numpy(
114
- np.concatenate([input_view_cam_pos.reshape(-1), input_view_cam_intrinsic], 0)
115
- ).float()
116
- input_cam_list.append(input_view_cam)
117
-
118
- pixels_input = torch.stack(input_image_list, dim=0)
119
- input_images = self.final_input_view_transform(pixels_input)
120
- input_cams = torch.stack(input_cam_list, dim=0)
121
- return input_images, input_cams
122
-
123
- def load_data(self, intput_imgs):
124
- assert (6+1) == len(intput_imgs)
125
-
126
- input_images, input_cams = self.load_images_and_cameras(intput_imgs, self.elevation_list, self.azimuth_list)
127
- input_cams[-1, :] = 0 # for user input view
128
-
129
- data = {}
130
- data["input_view"] = input_images.unsqueeze(0).to(self.device) # 1 4 3 512 512
131
- data["input_view_cam"] = input_cams.unsqueeze(0).to(self.device) # 1 4 20
132
- return data
133
-
134
- @torch.no_grad()
135
- def predict(
136
- self,
137
- intput_imgs,
138
- save_dir = "outputs/",
139
- image_input = None,
140
- target_face_count = 10000,
141
- do_texture_mapping = True,
142
- ):
143
- os.makedirs(save_dir, exist_ok=True)
144
- print(save_dir)
145
-
146
- with torch.cuda.amp.autocast():
147
- self.model.export_mesh_with_uv(
148
- data = self.load_data(intput_imgs),
149
- out_dir = save_dir,
150
- target_face_count = target_face_count,
151
- do_texture_mapping = do_texture_mapping
152
- )