Spaces:
Build error
Build error
text-generation-webui
/
models
/Minotaur-13B-fixed-SuperHOT-8K-GPTQ
/llama_rope_scaled_monkey_patch.py
import torch | |
import transformers | |
import transformers.models.llama.modeling_llama | |
from einops import rearrange | |
import random | |
# This monkey patch file is not needed if using ExLlama, or if using `trust_remote_code=True`` | |
class ScaledRotaryEmbedding(torch.nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
max_position_embeddings = 8192 | |
# Build here to make `torch.jit.trace` work. | |
self.max_seq_len_cached = max_position_embeddings | |
t = torch.arange( | |
self.max_seq_len_cached, | |
device=self.inv_freq.device, | |
dtype=self.inv_freq.dtype, | |
) | |
self.scale = 1 / 4 | |
t *= self.scale | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer( | |
"cos_cached", emb.cos()[None, None, :, :], persistent=False | |
) | |
self.register_buffer( | |
"sin_cached", emb.sin()[None, None, :, :], persistent=False | |
) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case. | |
if seq_len > self.max_seq_len_cached: | |
self.max_seq_len_cached = seq_len | |
t = torch.arange( | |
self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype | |
) | |
t *= self.scale | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) | |
self.register_buffer( | |
"cos_cached", emb.cos()[None, None, :, :], persistent=False | |
) | |
self.register_buffer( | |
"sin_cached", emb.sin()[None, None, :, :], persistent=False | |
) | |
return ( | |
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), | |
) | |
def replace_llama_rope_with_scaled_rope(): | |
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding = ( | |
ScaledRotaryEmbedding | |
) | |