File size: 33,205 Bytes
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
import os
import time
import numpy as np
import torch
import torch.nn.functional as F
import gc
from torchvision.transforms import v2
from torchvision.utils import make_grid, save_image
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
import pytorch_lightning as pl
from einops import rearrange, repeat
from src.utils.camera_util import FOV_to_intrinsics
from src.utils.material import Material
from src.utils.train_util import instantiate_from_config
import nvdiffrast.torch as dr
from src.utils import render
from src.utils.mesh import Mesh, compute_tangents
os.environ['PYOPENGL_PLATFORM'] = 'egl'

# from pytorch3d.transforms import quaternion_to_matrix, euler_angles_to_matrix
GLCTX = [None] * torch.cuda.device_count() 

def initialize_extension(gpu_id):
    global GLCTX
    if GLCTX[gpu_id] is None:
        print(f"Initializing extension module renderutils_plugin on GPU {gpu_id}...")
        torch.cuda.set_device(gpu_id)
        GLCTX[gpu_id] = dr.RasterizeCudaContext()
    return GLCTX[gpu_id]

# Regulrarization loss for FlexiCubes
def sdf_reg_loss_batch(sdf, all_edges):
    sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2)
    mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
    sdf_f1x6x2 = sdf_f1x6x2[mask]
    sdf_diff = F.binary_cross_entropy_with_logits(
        sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \
               F.binary_cross_entropy_with_logits(
                   sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float())
    return sdf_diff

def rotate_x(a, device=None):
    s, c = np.sin(a), np.cos(a)
    return torch.tensor([[1, 0, 0, 0], 
                         [0, c,-s, 0], 
                         [0, s, c, 0], 
                         [0, 0, 0, 1]], dtype=torch.float32, device=device)


def convert_to_white_bg(image, write_bg=True):
    alpha = image[:, :, 3:]
    if write_bg:
        return image[:, :, :3] * alpha + 1. * (1 - alpha)
    else:
        return image[:, :, :3] * alpha
    

class MVRecon(pl.LightningModule):
    def __init__(
        self,
        lrm_generator_config,
        input_size=256,
        render_size=512,
        init_ckpt=None,
        use_tv_loss=True,
        mesh_save_root="Objaverse_highQuality",
        sample_points=None,
        use_gt_albedo=False,
    ):
        super(MVRecon, self).__init__()

        self.use_gt_albedo = use_gt_albedo
        self.use_tv_loss = use_tv_loss
        self.input_size = input_size
        self.render_size = render_size
        self.mesh_save_root = mesh_save_root
        self.sample_points = sample_points
       
        self.lrm_generator = instantiate_from_config(lrm_generator_config)
        self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg')

        if init_ckpt is not None:
            sd = torch.load(init_ckpt, map_location='cpu')['state_dict']
            sd = {k: v for k, v in sd.items() if k.startswith('lrm_generator')}
            sd_fc = {}
            for k, v in sd.items():
                if k.startswith('lrm_generator.synthesizer.decoder.net.'):
                    if k.startswith('lrm_generator.synthesizer.decoder.net.6.'):    # last layer
                        # Here we assume the density filed's isosurface threshold is t, 
                        # we reverse the sign of density filed to initialize SDF field.  
                        # -(w*x + b - t) = (-w)*x + (t - b)
                        if 'weight' in k:
                            sd_fc[k.replace('net.', 'net_sdf.')] = -v[0:1]
                        else:
                            sd_fc[k.replace('net.', 'net_sdf.')] = 10.0 - v[0:1]
                        sd_fc[k.replace('net.', 'net_rgb.')] = v[1:4]
                    else:
                        sd_fc[k.replace('net.', 'net_sdf.')] = v
                        sd_fc[k.replace('net.', 'net_rgb.')] = v
                else:
                    sd_fc[k] = v
            sd_fc = {k.replace('lrm_generator.', ''): v for k, v in sd_fc.items()}
            # missing `net_deformation` and `net_weight` parameters
            self.lrm_generator.load_state_dict(sd_fc, strict=False)
            print(f'Loaded weights from {init_ckpt}')
        
        self.validation_step_outputs = []
    
    def on_fit_start(self):
        device = torch.device(f'cuda:{self.local_rank}')
        self.lrm_generator.init_flexicubes_geometry(device)
        if self.global_rank == 0:
            os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True)
            os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True)

    def collate_fn(self, batch):
        gpu_id = torch.cuda.current_device()  # 获取当前线程的 GPU ID
        glctx = initialize_extension(gpu_id)
        batch_size = len(batch)
        input_view_num = batch[0]["input_view_num"]
        target_view_num = batch[0]["target_view_num"]
        iter_res = [512, 512]
        iter_spp = 1
        layers = 1

        # Initialize lists for input and target data
        input_images, input_alphas, input_depths, input_normals, input_albedos = [], [], [], [], []
        input_spec_light, input_diff_light, input_spec_albedo,input_diff_albedo = [], [], [], []
        input_w2cs, input_Ks, input_camera_pos, input_c2ws = [], [], [], []
        input_env, input_materials = [], []
        input_camera_embeddings = []    # camera_embedding_list

        target_images, target_alphas, target_depths, target_normals, target_albedos = [], [], [], [], []
        target_spec_light, target_diff_light, target_spec_albedo, target_diff_albedo = [], [], [], []
        target_w2cs, target_Ks, target_camera_pos = [], [], []
        target_env, target_materials = [], []

        for sample in batch:
            obj_path = sample['obj_path']

            with torch.no_grad():
                mesh_attributes = sample['mesh_attributes']
                v_pos = mesh_attributes["v_pos"].to(self.device)
                v_nrm = mesh_attributes["v_nrm"].to(self.device)
                v_tex = mesh_attributes["v_tex"].to(self.device)
                v_tng = mesh_attributes["v_tng"].to(self.device)
                t_pos_idx = mesh_attributes["t_pos_idx"].to(self.device)
                t_nrm_idx = mesh_attributes["t_nrm_idx"].to(self.device)
                t_tex_idx = mesh_attributes["t_tex_idx"].to(self.device)
                t_tng_idx = mesh_attributes["t_tng_idx"].to(self.device)
                material = Material(mesh_attributes["mat_dict"])
                material = material.to(self.device)
                ref_mesh = Mesh(v_pos=v_pos, v_nrm=v_nrm, v_tex=v_tex, v_tng=v_tng, 
                                t_pos_idx=t_pos_idx, t_nrm_idx=t_nrm_idx, 
                                t_tex_idx=t_tex_idx, t_tng_idx=t_tng_idx, material=material)
                
            pose_list_sample = sample['pose_list']  # mvp
            camera_pos_sample = sample['camera_pos'] # campos, mv.inverse
            c2w_list_sample = sample['c2w_list']    # mv
            env_list_sample = sample['env_list']
            material_list_sample = sample['material_list']
            camera_embeddings = sample["camera_embedding_list"]
            fov_deg = sample['fov_deg']
            raduis = sample['raduis']
            # print(f"fov_deg:{fov_deg}, raduis:{raduis}")

            sample_input_images, sample_input_alphas, sample_input_depths, sample_input_normals, sample_input_albedos = [], [], [], [], []
            sample_input_w2cs, sample_input_Ks, sample_input_camera_pos, sample_input_c2ws = [], [], [], []
            sample_input_camera_embeddings = []
            sample_input_spec_light, sample_input_diff_light = [], []

            sample_target_images, sample_target_alphas, sample_target_depths, sample_target_normals, sample_target_albedos = [], [], [], [], []
            sample_target_w2cs, sample_target_Ks, sample_target_camera_pos = [], [], []
            sample_target_spec_light, sample_target_diff_light = [], []

            sample_input_env = []
            sample_input_materials = []
            sample_target_env = []
            sample_target_materials = []

            for i in range(len(pose_list_sample)):
                mvp = pose_list_sample[i]
                campos = camera_pos_sample[i]
                env = env_list_sample[i]
                materials = material_list_sample[i]
                camera_embedding = camera_embeddings[i]

                with torch.no_grad():
                    buffer_dict = render.render_mesh(glctx, ref_mesh, mvp.to(self.device), campos.to(self.device), [env], None, None, 
                                                    materials, iter_res, spp=iter_spp, num_layers=layers, msaa=True, 
                                                    background=None, gt_render=True)

                image = convert_to_white_bg(buffer_dict['shaded'][0])
                albedo = convert_to_white_bg(buffer_dict['albedo'][0]).clamp(0., 1.)
                alpha = buffer_dict['mask'][0][:, :, 3:]  
                depth = convert_to_white_bg(buffer_dict['depth'][0])
                normal = convert_to_white_bg(buffer_dict['gb_normal'][0], write_bg=False)
                spec_light = convert_to_white_bg(buffer_dict['spec_light'][0])
                diff_light = convert_to_white_bg(buffer_dict['diff_light'][0])
                if i < input_view_num:
                    sample_input_images.append(image)
                    sample_input_albedos.append(albedo)
                    sample_input_alphas.append(alpha)
                    sample_input_depths.append(depth)
                    sample_input_normals.append(normal)
                    sample_input_spec_light.append(spec_light)
                    sample_input_diff_light.append(diff_light)
                    sample_input_w2cs.append(mvp)
                    sample_input_camera_pos.append(campos)
                    sample_input_c2ws.append(c2w_list_sample[i])
                    sample_input_Ks.append(FOV_to_intrinsics(fov_deg))
                    sample_input_env.append(env)
                    sample_input_materials.append(materials)
                    sample_input_camera_embeddings.append(camera_embedding)
                else:
                    sample_target_images.append(image)
                    sample_target_albedos.append(albedo)
                    sample_target_alphas.append(alpha)
                    sample_target_depths.append(depth)
                    sample_target_normals.append(normal)
                    sample_target_spec_light.append(spec_light)
                    sample_target_diff_light.append(diff_light)
                    sample_target_w2cs.append(mvp)
                    sample_target_camera_pos.append(campos)
                    sample_target_Ks.append(FOV_to_intrinsics(fov_deg))
                    sample_target_env.append(env)
                    sample_target_materials.append(materials)

            input_images.append(torch.stack(sample_input_images, dim=0).permute(0, 3, 1, 2))
            input_albedos.append(torch.stack(sample_input_albedos, dim=0).permute(0, 3, 1, 2))
            input_alphas.append(torch.stack(sample_input_alphas, dim=0).permute(0, 3, 1, 2))
            input_depths.append(torch.stack(sample_input_depths, dim=0).permute(0, 3, 1, 2))
            input_normals.append(torch.stack(sample_input_normals, dim=0).permute(0, 3, 1, 2))
            input_spec_light.append(torch.stack(sample_input_spec_light, dim=0).permute(0, 3, 1, 2))
            input_diff_light.append(torch.stack(sample_input_diff_light, dim=0).permute(0, 3, 1, 2))
            input_w2cs.append(torch.stack(sample_input_w2cs, dim=0))
            input_camera_pos.append(torch.stack(sample_input_camera_pos, dim=0))
            input_c2ws.append(torch.stack(sample_input_c2ws, dim=0))
            input_camera_embeddings.append(torch.stack(sample_input_camera_embeddings, dim=0))
            input_Ks.append(torch.stack(sample_input_Ks, dim=0))
            input_env.append(sample_input_env)
            input_materials.append(sample_input_materials)

            target_images.append(torch.stack(sample_target_images, dim=0).permute(0, 3, 1, 2))
            target_albedos.append(torch.stack(sample_target_albedos, dim=0).permute(0, 3, 1, 2))
            target_alphas.append(torch.stack(sample_target_alphas, dim=0).permute(0, 3, 1, 2))
            target_depths.append(torch.stack(sample_target_depths, dim=0).permute(0, 3, 1, 2))
            target_normals.append(torch.stack(sample_target_normals, dim=0).permute(0, 3, 1, 2))
            target_spec_light.append(torch.stack(sample_target_spec_light, dim=0).permute(0, 3, 1, 2))
            target_diff_light.append(torch.stack(sample_target_diff_light, dim=0).permute(0, 3, 1, 2))
            target_w2cs.append(torch.stack(sample_target_w2cs, dim=0))
            target_camera_pos.append(torch.stack(sample_target_camera_pos, dim=0))
            target_Ks.append(torch.stack(sample_target_Ks, dim=0))
            target_env.append(sample_target_env)
            target_materials.append(sample_target_materials)
        
            del ref_mesh
            del material
            del mesh_attributes
            torch.cuda.empty_cache()
            gc.collect()
    
        data = {
            'input_images': torch.stack(input_images, dim=0).detach().cpu(),           # (batch_size, input_view_num, 3, H, W)
            'input_alphas': torch.stack(input_alphas, dim=0).detach().cpu(),           # (batch_size, input_view_num, 1, H, W) 
            'input_depths': torch.stack(input_depths, dim=0).detach().cpu(),  
            'input_normals': torch.stack(input_normals, dim=0).detach().cpu(), 
            'input_albedos': torch.stack(input_albedos, dim=0).detach().cpu(), 
            'input_spec_light': torch.stack(input_spec_light, dim=0).detach().cpu(), 
            'input_diff_light': torch.stack(input_diff_light, dim=0).detach().cpu(), 
            'input_materials': input_materials,
            'input_w2cs': torch.stack(input_w2cs, dim=0).squeeze(2),               # (batch_size, input_view_num, 4, 4)
            'input_Ks': torch.stack(input_Ks, dim=0).float(),                   # (batch_size, input_view_num, 3, 3)
            'input_env': input_env,
            'input_camera_pos': torch.stack(input_camera_pos, dim=0).squeeze(2),   # (batch_size, input_view_num, 3)
            'input_c2ws': torch.stack(input_c2ws, dim=0).squeeze(2),               # (batch_size, input_view_num, 4, 4)
            'input_camera_embedding': torch.stack(input_camera_embeddings, dim=0).squeeze(2),

            'target_sample_points': None,
            'target_images': torch.stack(target_images, dim=0).detach().cpu(),         # (batch_size, target_view_num, 3, H, W)
            'target_alphas': torch.stack(target_alphas, dim=0).detach().cpu(),         # (batch_size, target_view_num, 1, H, W)
            'target_depths': torch.stack(target_depths, dim=0).detach().cpu(),  
            'target_normals': torch.stack(target_normals, dim=0).detach().cpu(), 
            'target_albedos': torch.stack(target_albedos, dim=0).detach().cpu(), 
            'target_spec_light': torch.stack(target_spec_light, dim=0).detach().cpu(), 
            'target_diff_light': torch.stack(target_diff_light, dim=0).detach().cpu(), 
            'target_materials': target_materials,
            'target_w2cs': torch.stack(target_w2cs, dim=0).squeeze(2),             # (batch_size, target_view_num, 4, 4)
            'target_Ks': torch.stack(target_Ks, dim=0).float(),                 # (batch_size, target_view_num, 3, 3)
            'target_env': target_env,
            'target_camera_pos': torch.stack(target_camera_pos, dim=0).squeeze(2)  # (batch_size, target_view_num, 3)
        }

        return data
    
    def prepare_batch_data(self, batch):
        # breakpoint()
        lrm_generator_input = {}
        render_gt = {}

        # input images
        images = batch['input_images']
        images = v2.functional.resize(images, self.input_size, interpolation=3, antialias=True).clamp(0, 1)
        batch_size = images.shape[0]
        # breakpoint()
        lrm_generator_input['images'] = images.to(self.device)

        # input cameras and render cameras
        # input_c2ws = batch['input_c2ws']
        input_Ks = batch['input_Ks']
        # target_c2ws = batch['target_c2ws']
        input_camera_embedding = batch["input_camera_embedding"].to(self.device)

        input_w2cs = batch['input_w2cs']
        target_w2cs = batch['target_w2cs']
        render_w2cs =  torch.cat([input_w2cs, target_w2cs], dim=1)
        
        input_camera_pos = batch['input_camera_pos']
        target_camera_pos = batch['target_camera_pos']
        render_camera_pos = torch.cat([input_camera_pos, target_camera_pos], dim=1)

        input_extrinsics = input_camera_embedding.flatten(-2)
        input_extrinsics = input_extrinsics[:, :, :12]
        input_intrinsics = input_Ks.flatten(-2).to(self.device)
        input_intrinsics = torch.stack([
            input_intrinsics[:, :, 0], input_intrinsics[:, :, 4], 
            input_intrinsics[:, :, 2], input_intrinsics[:, :, 5],
        ], dim=-1)
        cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1)

        # add noise to input_cameras
        cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02

        lrm_generator_input['cameras'] = cameras.to(self.device)
        lrm_generator_input['render_cameras'] =  render_w2cs.to(self.device)
        lrm_generator_input['cameras_pos'] = render_camera_pos.to(self.device)  
        lrm_generator_input['env'] = []
        lrm_generator_input['materials'] = []
        for i in range(batch_size):
            lrm_generator_input['env'].append( batch['input_env'][i] + batch['target_env'][i])
            lrm_generator_input['materials'].append( batch['input_materials'][i] +  batch['target_materials'][i]) 
        lrm_generator_input['albedo'] = torch.cat([batch['input_albedos'],batch['target_albedos']],dim=1) 
    
        # target images
        target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1)
        target_albedos = torch.cat([batch['input_albedos'], batch['target_albedos']], dim=1)
        target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1)
        target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1)
        target_normals = torch.cat([batch['input_normals'], batch['target_normals']], dim=1)
        target_spec_lights = torch.cat([batch['input_spec_light'], batch['target_spec_light']], dim=1)
        target_diff_lights = torch.cat([batch['input_diff_light'], batch['target_diff_light']], dim=1)

        render_size = self.render_size
        target_images = v2.functional.resize(
            target_images, render_size, interpolation=3, antialias=True).clamp(0, 1)
        target_depths = v2.functional.resize(
            target_depths, render_size, interpolation=0, antialias=True)
        target_alphas = v2.functional.resize(
            target_alphas, render_size, interpolation=0, antialias=True)
        target_normals = v2.functional.resize(
            target_normals, render_size, interpolation=3, antialias=True)

        lrm_generator_input['render_size'] = render_size

        render_gt['target_sample_points'] = batch['target_sample_points']
        render_gt['target_images'] = target_images.to(self.device)
        render_gt['target_albedos'] = target_albedos.to(self.device)
        render_gt['target_depths'] = target_depths.to(self.device)
        render_gt['target_alphas'] = target_alphas.to(self.device)
        render_gt['target_normals'] = target_normals.to(self.device)
        render_gt['target_spec_lights'] = target_spec_lights.to(self.device)
        render_gt['target_diff_lights'] = target_diff_lights.to(self.device)
        # render_gt['target_spec_albedos'] = target_spec_albedos.to(self.device)
        # render_gt['target_diff_albedos'] = target_diff_albedos.to(self.device)
        return lrm_generator_input, render_gt
    
    def prepare_validation_batch_data(self, batch):
        lrm_generator_input = {}

        # input images
        images = batch['input_images']
        images = v2.functional.resize(
            images, self.input_size, interpolation=3, antialias=True).clamp(0, 1)

        lrm_generator_input['images'] = images.to(self.device)
        lrm_generator_input['specular_light'] = batch['specular']
        lrm_generator_input['diffuse_light'] = batch['diffuse']
        
        lrm_generator_input['metallic'] = batch['input_metallics']
        lrm_generator_input['roughness'] = batch['input_roughness']

        proj = self.perspective(0.449, 1,  0.1, 1000., self.device)
        
        # input cameras
        input_c2ws = batch['input_c2ws'].flatten(-2)
        input_Ks = batch['input_Ks'].flatten(-2)
        
        input_extrinsics = input_c2ws[:, :, :12]
        input_intrinsics = torch.stack([
            input_Ks[:, :, 0], input_Ks[:, :, 4], 
            input_Ks[:, :, 2], input_Ks[:, :, 5],
        ], dim=-1)
        cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1)

        lrm_generator_input['cameras'] = cameras.to(self.device)

        # render cameras
        render_c2ws = batch['render_c2ws']
        
        lrm_generator_input['camera_pos'] =  torch.linalg.inv(render_w2cs.to(self.device) @ rotate_x(np.pi / 2, self.device))[..., :3, 3]
        render_w2cs = ( render_w2cs @ rotate_x(np.pi / 2) )

        lrm_generator_input['render_cameras'] = render_w2cs.to(self.device)
        lrm_generator_input['render_size'] = 384

        return lrm_generator_input
    
    def forward_lrm_generator(self, images, cameras, camera_pos,env, materials, albedo_map, render_cameras, render_size=512, sample_points=None, gt_albedo_map=None):
        planes = torch.utils.checkpoint.checkpoint(
            self.lrm_generator.forward_planes, 
            images, 
            cameras, 
            use_reentrant=False,
        )
        out = self.lrm_generator.forward_geometry(
            planes, 
            render_cameras, 
            camera_pos,
            env,
            materials,
            albedo_map,
            render_size,
            sample_points,
            gt_albedo_map
        )
        return out
    
    def forward(self, lrm_generator_input, gt_albedo_map=None):
        images = lrm_generator_input['images']
        cameras = lrm_generator_input['cameras']
        render_cameras = lrm_generator_input['render_cameras']
        render_size = lrm_generator_input['render_size']
        env = lrm_generator_input['env']
        materials = lrm_generator_input['materials']
        albedo_map = lrm_generator_input['albedo']
        camera_pos = lrm_generator_input['cameras_pos']

        out = self.forward_lrm_generator(
            images, cameras, camera_pos, env, materials, albedo_map, render_cameras, render_size=render_size, sample_points=self.sample_points, gt_albedo_map=gt_albedo_map)

        return out

    def training_step(self, batch, batch_idx):
        batch = self.collate_fn(batch)
        lrm_generator_input, render_gt = self.prepare_batch_data(batch)
        if self.use_gt_albedo:
            gt_albedo_map = render_gt['target_albedos']
        else:
            gt_albedo_map = None
        render_out = self.forward(lrm_generator_input, gt_albedo_map=gt_albedo_map)

        loss, loss_dict = self.compute_loss(render_out, render_gt)

        self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, batch_size=len(batch['input_images']), sync_dist=True)

        if self.global_step % 20 == 0 and self.global_rank == 0 :
            B, N, C, H, W = render_gt['target_images'].shape
            N_in = lrm_generator_input['images'].shape[1]

            target_images = rearrange(render_gt['target_images'], 'b n c h w -> b c h (n w)')
            render_images = rearrange(render_out['pbr_img'], 'b n c h w -> b c h (n w)')
            target_alphas = rearrange(repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)')
            target_spec_light =  rearrange(render_gt['target_spec_lights'], 'b n c h w -> b c h (n w)') 
            target_diff_light =  rearrange(render_gt['target_diff_lights'], 'b n c h w -> b c h (n w)') 

            render_alphas = rearrange(render_out['mask'], 'b n c h w -> b c h (n w)')
            render_albodos =  rearrange(render_out['albedo'], 'b n c h w -> b c h (n w)')
            target_albedos = rearrange(render_gt['target_albedos'], 'b n c h w -> b c h (n w)')

            render_spec_light = rearrange(render_out['pbr_spec_light'], 'b n c h w -> b c h (n w)')
            render_diffuse_light = rearrange(render_out['pbr_diffuse_light'], 'b n c h w -> b c h (n w)')
            render_normal = rearrange(render_out['normal_img'], 'b n c h w -> b c h (n w)')
            target_depths = rearrange(render_gt['target_depths'], 'b n c h w -> b c h (n w)')
            render_depths = rearrange(render_out['depth'], 'b n c h w -> b c h (n w)')
            target_normals = rearrange(render_gt['target_normals'], 'b n c h w -> b c h (n w)')
            
            MAX_DEPTH = torch.max(target_depths)
            target_depths = target_depths / MAX_DEPTH * target_alphas
            render_depths = render_depths / MAX_DEPTH * render_alphas

            grid = torch.cat([
                target_images, render_images, 
                target_alphas, render_alphas, 
                target_albedos, render_albodos,
                target_spec_light, render_spec_light, 
                target_diff_light, render_diffuse_light,
                (target_normals+1)/2, (render_normal+1)/2,
                target_depths, render_depths 
            ], dim=-2).detach().cpu()
            grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1))

            image_path = os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png')
            save_image(grid, image_path)
            print(f"Saved image to {image_path}")
        return loss
    

    def total_variation_loss(self, img, beta=2.0):
        bs_img, n_view, c_img, h_img, w_img = img.size()
        tv_h = torch.pow(img[...,1:,:]-img[...,:-1,:], beta).sum()
        tv_w = torch.pow(img[...,:,1:]-img[...,:,:-1], beta).sum()
        return (tv_h+tv_w)/(bs_img*n_view*c_img*h_img*w_img)
    

    def compute_loss(self, render_out, render_gt):
        # NOTE: the rgb value range of OpenLRM is [0, 1]
        render_albedo_image = render_out['albedo']
        render_pbr_image = render_out['pbr_img']
        render_spec_light = render_out['pbr_spec_light']
        render_diff_light = render_out['pbr_diffuse_light']
        
        target_images = render_gt['target_images'].to(render_albedo_image)
        target_albedos = render_gt['target_albedos'].to(render_albedo_image)
        target_spec_light = render_gt['target_spec_lights'].to(render_albedo_image)
        target_diff_light = render_gt['target_diff_lights'].to(render_albedo_image)

        render_images = rearrange(render_pbr_image, 'b n ... -> (b n) ...') * 2.0 - 1.0
        target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0
        
        render_albedos = rearrange(render_albedo_image, 'b n ... -> (b n) ...') * 2.0 - 1.0
        target_albedos = rearrange(target_albedos, 'b n ... -> (b n) ...') * 2.0 - 1.0

        render_spec_light = rearrange(render_spec_light, 'b n ... -> (b n) ...') * 2.0 - 1.0
        target_spec_light = rearrange(target_spec_light, 'b n ... -> (b n) ...') * 2.0 - 1.0

        render_diff_light = rearrange(render_diff_light, 'b n ... -> (b n) ...') * 2.0 - 1.0
        target_diff_light = rearrange(target_diff_light, 'b n ... -> (b n) ...') * 2.0 - 1.0
        
        
        loss_mse = F.mse_loss(render_images, target_images)
        loss_mse_albedo = F.mse_loss(render_albedos, target_albedos) 
        loss_rgb_lpips = 2.0 * self.lpips(render_images, target_images)
        loss_albedo_lpips =  2.0 * self.lpips(render_albedos, target_albedos) 

        loss_spec_light = F.mse_loss(render_spec_light, target_spec_light) 
        loss_diff_light = F.mse_loss(render_diff_light, target_diff_light) 
        loss_spec_light_lpips = 2.0 * self.lpips(render_spec_light.clamp(-1., 1.), target_spec_light.clamp(-1., 1.))
        loss_diff_light_lpips = 2.0 * self.lpips(render_diff_light.clamp(-1., 1.), target_diff_light.clamp(-1., 1.))

        render_alphas = render_out['mask'][:,:,:1,:,:]
        target_alphas = render_gt['target_alphas']
 
        loss_mask = F.mse_loss(render_alphas, target_alphas)
        render_depths = torch.mean(render_out['depth'], dim=2, keepdim=True)
        target_depths = torch.mean(render_gt['target_depths'], dim=2, keepdim=True)
        loss_depth = 0.5 * F.l1_loss(render_depths[(target_alphas>0)], target_depths[target_alphas>0])

        render_normals = render_out['normal'][...,:3].permute(0,3,1,2).unsqueeze(0)
        target_normals = render_gt['target_normals']
        similarity = (render_normals * target_normals).sum(dim=-3).abs()
        normal_mask = target_alphas.squeeze(-3)
        loss_normal = 1 - similarity[normal_mask>0].mean()
        loss_normal = 0.2 * loss_normal * 1.0

        # tv loss
        if self.use_tv_loss:
            triplane = render_out['triplane']
            tv_loss = self.total_variation_loss(triplane, beta=2.0)
        
        # flexicubes regularization loss
        sdf = render_out['sdf']
        sdf_reg_loss = render_out['sdf_reg_loss']
        sdf_reg_loss_entropy = sdf_reg_loss_batch(sdf, self.lrm_generator.geometry.all_edges).mean() * 0.01
        _, flexicubes_surface_reg, flexicubes_weights_reg = sdf_reg_loss
        flexicubes_surface_reg = flexicubes_surface_reg.mean() * 0.5
        flexicubes_weights_reg = flexicubes_weights_reg.mean() * 0.1

        loss_reg = sdf_reg_loss_entropy + flexicubes_surface_reg + flexicubes_weights_reg
        loss_reg = loss_reg 
        loss = loss_mse + loss_rgb_lpips + loss_albedo_lpips + loss_mask + loss_reg + loss_mse_albedo + loss_depth + \
            loss_normal + loss_spec_light + loss_diff_light + loss_spec_light_lpips + loss_diff_light_lpips
        if self.use_tv_loss:
            loss += tv_loss * 2e-4
     
        prefix = 'train'
        loss_dict = {}
        
        loss_dict.update({f'{prefix}/loss_mse': loss_mse.item()})
        loss_dict.update({f'{prefix}/loss_mse_albedo': loss_mse_albedo.item()})
        loss_dict.update({f'{prefix}/loss_rgb_lpips': loss_rgb_lpips.item()})
        loss_dict.update({f'{prefix}/loss_albedo_lpips': loss_albedo_lpips.item()})
        loss_dict.update({f'{prefix}/loss_mask': loss_mask.item()})
        loss_dict.update({f'{prefix}/loss_normal': loss_normal.item()})
        loss_dict.update({f'{prefix}/loss_depth': loss_depth.item()})
        loss_dict.update({f'{prefix}/loss_spec_light': loss_spec_light.item()})
        loss_dict.update({f'{prefix}/loss_diff_light': loss_diff_light.item()})
        loss_dict.update({f'{prefix}/loss_spec_light_lpips': loss_spec_light_lpips.item()})
        loss_dict.update({f'{prefix}/loss_diff_light_lpips': loss_diff_light_lpips.item()})
        loss_dict.update({f'{prefix}/loss_reg_sdf': sdf_reg_loss_entropy.item()})
        loss_dict.update({f'{prefix}/loss_reg_surface': flexicubes_surface_reg.item()})
        loss_dict.update({f'{prefix}/loss_reg_weights': flexicubes_weights_reg.item()})
        if self.use_tv_loss:
            loss_dict.update({f'{prefix}/loss_tv': tv_loss.item()})
        loss_dict.update({f'{prefix}/loss': loss.item()})

        return loss, loss_dict

    @torch.no_grad()
    def validation_step(self, batch, batch_idx):
        lrm_generator_input = self.prepare_validation_batch_data(batch)

        render_out = self.forward(lrm_generator_input)
        render_images = rearrange(render_out['pbr_img'], 'b n c h w -> b c h (n w)')
        render_albodos =  rearrange(render_out['img'], 'b n c h w -> b c h (n w)')

        self.validation_step_outputs.append(render_images)
        self.validation_step_outputs.append(render_albodos)
    
    def on_validation_epoch_end(self):
        images = torch.cat(self.validation_step_outputs, dim=0)

        all_images = self.all_gather(images)
        all_images = rearrange(all_images, 'r b c h w -> (r b) c h w')

        if self.global_rank == 0:
            image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png')

            grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1))

            save_image(grid, image_path)
            print(f"Saved image to {image_path}")

        self.validation_step_outputs.clear()
    
    def configure_optimizers(self):
        lr = self.learning_rate

        optimizer = torch.optim.AdamW(
            self.lrm_generator.parameters(), lr=lr, betas=(0.90, 0.95), weight_decay=0.01)
        scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 100000, eta_min=0)

        return {'optimizer': optimizer, 'lr_scheduler': scheduler}