File size: 20,454 Bytes
fd1f492
2fe3da0
a1dd7bc
 
9fd12f3
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b50163
 
2fe3da0
 
 
c99d3f5
b891190
e75063a
 
a1dd7bc
c99d3f5
 
 
 
65b3f7e
c99d3f5
 
 
 
 
 
 
 
 
7f8533b
e654a4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c99d3f5
7f8533b
e654a4e
 
 
 
 
 
770b62a
 
 
 
 
 
 
b020274
1817aae
2fe3da0
 
ed1060c
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae432b8
2fe3da0
ae432b8
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9330b46
e6eeff6
 
2fe3da0
e6eeff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe3da0
e6eeff6
 
 
 
 
2fe3da0
e6eeff6
2fe3da0
ed1060c
e6eeff6
 
2fe3da0
 
 
 
 
 
 
 
 
b997188
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b997188
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6eeff6
 
 
 
 
 
 
 
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6eeff6
 
2fe3da0
 
8b30564
ce9cecd
19118a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
import spaces
import os
os.environ["CXX"] = os.popen("which g++").read().strip()
os.environ["CC"] = os.popen("which gcc").read().strip()
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
import imageio
import numpy as np
import torch
import rembg
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from einops import rearrange, repeat
from tqdm import tqdm
import glm
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler

from src.data.objaverse import load_mipmap
from src.utils import render_utils
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
    FOV_to_intrinsics, 
    get_zero123plus_input_cameras,
    get_circular_camera_poses,
)
from src.utils.mesh_util import save_obj, save_glb
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
import subprocess
import sys
import tempfile
from huggingface_hub import hf_hub_download

def install_cuda_toolkit():
    # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
    # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
    print(f"==> install cuda {CUDA_TOOLKIT_URL}")
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
    
    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
    os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
    print("==> finfish install")

import shutil

def find_cuda():
    # Check if CUDA_HOME or CUDA_PATH environment variables are set
    cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')

    if cuda_home and os.path.exists(cuda_home):
        return cuda_home

    # Search for the nvcc executable in the system's PATH
    nvcc_path = shutil.which('nvcc')

    if nvcc_path:
        # Remove the 'bin/nvcc' part to get the CUDA installation path
        cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
        return cuda_path

    return None


    
install_cuda_toolkit()

cuda_path = find_cuda()

if cuda_path:
    print(f"CUDA installation found at: {cuda_path}")
else:
    print("CUDA installation not found")
import os

# 确保 CUDA_HOME 设置正确
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] += os.pathsep + os.path.join(os.environ["CUDA_HOME"], "bin")
os.environ["LD_LIBRARY_PATH"] = os.environ.get("LD_LIBRARY_PATH", "") + os.pathsep + os.path.join(os.environ["CUDA_HOME"], "lib64")

print(f"GPU: {torch.cuda.is_available()}")
a = torch.tensor([0]).cuda()
if torch.cuda.is_available() and torch.cuda.device_count() >= 2:
    device0 = torch.device('cuda:0')
    device1 = torch.device('cuda:0')
else:
    device0 = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    device1 = device0

# Define the cache directory for model files
model_cache_dir = './ckpts/'
os.makedirs(model_cache_dir, exist_ok=True)

def get_render_cameras(batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False, fov=50):
    """
    Get the rendering camera parameters.
    """
    train_res = [512, 512]
    cam_near_far = [0.1, 1000.0]
    fovy = np.deg2rad(fov)
    proj_mtx = render_utils.perspective(fovy, train_res[1] / train_res[0], cam_near_far[0], cam_near_far[1])
    all_mv = []
    all_mvp = []
    all_campos = []
    if isinstance(elevation, tuple):
        elevation_0 = np.deg2rad(elevation[0])
        elevation_1 = np.deg2rad(elevation[1])
        for i in range(M//2):
            azimuth = 2 * np.pi * i / (M // 2)
            z = radius * np.cos(azimuth) * np.sin(elevation_0)
            x = radius * np.sin(azimuth) * np.sin(elevation_0)
            y = radius * np.cos(elevation_0)

            eye = glm.vec3(x, y, z)
            at = glm.vec3(0.0, 0.0, 0.0)
            up = glm.vec3(0.0, 1.0, 0.0)
            view_matrix = glm.lookAt(eye, at, up)
            mv = torch.from_numpy(np.array(view_matrix))
            mvp   = proj_mtx @ (mv)  #w2c
            campos = torch.linalg.inv(mv)[:3, 3]
            all_mv.append(mv[None, ...].cuda())
            all_mvp.append(mvp[None, ...].cuda())
            all_campos.append(campos[None, ...].cuda())
        for i in range(M//2):
            azimuth = 2 * np.pi * i / (M // 2)
            z = radius * np.cos(azimuth) * np.sin(elevation_1)
            x = radius * np.sin(azimuth) * np.sin(elevation_1)
            y = radius * np.cos(elevation_1)

            eye = glm.vec3(x, y, z)
            at = glm.vec3(0.0, 0.0, 0.0)
            up = glm.vec3(0.0, 1.0, 0.0)
            view_matrix = glm.lookAt(eye, at, up)
            mv = torch.from_numpy(np.array(view_matrix))
            mvp   = proj_mtx @ (mv)  #w2c
            campos = torch.linalg.inv(mv)[:3, 3]
            all_mv.append(mv[None, ...].cuda())
            all_mvp.append(mvp[None, ...].cuda())
            all_campos.append(campos[None, ...].cuda())
    else:
        # elevation = 90 - elevation
        for i in range(M):
            azimuth = 2 * np.pi * i / M
            z = radius * np.cos(azimuth) * np.sin(elevation)
            x = radius * np.sin(azimuth) * np.sin(elevation)
            y = radius * np.cos(elevation)

            eye = glm.vec3(x, y, z)
            at = glm.vec3(0.0, 0.0, 0.0)
            up = glm.vec3(0.0, 1.0, 0.0)
            view_matrix = glm.lookAt(eye, at, up)
            mv = torch.from_numpy(np.array(view_matrix))
            mvp   = proj_mtx @ (mv)  #w2c
            campos = torch.linalg.inv(mv)[:3, 3]
            all_mv.append(mv[None, ...].cuda())
            all_mvp.append(mvp[None, ...].cuda())
            all_campos.append(campos[None, ...].cuda())
    all_mv = torch.stack(all_mv, dim=0).unsqueeze(0).squeeze(2)
    all_mvp = torch.stack(all_mvp, dim=0).unsqueeze(0).squeeze(2)
    all_campos = torch.stack(all_campos, dim=0).unsqueeze(0).squeeze(2)
    return all_mv, all_mvp, all_campos


def render_frames(model, planes, render_cameras, camera_pos, env, materials, render_size=512, chunk_size=1, is_flexicubes=False):
    """
    Render frames from triplanes.
    """
    frames = []
    albedos = []
    pbr_spec_lights = []
    pbr_diffuse_lights = []
    normals = []
    alphas = []
    for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
        if is_flexicubes:
            out = model.forward_geometry(
                planes,
                render_cameras[:, i:i+chunk_size],
                camera_pos[:, i:i+chunk_size],
                [[env]*chunk_size],
                [[materials]*chunk_size],
                render_size=render_size,
            )
            frame = out['pbr_img']
            albedo = out['albedo']
            pbr_spec_light = out['pbr_spec_light']
            pbr_diffuse_light = out['pbr_diffuse_light']
            normal = out['normal']
            alpha = out['mask']
        else:
            frame = model.forward_synthesizer(
                planes,
                render_cameras[i],
                render_size=render_size,
            )['images_rgb']
        frames.append(frame)
        albedos.append(albedo)
        pbr_spec_lights.append(pbr_spec_light)
        pbr_diffuse_lights.append(pbr_diffuse_light)
        normals.append(normal)
        alphas.append(alpha)

    frames = torch.cat(frames, dim=1)[0]    # we suppose batch size is always 1
    alphas = torch.cat(alphas, dim=1)[0]    
    albedos = torch.cat(albedos, dim=1)[0]
    pbr_spec_lights = torch.cat(pbr_spec_lights, dim=1)[0]
    pbr_diffuse_lights = torch.cat(pbr_diffuse_lights, dim=1)[0]
    normals = torch.cat(normals, dim=0).permute(0,3,1,2)[:,:3]
    return frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas



def images_to_video(images, output_path, fps=30):
    # images: (N, C, H, W)
    os.makedirs(os.path.dirname(output_path), exist_ok=True)
    frames = []
    for i in range(images.shape[0]):
        frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
        assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
            f"Frame shape mismatch: {frame.shape} vs {images.shape}"
        assert frame.min() >= 0 and frame.max() <= 255, \
            f"Frame value out of range: {frame.min()} ~ {frame.max()}"
        frames.append(frame)
    imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')


###############################################################################
# Configuration.
###############################################################################

seed_everything(0)

config_path = 'configs/PRM_inference.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config

IS_FLEXICUBES = True

device = torch.device('cuda')

# load diffusion model
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
    "sudo-ai/zero123plus-v1.2", 
    custom_pipeline="zero123plus",
    torch_dtype=torch.float16,
    cache_dir=model_cache_dir
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
    pipeline.scheduler.config, timestep_spacing='trailing'
)

# load custom white-background UNet
print('Loading custom white-background unet ...')
if os.path.exists(infer_config.unet_path):
    unet_ckpt_path = infer_config.unet_path
else:
    unet_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)

pipeline = pipeline.to(device)

# load reconstruction model
print('Loading reconstruction model ...')
model = instantiate_from_config(model_config)
if os.path.exists(infer_config.model_path):
    model_ckpt_path = infer_config.model_path
else:
    model_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="final_ckpt.ckpt", repo_type="model")
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
model.load_state_dict(state_dict, strict=True)

model = model.to(device)
if IS_FLEXICUBES:
    model.init_flexicubes_geometry(device, fovy=30.0)
model = model.eval()

print('Loading Finished!')


def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")


def preprocess(input_image, do_remove_background):

    rembg_session = rembg.new_session() if do_remove_background else None
    if do_remove_background:
        input_image = remove_background(input_image, rembg_session)
        input_image = resize_foreground(input_image, 0.85)

    return input_image


def generate_mvs(input_image, sample_steps, sample_seed):

    seed_everything(sample_seed)
    
    # sampling
    generator = torch.Generator(device=device0)
    z123_image = pipeline(
        input_image, 
        num_inference_steps=sample_steps, 
        generator=generator,
    ).images[0]

    show_image = np.asarray(z123_image, dtype=np.uint8)
    show_image = torch.from_numpy(show_image)     # (960, 640, 3)
    show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
    show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
    show_image = Image.fromarray(show_image.numpy())

    return z123_image, show_image


def make_mesh(mesh_fpath, planes):

    mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
    mesh_dirname = os.path.dirname(mesh_fpath)
    mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
        
    with torch.no_grad():
        # get mesh

        mesh_out = model.extract_mesh(
            planes,
            use_texture_map=False,
            **infer_config,
        )

        vertices, faces, vertex_colors = mesh_out
        vertices = vertices[:, [1, 2, 0]]
        
        save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
        save_obj(vertices, faces, vertex_colors, mesh_fpath)
        
        print(f"Mesh saved to {mesh_fpath}")

    return mesh_fpath, mesh_glb_fpath


def make3d(images):

    images = np.asarray(images, dtype=np.float32) / 255.0
    images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()     # (3, 960, 640)
    images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)        # (6, 3, 320, 320)

    input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=3.2, fov=30).to(device).to(device1)
    all_mv, all_mvp, all_campos = get_render_cameras(
                batch_size=1, 
                M=240, 
                radius=4.5, 
                elevation=(90, 60.0),
                is_flexicubes=IS_FLEXICUBES,
                fov=30
            )

    images = images.unsqueeze(0).to(device1)
    images = v2.functional.resize(images, (512, 512), interpolation=3, antialias=True).clamp(0, 1)

    mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
    print(mesh_fpath)
    mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
    mesh_dirname = os.path.dirname(mesh_fpath)
    video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
    ENV = load_mipmap("env_mipmap/6")
    materials = (0.0,0.9)
    with torch.no_grad():
        # get triplane
        planes = model.forward_planes(images, input_cameras)

        # # get video
        chunk_size = 20 if IS_FLEXICUBES else 1
        render_size = 512
        
        frames = []
        frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
                model, 
                planes, 
                render_cameras=all_mvp,
                camera_pos=all_campos,
                env=ENV,
                materials=materials,
                render_size=render_size, 
                chunk_size=chunk_size, 
                is_flexicubes=IS_FLEXICUBES,
            )
        normals = (torch.nn.functional.normalize(normals) + 1) / 2
        normals = normals * alphas + (1-alphas)
        all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
                
        images_to_video(
            all_frames,
            video_fpath,
            fps=30,
        )

        print(f"Video saved to {video_fpath}")

        mesh_fpath, mesh_glb_fpath = make_mesh(mesh_fpath, planes)
    # return mesh_fpath, mesh_glb_fpath
    return video_fpath, mesh_fpath, mesh_glb_fpath


import gradio as gr

_HEADER_ = '''
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/g3956/PRM' target='_blank'><b>PRM: Photometric Stereo based Large Reconstruction Model</b></a></h2>

**PRM** is a feed-forward framework for high-quality 3D mesh generation with fine-grained local details from a single image.

Code: <a href='https://github.com/g3956/PRM' target='_blank'>GitHub</a>.
'''

_CITE_ = r"""
If PRM is helpful, please help to ⭐ the <a href='https://github.com/g3956/PRM' target='_blank'>Github Repo</a>. Thanks!
---
📝 **Citation**

If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xu2024instantmesh,
  title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models},
  author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying},
  journal={arXiv preprint arXiv:2404.07191},
  year={2024}
}
```

📋 **License**

Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/datasets/choosealicense/licenses/resolve/main/markdown/apache-2.0.md) for details.

📧 **Contact**

If you have any questions, feel free to open a discussion or contact us at <b>jlin695@connect.hkust-gz.edu.cn</b>.
"""

with gr.Blocks() as demo:
    gr.Markdown(_HEADER_)
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                input_image = gr.Image(
                    label="Input Image",
                    image_mode="RGBA",
                    sources="upload",
                    width=256,
                    height=256,
                    type="pil",
                    elem_id="content_image",
                )
                processed_image = gr.Image(
                    label="Processed Image", 
                    image_mode="RGBA", 
                    width=256,
                    height=256,
                    type="pil", 
                    interactive=False
                )
            with gr.Row():
                with gr.Group():
                    do_remove_background = gr.Checkbox(
                        label="Remove Background", value=True
                    )
                    sample_seed = gr.Number(value=42, label="Seed Value", precision=0)

                    sample_steps = gr.Slider(
                        label="Sample Steps",
                        minimum=30,
                        maximum=100,
                        value=75,
                        step=5
                    )

            with gr.Row():
                submit = gr.Button("Generate", elem_id="generate", variant="primary")

            with gr.Row(variant="panel"):
                gr.Examples(
                    examples=[
                        os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
                    ],
                    inputs=[input_image],
                    label="Examples",
                    examples_per_page=20
                )

        with gr.Column():

            with gr.Row():

                with gr.Column():
                    mv_show_images = gr.Image(
                        label="Generated Multi-views",
                        type="pil",
                        width=379,
                        interactive=False
                    )

            with gr.Column():
                with gr.Column():
                    output_video = gr.Video(
                        label="video", format="mp4",
                        width=768,
                        autoplay=True,
                        interactive=False
                    )

            with gr.Row():
                with gr.Tab("OBJ"):
                    output_model_obj = gr.Model3D(
                        label="Output Model (OBJ Format)",
                        #width=768,
                        interactive=False,
                    )
                    gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
                with gr.Tab("GLB"):
                    output_model_glb = gr.Model3D(
                        label="Output Model (GLB Format)",
                        #width=768,
                        interactive=False,
                    )
                    gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")

            with gr.Row():
                gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')

    gr.Markdown(_CITE_)
    mv_images = gr.State()

    submit.click(fn=check_input_image, inputs=[input_image]).success(
        fn=preprocess,
        inputs=[input_image, do_remove_background],
        outputs=[processed_image],
    ).success(
        fn=generate_mvs,
        inputs=[processed_image, sample_steps, sample_seed],
        outputs=[mv_images, mv_show_images],
    ).success(
        fn=make3d,
        inputs=[mv_images],
        # outputs=[output_model_obj, output_model_glb]
        outputs=[output_video, output_model_obj, output_model_glb]
    )

# demo.queue(max_size=10)
demo.launch()