File size: 6,266 Bytes
2fe3da0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import math
import torch
NORMAL_THRESHOLD = 0.1
################################################################################
# Vector utility functions
################################################################################
def _dot(x, y):
return torch.sum(x*y, -1, keepdim=True)
def _reflect(x, n):
return 2*_dot(x, n)*n - x
def _safe_normalize(x):
return torch.nn.functional.normalize(x, dim = -1)
def _bend_normal(view_vec, smooth_nrm, geom_nrm, two_sided_shading):
# Swap normal direction for backfacing surfaces
if two_sided_shading:
smooth_nrm = torch.where(_dot(geom_nrm, view_vec) > 0, smooth_nrm, -smooth_nrm)
geom_nrm = torch.where(_dot(geom_nrm, view_vec) > 0, geom_nrm, -geom_nrm)
t = torch.clamp(_dot(view_vec, smooth_nrm) / NORMAL_THRESHOLD, min=0, max=1)
return torch.lerp(geom_nrm, smooth_nrm, t)
def _perturb_normal(perturbed_nrm, smooth_nrm, smooth_tng, opengl):
smooth_bitang = _safe_normalize(torch.cross(smooth_tng, smooth_nrm))
if opengl:
shading_nrm = smooth_tng * perturbed_nrm[..., 0:1] - smooth_bitang * perturbed_nrm[..., 1:2] + smooth_nrm * torch.clamp(perturbed_nrm[..., 2:3], min=0.0)
else:
shading_nrm = smooth_tng * perturbed_nrm[..., 0:1] + smooth_bitang * perturbed_nrm[..., 1:2] + smooth_nrm * torch.clamp(perturbed_nrm[..., 2:3], min=0.0)
return _safe_normalize(shading_nrm)
def bsdf_prepare_shading_normal(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl):
smooth_nrm = _safe_normalize(smooth_nrm)
smooth_tng = _safe_normalize(smooth_tng)
view_vec = _safe_normalize(view_pos - pos)
shading_nrm = _perturb_normal(perturbed_nrm, smooth_nrm, smooth_tng, opengl)
return _bend_normal(view_vec, shading_nrm, geom_nrm, two_sided_shading)
################################################################################
# Simple lambertian diffuse BSDF
################################################################################
def bsdf_lambert(nrm, wi):
return torch.clamp(_dot(nrm, wi), min=0.0) / math.pi
################################################################################
# Frostbite diffuse
################################################################################
def bsdf_frostbite(nrm, wi, wo, linearRoughness):
wiDotN = _dot(wi, nrm)
woDotN = _dot(wo, nrm)
h = _safe_normalize(wo + wi)
wiDotH = _dot(wi, h)
energyBias = 0.5 * linearRoughness
energyFactor = 1.0 - (0.51 / 1.51) * linearRoughness
f90 = energyBias + 2.0 * wiDotH * wiDotH * linearRoughness
f0 = 1.0
wiScatter = bsdf_fresnel_shlick(f0, f90, wiDotN)
woScatter = bsdf_fresnel_shlick(f0, f90, woDotN)
res = wiScatter * woScatter * energyFactor
return torch.where((wiDotN > 0.0) & (woDotN > 0.0), res, torch.zeros_like(res))
################################################################################
# Phong specular, loosely based on mitsuba implementation
################################################################################
def bsdf_phong(nrm, wo, wi, N):
dp_r = torch.clamp(_dot(_reflect(wo, nrm), wi), min=0.0, max=1.0)
dp_l = torch.clamp(_dot(nrm, wi), min=0.0, max=1.0)
return (dp_r ** N) * dp_l * (N + 2) / (2 * math.pi)
################################################################################
# PBR's implementation of GGX specular
################################################################################
specular_epsilon = 1e-4
def bsdf_fresnel_shlick(f0, f90, cosTheta):
_cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon)
return f0 + (f90 - f0) * (1.0 - _cosTheta) ** 5.0
def bsdf_ndf_ggx(alphaSqr, cosTheta):
_cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon)
d = (_cosTheta * alphaSqr - _cosTheta) * _cosTheta + 1
return alphaSqr / (d * d * math.pi)
def bsdf_lambda_ggx(alphaSqr, cosTheta):
_cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon)
cosThetaSqr = _cosTheta * _cosTheta
tanThetaSqr = (1.0 - cosThetaSqr) / cosThetaSqr
res = 0.5 * (torch.sqrt(1 + alphaSqr * tanThetaSqr) - 1.0)
return res
def bsdf_masking_smith_ggx_correlated(alphaSqr, cosThetaI, cosThetaO):
lambdaI = bsdf_lambda_ggx(alphaSqr, cosThetaI)
lambdaO = bsdf_lambda_ggx(alphaSqr, cosThetaO)
return 1 / (1 + lambdaI + lambdaO)
def bsdf_pbr_specular(col, nrm, wo, wi, alpha, min_roughness=0.08):
_alpha = torch.clamp(alpha, min=min_roughness*min_roughness, max=1.0)
alphaSqr = _alpha * _alpha
h = _safe_normalize(wo + wi)
woDotN = _dot(wo, nrm)
wiDotN = _dot(wi, nrm)
woDotH = _dot(wo, h)
nDotH = _dot(nrm, h)
D = bsdf_ndf_ggx(alphaSqr, nDotH)
G = bsdf_masking_smith_ggx_correlated(alphaSqr, woDotN, wiDotN)
F = bsdf_fresnel_shlick(col, 1, woDotH)
w = F * D * G * 0.25 / torch.clamp(woDotN, min=specular_epsilon)
frontfacing = (woDotN > specular_epsilon) & (wiDotN > specular_epsilon)
return torch.where(frontfacing, w, torch.zeros_like(w))
def bsdf_pbr(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF):
wo = _safe_normalize(view_pos - pos)
wi = _safe_normalize(light_pos - pos)
spec_str = arm[..., 0:1] # x component
roughness = arm[..., 1:2] # y component
metallic = arm[..., 2:3] # z component
ks = (0.04 * (1.0 - metallic) + kd * metallic) * (1 - spec_str)
kd = kd * (1.0 - metallic)
if BSDF == 0:
diffuse = kd * bsdf_lambert(nrm, wi)
else:
diffuse = kd * bsdf_frostbite(nrm, wi, wo, roughness)
specular = bsdf_pbr_specular(ks, nrm, wo, wi, roughness*roughness, min_roughness=min_roughness)
return diffuse + specular
|