File size: 19,026 Bytes
2fe3da0 661dc7f 2fe3da0 661dc7f 2fe3da0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
# Copyright (c) 2023, Tencent Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
import torch.nn as nn
import nvdiffrast.torch as dr
from einops import rearrange, repeat
from .encoder.dino_wrapper import DinoWrapper
from .decoder.transformer import TriplaneTransformer
from .renderer.synthesizer_mesh import TriplaneSynthesizer
from .geometry.camera.perspective_camera import PerspectiveCamera
from .geometry.render.neural_render import NeuralRender
from .geometry.rep_3d.flexicubes_geometry import FlexiCubesGeometry
from ..utils.mesh_util import xatlas_uvmap
from .geometry.rep_3d import util
import trimesh
from PIL import Image
from src.utils import render
from src.utils.render_utils import rotate_x, rotate_y
class PRM(nn.Module):
"""
Full model of the large reconstruction model.
"""
def __init__(
self,
encoder_freeze: bool = False,
encoder_model_name: str = 'facebook/dino-vitb16',
encoder_feat_dim: int = 768,
transformer_dim: int = 1024,
transformer_layers: int = 16,
transformer_heads: int = 16,
triplane_low_res: int = 32,
triplane_high_res: int = 64,
triplane_dim: int = 80,
rendering_samples_per_ray: int = 128,
grid_res: int = 128,
grid_scale: float = 2.0,
):
super().__init__()
# attributes
self.grid_res = grid_res
self.grid_scale = grid_scale
self.deformation_multiplier = 4.0
# modules
self.encoder = DinoWrapper(
model_name=encoder_model_name,
freeze=encoder_freeze,
)
self.transformer = TriplaneTransformer(
inner_dim=transformer_dim,
num_layers=transformer_layers,
num_heads=transformer_heads,
image_feat_dim=encoder_feat_dim,
triplane_low_res=triplane_low_res,
triplane_high_res=triplane_high_res,
triplane_dim=triplane_dim,
)
self.synthesizer = TriplaneSynthesizer(
triplane_dim=triplane_dim,
samples_per_ray=rendering_samples_per_ray,
)
def init_flexicubes_geometry(self, device, fovy=50.0, use_renderer=True):
camera = PerspectiveCamera(fovy=fovy, device=device)
if use_renderer:
renderer = NeuralRender(device, camera_model=camera)
else:
renderer = None
self.geometry = FlexiCubesGeometry(
grid_res=self.grid_res,
scale=self.grid_scale,
renderer=renderer,
render_type='neural_render',
device=device,
)
def forward_planes(self, images, cameras):
# images: [B, V, C_img, H_img, W_img]
# cameras: [B, V, 16]
B = images.shape[0]
# encode images
image_feats = self.encoder(images, cameras)
image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B)
# decode triplanes
planes = self.transformer(image_feats)
return planes
def get_sdf_deformation_prediction(self, planes):
'''
Predict SDF and deformation for tetrahedron vertices
:param planes: triplane feature map for the geometry
'''
init_position = self.geometry.verts.unsqueeze(0).expand(planes.shape[0], -1, -1)
# Step 1: predict the SDF and deformation
sdf, deformation, weight = torch.utils.checkpoint.checkpoint(
self.synthesizer.get_geometry_prediction,
planes,
init_position,
self.geometry.indices,
use_reentrant=False,
)
# Step 2: Normalize the deformation to avoid the flipped triangles.
deformation = 1.0 / (self.grid_res * self.deformation_multiplier) * torch.tanh(deformation)
sdf_reg_loss = torch.zeros(sdf.shape[0], device=sdf.device, dtype=torch.float32)
####
# Step 3: Fix some sdf if we observe empty shape (full positive or full negative)
sdf_bxnxnxn = sdf.reshape((sdf.shape[0], self.grid_res + 1, self.grid_res + 1, self.grid_res + 1))
sdf_less_boundary = sdf_bxnxnxn[:, 1:-1, 1:-1, 1:-1].reshape(sdf.shape[0], -1)
pos_shape = torch.sum((sdf_less_boundary > 0).int(), dim=-1)
neg_shape = torch.sum((sdf_less_boundary < 0).int(), dim=-1)
zero_surface = torch.bitwise_or(pos_shape == 0, neg_shape == 0)
if torch.sum(zero_surface).item() > 0:
update_sdf = torch.zeros_like(sdf[0:1])
max_sdf = sdf.max()
min_sdf = sdf.min()
update_sdf[:, self.geometry.center_indices] += (1.0 - min_sdf) # greater than zero
update_sdf[:, self.geometry.boundary_indices] += (-1 - max_sdf) # smaller than zero
new_sdf = torch.zeros_like(sdf)
for i_batch in range(zero_surface.shape[0]):
if zero_surface[i_batch]:
new_sdf[i_batch:i_batch + 1] += update_sdf
update_mask = (new_sdf == 0).float()
# Regulraization here is used to push the sdf to be a different sign (make it not fully positive or fully negative)
sdf_reg_loss = torch.abs(sdf).mean(dim=-1).mean(dim=-1)
sdf_reg_loss = sdf_reg_loss * zero_surface.float()
sdf = sdf * update_mask + new_sdf * (1 - update_mask)
# Step 4: Here we remove the gradient for the bad sdf (full positive or full negative)
final_sdf = []
final_def = []
for i_batch in range(zero_surface.shape[0]):
if zero_surface[i_batch]:
final_sdf.append(sdf[i_batch: i_batch + 1].detach())
final_def.append(deformation[i_batch: i_batch + 1].detach())
else:
final_sdf.append(sdf[i_batch: i_batch + 1])
final_def.append(deformation[i_batch: i_batch + 1])
sdf = torch.cat(final_sdf, dim=0)
deformation = torch.cat(final_def, dim=0)
return sdf, deformation, sdf_reg_loss, weight
def get_geometry_prediction(self, planes=None):
'''
Function to generate mesh with give triplanes
:param planes: triplane features
'''
# Step 1: first get the sdf and deformation value for each vertices in the tetrahedon grid.
sdf, deformation, sdf_reg_loss, weight = self.get_sdf_deformation_prediction(planes)
v_deformed = self.geometry.verts.unsqueeze(dim=0).expand(sdf.shape[0], -1, -1) + deformation
tets = self.geometry.indices
n_batch = planes.shape[0]
v_list = []
f_list = []
imesh_list = []
flexicubes_surface_reg_list = []
# Step 2: Using marching tet to obtain the mesh
for i_batch in range(n_batch):
verts, faces, flexicubes_surface_reg, imesh = self.geometry.get_mesh(
v_deformed[i_batch],
sdf[i_batch].squeeze(dim=-1),
with_uv=False,
indices=tets,
weight_n=weight[i_batch].squeeze(dim=-1),
is_training=self.training,
)
flexicubes_surface_reg_list.append(flexicubes_surface_reg)
v_list.append(verts)
f_list.append(faces)
imesh_list.append(imesh)
flexicubes_surface_reg = torch.cat(flexicubes_surface_reg_list).mean()
flexicubes_weight_reg = (weight ** 2).mean()
return v_list, f_list, imesh_list, sdf, deformation, v_deformed, (sdf_reg_loss, flexicubes_surface_reg, flexicubes_weight_reg)
def get_texture_prediction(self, planes, tex_pos, hard_mask=None, gb_normal=None, training=True):
'''
Predict Texture given triplanes
:param planes: the triplane feature map
:param tex_pos: Position we want to query the texture field
:param hard_mask: 2D silhoueete of the rendered image
'''
tex_pos = torch.cat(tex_pos, dim=0)
shape = tex_pos.shape
flat_pos = tex_pos.view(-1, 3)
if training:
with torch.no_grad():
flat_pos = flat_pos @ rotate_y(-np.pi / 2, device=flat_pos.device)[:3, :3]
flat_pos = flat_pos @ rotate_x(-np.pi / 2, device=flat_pos.device)[:3, :3]
tex_pos = flat_pos.reshape(*shape)
if not hard_mask is None:
tex_pos = tex_pos * hard_mask.float()
batch_size = tex_pos.shape[0]
tex_pos = tex_pos.reshape(batch_size, -1, 3)
###################
# We use mask to get the texture location (to save the memory)
if hard_mask is not None:
n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1)
sample_tex_pose_list = []
max_point = n_point_list.max()
expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5
for i in range(tex_pos.shape[0]):
tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3)
if tex_pos_one_shape.shape[1] < max_point:
tex_pos_one_shape = torch.cat(
[tex_pos_one_shape, torch.zeros(
1, max_point - tex_pos_one_shape.shape[1], 3,
device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1)
sample_tex_pose_list.append(tex_pos_one_shape)
tex_pos = torch.cat(sample_tex_pose_list, dim=0)
tex_feat, metalic_feat, roughness_feat = torch.utils.checkpoint.checkpoint(
self.synthesizer.get_texture_prediction,
planes,
tex_pos,
use_reentrant=False,
)
metalic_feat, roughness_feat = metalic_feat[..., None], roughness_feat[..., None]
if hard_mask is not None:
final_tex_feat = torch.zeros(
planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device)
final_matallic_feat = torch.zeros(
planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], metalic_feat.shape[-1], device=metalic_feat.device)
final_roughness_feat = torch.zeros(
planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], roughness_feat.shape[-1], device=roughness_feat.device)
expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5
expanded_hard_mask_m = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_matallic_feat.shape[-1]) > 0.5
expanded_hard_mask_r = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_roughness_feat.shape[-1]) > 0.5
for i in range(planes.shape[0]):
final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1)
final_matallic_feat[i][expanded_hard_mask_m[i]] = metalic_feat[i][:n_point_list[i]].reshape(-1)
final_roughness_feat[i][expanded_hard_mask_r[i]] = roughness_feat[i][:n_point_list[i]].reshape(-1)
tex_feat = final_tex_feat
metalic_feat = final_matallic_feat
roughness_feat = final_roughness_feat
return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1]), metalic_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], metalic_feat.shape[-1]), roughness_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], roughness_feat.shape[-1])
def render_mesh(self, mesh_v, mesh_f, imesh, cam_mv, camera_pos, env, planes, materials, render_size=256, gt_albedo_map=None, single=False):
'''
Function to render a generated mesh with nvdiffrast
:param mesh_v: List of vertices for the mesh
:param mesh_f: List of faces for the mesh
:param cam_mv: 4x4 rotation matrix
:return:
'''
return_value_list = []
for i_mesh in range(len(mesh_v)):
return_value = self.geometry.render_mesh(
mesh_v[i_mesh],
mesh_f[i_mesh].int(),
imesh[i_mesh],
cam_mv[i_mesh],
camera_pos[i_mesh],
env[i_mesh],
planes[i_mesh],
self.get_texture_prediction,
materials[i_mesh],
resolution=render_size,
hierarchical_mask=False,
gt_albedo_map=gt_albedo_map,
)
return_value_list.append(return_value)
return_keys = return_value_list[0].keys()
return_value = dict()
for k in return_keys:
value = [v[k] for v in return_value_list]
return_value[k] = value
# mask = torch.cat(return_value['mask'], dim=0)
hard_mask = torch.cat(return_value['mask'], dim=0)
# tex_pos = return_value['tex_pos']
rgb = torch.cat(return_value['shaded'], dim=0)
spec_light = torch.cat(return_value['spec_light'], dim=0)
diff_light = torch.cat(return_value['diff_light'], dim=0)
albedo = torch.cat(return_value['albedo'], dim=0)
depth = torch.cat(return_value['depth'], dim=0)
normal = torch.cat(return_value['normal'], dim=0)
gb_normal = torch.cat(return_value['gb_normal'], dim=0)
return rgb, spec_light, diff_light, albedo, depth, normal, gb_normal, hard_mask #, spec_albedo, diff_albedo
def forward_geometry(self, planes, render_cameras, camera_pos, env, materials, albedo_map=None, render_size=256, sample_points=None, gt_albedo_map=None, single=False):
'''
Main function of our Generator. It first generate 3D mesh, then render it into 2D image
with given `render_cameras`.
:param planes: triplane features
:param render_cameras: cameras to render generated 3D shape
'''
B, NV = render_cameras.shape[:2]
# Generate 3D mesh first
mesh_v, mesh_f, imesh, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes)
predict_sample_points = None
# Render the mesh into 2D image (get 3d position of each image plane)
cam_mv = render_cameras
rgb, spec_light, diff_light, albedo, depth, normal, gb_normal, mask = self.render_mesh(mesh_v, mesh_f, imesh, cam_mv, camera_pos, env, planes, materials,
render_size=render_size, gt_albedo_map=gt_albedo_map, single=single)
albedo = albedo[...,:3].clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV))
pbr_img = rgb[...,:3].clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV))
normal_img = gb_normal[...,:3].permute(0, 3, 1, 2).unflatten(0, (B, NV))
pbr_spec_light = spec_light[...,:3].clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV))
pbr_diffuse_light = diff_light[...,:3].clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV))
antilias_mask = mask[...,:3].permute(0, 3, 1, 2).unflatten(0, (B, NV))
depth = depth[...,:3].permute(0, 3, 1, 2).unflatten(0, (B, NV)) # transform negative depth to positive
out = {
'albedo': albedo,
'pbr_img': pbr_img,
'normal_img': normal_img,
'pbr_spec_light': pbr_spec_light,
'pbr_diffuse_light': pbr_diffuse_light,
'depth': depth,
'normal': gb_normal,
'mask': antilias_mask,
'sdf': sdf,
'mesh_v': mesh_v,
'mesh_f': mesh_f,
'sdf_reg_loss': sdf_reg_loss,
'triplane': planes,
'sample_points': predict_sample_points
}
return out
def forward(self, images, cameras, render_cameras, render_size: int):
# images: [B, V, C_img, H_img, W_img]
# cameras: [B, V, 16]
# render_cameras: [B, M, D_cam_render]
# render_size: int
B, M = render_cameras.shape[:2]
planes = self.forward_planes(images, cameras)
out = self.forward_geometry(planes, render_cameras, render_size=render_size)
return {
'planes': planes,
**out
}
def extract_mesh(
self,
planes: torch.Tensor,
use_texture_map: bool = False,
texture_resolution: int = 1024,
**kwargs,
):
'''
Extract a 3D mesh from FlexiCubes. Only support batch_size 1.
:param planes: triplane features
:param use_texture_map: use texture map or vertex color
:param texture_resolution: the resolution of texure map
'''
assert planes.shape[0] == 1
device = planes.device
# predict geometry first
mesh_v, mesh_f, imesh, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes)
vertices, faces = mesh_v[0], mesh_f[0]
with torch.no_grad():
vertices = vertices @ rotate_y(-np.pi / 2, device=vertices.device)[:3, :3]
vertices = vertices @ rotate_x(-np.pi / 2, device=vertices.device)[:3, :3]
if not use_texture_map:
# query vertex colors
vertices_tensor = vertices.unsqueeze(0)
vertices_colors, matellic, roughness = self.synthesizer.get_texture_prediction(
planes, vertices_tensor)
vertices_colors = vertices_colors.clamp(0, 1).squeeze(0).cpu().numpy()
vertices_colors = (vertices_colors * 255).astype(np.uint8)
return vertices.cpu().numpy(), faces.cpu().numpy(), vertices_colors
# use x-atlas to get uv mapping for the mesh
ctx = dr.RasterizeCudaContext(device=device)
uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap(
self.geometry.renderer.ctx, vertices, faces, resolution=texture_resolution)
tex_hard_mask = tex_hard_mask.float()
# query the texture field to get the RGB color for texture map
tex_feat, _, _ = self.get_texture_prediction(
planes, [gb_pos], tex_hard_mask, training=False)
background_feature = torch.zeros_like(tex_feat)
img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask)
texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0)
return vertices, faces, uvs, mesh_tex_idx, texture_map
|