File size: 9,945 Bytes
5bd179e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"Utility functions used by the btm_matcher module"

from . import pytree
from .pgen2 import grammar, token
from .pygram import pattern_symbols, python_symbols

syms = pattern_symbols
pysyms = python_symbols
tokens = grammar.opmap
token_labels = token

TYPE_ANY = -1
TYPE_ALTERNATIVES = -2
TYPE_GROUP = -3

class MinNode(object):
    """This class serves as an intermediate representation of the
    pattern tree during the conversion to sets of leaf-to-root
    subpatterns"""

    def __init__(self, type=None, name=None):
        self.type = type
        self.name = name
        self.children = []
        self.leaf = False
        self.parent = None
        self.alternatives = []
        self.group = []

    def __repr__(self):
        return str(self.type) + ' ' + str(self.name)

    def leaf_to_root(self):
        """Internal method. Returns a characteristic path of the
        pattern tree. This method must be run for all leaves until the
        linear subpatterns are merged into a single"""
        node = self
        subp = []
        while node:
            if node.type == TYPE_ALTERNATIVES:
                node.alternatives.append(subp)
                if len(node.alternatives) == len(node.children):
                    #last alternative
                    subp = [tuple(node.alternatives)]
                    node.alternatives = []
                    node = node.parent
                    continue
                else:
                    node = node.parent
                    subp = None
                    break

            if node.type == TYPE_GROUP:
                node.group.append(subp)
                #probably should check the number of leaves
                if len(node.group) == len(node.children):
                    subp = get_characteristic_subpattern(node.group)
                    node.group = []
                    node = node.parent
                    continue
                else:
                    node = node.parent
                    subp = None
                    break

            if node.type == token_labels.NAME and node.name:
                #in case of type=name, use the name instead
                subp.append(node.name)
            else:
                subp.append(node.type)

            node = node.parent
        return subp

    def get_linear_subpattern(self):
        """Drives the leaf_to_root method. The reason that
        leaf_to_root must be run multiple times is because we need to
        reject 'group' matches; for example the alternative form
        (a | b c) creates a group [b c] that needs to be matched. Since
        matching multiple linear patterns overcomes the automaton's
        capabilities, leaf_to_root merges each group into a single
        choice based on 'characteristic'ity,

        i.e. (a|b c) -> (a|b) if b more characteristic than c

        Returns: The most 'characteristic'(as defined by
          get_characteristic_subpattern) path for the compiled pattern
          tree.
        """

        for l in self.leaves():
            subp = l.leaf_to_root()
            if subp:
                return subp

    def leaves(self):
        "Generator that returns the leaves of the tree"
        for child in self.children:
            yield from child.leaves()
        if not self.children:
            yield self

def reduce_tree(node, parent=None):
    """
    Internal function. Reduces a compiled pattern tree to an
    intermediate representation suitable for feeding the
    automaton. This also trims off any optional pattern elements(like
    [a], a*).
    """

    new_node = None
    #switch on the node type
    if node.type == syms.Matcher:
        #skip
        node = node.children[0]

    if node.type == syms.Alternatives  :
        #2 cases
        if len(node.children) <= 2:
            #just a single 'Alternative', skip this node
            new_node = reduce_tree(node.children[0], parent)
        else:
            #real alternatives
            new_node = MinNode(type=TYPE_ALTERNATIVES)
            #skip odd children('|' tokens)
            for child in node.children:
                if node.children.index(child)%2:
                    continue
                reduced = reduce_tree(child, new_node)
                if reduced is not None:
                    new_node.children.append(reduced)
    elif node.type == syms.Alternative:
        if len(node.children) > 1:

            new_node = MinNode(type=TYPE_GROUP)
            for child in node.children:
                reduced = reduce_tree(child, new_node)
                if reduced:
                    new_node.children.append(reduced)
            if not new_node.children:
                # delete the group if all of the children were reduced to None
                new_node = None

        else:
            new_node = reduce_tree(node.children[0], parent)

    elif node.type == syms.Unit:
        if (isinstance(node.children[0], pytree.Leaf) and
            node.children[0].value == '('):
            #skip parentheses
            return reduce_tree(node.children[1], parent)
        if ((isinstance(node.children[0], pytree.Leaf) and
               node.children[0].value == '[')
               or
               (len(node.children)>1 and
               hasattr(node.children[1], "value") and
               node.children[1].value == '[')):
            #skip whole unit if its optional
            return None

        leaf = True
        details_node = None
        alternatives_node = None
        has_repeater = False
        repeater_node = None
        has_variable_name = False

        for child in node.children:
            if child.type == syms.Details:
                leaf = False
                details_node = child
            elif child.type == syms.Repeater:
                has_repeater = True
                repeater_node = child
            elif child.type == syms.Alternatives:
                alternatives_node = child
            if hasattr(child, 'value') and child.value == '=': # variable name
                has_variable_name = True

        #skip variable name
        if has_variable_name:
            #skip variable name, '='
            name_leaf = node.children[2]
            if hasattr(name_leaf, 'value') and name_leaf.value == '(':
                # skip parenthesis
                name_leaf = node.children[3]
        else:
            name_leaf = node.children[0]

        #set node type
        if name_leaf.type == token_labels.NAME:
            #(python) non-name or wildcard
            if name_leaf.value == 'any':
                new_node = MinNode(type=TYPE_ANY)
            else:
                if hasattr(token_labels, name_leaf.value):
                    new_node = MinNode(type=getattr(token_labels, name_leaf.value))
                else:
                    new_node = MinNode(type=getattr(pysyms, name_leaf.value))

        elif name_leaf.type == token_labels.STRING:
            #(python) name or character; remove the apostrophes from
            #the string value
            name = name_leaf.value.strip("'")
            if name in tokens:
                new_node = MinNode(type=tokens[name])
            else:
                new_node = MinNode(type=token_labels.NAME, name=name)
        elif name_leaf.type == syms.Alternatives:
            new_node = reduce_tree(alternatives_node, parent)

        #handle repeaters
        if has_repeater:
            if repeater_node.children[0].value == '*':
                #reduce to None
                new_node = None
            elif repeater_node.children[0].value == '+':
                #reduce to a single occurrence i.e. do nothing
                pass
            else:
                #TODO: handle {min, max} repeaters
                raise NotImplementedError

        #add children
        if details_node and new_node is not None:
            for child in details_node.children[1:-1]:
                #skip '<', '>' markers
                reduced = reduce_tree(child, new_node)
                if reduced is not None:
                    new_node.children.append(reduced)
    if new_node:
        new_node.parent = parent
    return new_node


def get_characteristic_subpattern(subpatterns):
    """Picks the most characteristic from a list of linear patterns
    Current order used is:
    names > common_names > common_chars
    """
    if not isinstance(subpatterns, list):
        return subpatterns
    if len(subpatterns)==1:
        return subpatterns[0]

    # first pick out the ones containing variable names
    subpatterns_with_names = []
    subpatterns_with_common_names = []
    common_names = ['in', 'for', 'if' , 'not', 'None']
    subpatterns_with_common_chars = []
    common_chars = "[]().,:"
    for subpattern in subpatterns:
        if any(rec_test(subpattern, lambda x: type(x) is str)):
            if any(rec_test(subpattern,
                            lambda x: isinstance(x, str) and x in common_chars)):
                subpatterns_with_common_chars.append(subpattern)
            elif any(rec_test(subpattern,
                              lambda x: isinstance(x, str) and x in common_names)):
                subpatterns_with_common_names.append(subpattern)

            else:
                subpatterns_with_names.append(subpattern)

    if subpatterns_with_names:
        subpatterns = subpatterns_with_names
    elif subpatterns_with_common_names:
        subpatterns = subpatterns_with_common_names
    elif subpatterns_with_common_chars:
        subpatterns = subpatterns_with_common_chars
    # of the remaining subpatterns pick out the longest one
    return max(subpatterns, key=len)

def rec_test(sequence, test_func):
    """Tests test_func on all items of sequence and items of included
    sub-iterables"""
    for x in sequence:
        if isinstance(x, (list, tuple)):
            yield from rec_test(x, test_func)
        else:
            yield test_func(x)