File size: 1,740 Bytes
b8e69b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
import tensorflow as tf
from transformers import pipeline

inception_net = tf.keras.applications.MobileNetV2()
def clasificador_imagenes(inp):
  inp = inp.reshape((-1, 224, 224, 3))
  inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)
  prediction = inception_net.predict(inp).reshape(1,1000)
  pred_scores = tf.keras.applications.mobilenet_v2.decode_predictions(prediction, top=100)
  confidence = {f'{pred_scores[0][i][1]}': float(pred_scores[0][i][2]) for i in range(100)}  
  return confidence


def audio_a_texto(audio):
  text = trans(audio)["text"]
  return text
    

def texto_a_sentimiento(text):
  return classificator(text)[0]['label']


trans = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-large-xlsr-53-spanish")
classificator = pipeline("text-classification", model="pysentimiento/robertuito-sentiment-analysis")


demo = gr.Blocks()

with demo:
  gr.Markdown("# Demo con Blocks")
  with gr.Tabs():

    with gr.TabItem("Transcribe Audio en español"):
      with gr.Row():
        audio = gr.Audio(source='microphone', type='filepath')
        transcript = gr.Textbox()
      b1 = gr.Button("Transcribe")

    with gr.TabItem("Analisis de sentimiento"):
      with gr.Row():
        texto = gr.Textbox()
        label = gr.Label()
      b2 = gr.Button("Sentimiento")

    b1.click(audio_a_texto, inputs=audio, outputs=transcript)
    b2.click(texto_a_sentimiento, inputs=texto, outputs=label)

    with gr.TabItem("Clasificador de imagenes"):
      with gr.Row():
        image = gr.Image(shape=(224, 224))
        label= gr.Label(num_top_classes=3)
      bimage= gr.Button("Clasifica")

    bimage.click(clasificador_imagenes, inputs=image, outputs=label)

demo.launch()