LRhinehart's picture
Upload folder using huggingface_hub
5bd179e
raw
history blame
4.66 kB
from model import ExLlamaConfig, Ex4bitLinear
import torch
import json
from safetensors.torch import load_file as safe_load_file
from torch import load as load_file
class ExLlamaLora:
lora_config_path: str
lora_path: str
lora_r: int
lora_alpha: float
lora_scaling: float
config: ExLlamaConfig
tensors: dict[torch.tensor]
bias_ignored: bool
def __init__(self, model, lora_config_path, lora_path):
self.lora_config_path = lora_config_path
self.lora_path = lora_path
self.model = model
self.config = model.config
self.tensors = {}
self.bias_ignored = False
# Grab relevant items from LoRA config
with open(lora_config_path) as f:
read_config = json.load(f)
self.lora_r = read_config["r"]
self.lora_alpha = float(read_config["lora_alpha"])
self.lora_scaling = self.lora_alpha / self.lora_r
if "fan_in_fan_out" in read_config and read_config["fan_in_fan_out"]:
raise ValueError(" ## Error: fan_in_fan_out mode not supported.")
# Load LoRA weights
if self.lora_path.endswith(".safetensors"):
f = safe_load_file(self.lora_path, device = "cpu")
else:
f = load_file(self.lora_path, map_location = "cpu")
for key in f.keys():
tensor = f[key]
# Find target
i = key.find("model.layers.")
if i == -1: raise ValueError(f" ## Error: unsupported layer in {self.lora_path}: {key}")
target_key = key[i:]
ks = target_key.split(".")
decoder_idx = int(ks[2])
decoder_part = ks[3]
decoder_layer = ks[4]
lora_half = ks[5]
if lora_half == "bias":
epsilon = 1e-6
if torch.max(tensor) > epsilon or torch.max(tensor) < -epsilon:
raise ValueError(f" ## Error: unsupported bias target {self.lora_path}: {key}")
self.bias_ignored = True
continue
target_module = self.model.layers[decoder_idx]
if decoder_part == "self_attn": target_module = target_module.self_attn
elif decoder_part == "mlp": target_module = target_module.mlp
else: raise ValueError(f" ## Error: unsupported layer in {self.lora_path}: {key}")
if decoder_layer == "q_proj": target_module = target_module.q_proj
elif decoder_layer == "k_proj": target_module = target_module.k_proj
elif decoder_layer == "v_proj": target_module = target_module.v_proj
elif decoder_layer == "o_proj": target_module = target_module.o_proj
elif decoder_layer == "gate_proj": target_module = target_module.gate_proj
elif decoder_layer == "up_proj": target_module = target_module.up_proj
elif decoder_layer == "down_proj": target_module = target_module.down_proj
else: raise ValueError(f" ## Error: unsupported layer in {self.lora_path}: {key}")
# Check that shape is compatible
assert isinstance(target_module, Ex4bitLinear)
if lora_half == "lora_A":
in_features = tensor.shape[1]
out_features = None
elif lora_half == "lora_B":
in_features = None
out_features = tensor.shape[0]
else: raise ValueError(f" ## Error: unsupported layer in {self.lora_path}: {key}")
if (in_features and in_features != target_module.in_features) or (out_features and out_features != target_module.out_features):
raise ValueError(f" ## Error: incompatible tensor shape in {self.lora_path}: {key}")
# For efficiency, transpose adapter instead of transposing state during inference
tensor = tensor.T.contiguous()
# Pre-scale
if lora_half == "lora_B" and self.lora_scaling != 1.0: tensor.mul_(self.lora_scaling)
# Check that dtype is compatible, or convert
if tensor.dtype == torch.bfloat16:
tensor = tensor.to(torch.float16)
elif tensor.dtype == torch.float32:
tensor = tensor.to(torch.float16)
elif tensor.dtype == torch.float16:
pass
else: raise ValueError(f" ## Error: unsupported tensor dtype in {self.lora_path}")
# Move to target device
device = self.config.device_map.map(target_key)
tensor = tensor.to(device, non_blocking = True)
# Store adapter tensor
self.tensors[target_key] = tensor