File size: 18,446 Bytes
2fe3da0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
import os, sys
import math
import json
import glm
from pathlib import Path
import random
import numpy as np
from PIL import Image
import webdataset as wds
import pytorch_lightning as pl
import sys
from src.utils import obj, render_utils
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
from torch.utils.data.distributed import DistributedSampler
import random
import itertools
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
FOV_to_intrinsics,
center_looking_at_camera_pose,
get_circular_camera_poses,
)
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
import re
def spherical_camera_pose(azimuths: np.ndarray, elevations: np.ndarray, radius=2.5):
azimuths = np.deg2rad(azimuths)
elevations = np.deg2rad(elevations)
xs = radius * np.cos(elevations) * np.cos(azimuths)
ys = radius * np.cos(elevations) * np.sin(azimuths)
zs = radius * np.sin(elevations)
cam_locations = np.stack([xs, ys, zs], axis=-1)
cam_locations = torch.from_numpy(cam_locations).float()
c2ws = center_looking_at_camera_pose(cam_locations)
return c2ws
def find_matching_files(base_path, idx):
formatted_idx = '%03d' % idx
pattern = re.compile(r'^%s_\d+\.png$' % formatted_idx)
matching_files = []
if os.path.exists(base_path):
for filename in os.listdir(base_path):
if pattern.match(filename):
matching_files.append(filename)
return os.path.join(base_path, matching_files[0])
def load_mipmap(env_path):
diffuse_path = os.path.join(env_path, "diffuse.pth")
diffuse = torch.load(diffuse_path, map_location=torch.device('cpu'))
specular = []
for i in range(6):
specular_path = os.path.join(env_path, f"specular_{i}.pth")
specular_tensor = torch.load(specular_path, map_location=torch.device('cpu'))
specular.append(specular_tensor)
return [specular, diffuse]
def convert_to_white_bg(image, write_bg=True):
alpha = image[:, :, 3:]
if write_bg:
return image[:, :, :3] * alpha + 1. * (1 - alpha)
else:
return image[:, :, :3] * alpha
def load_obj(path, return_attributes=False, scale_factor=1.0):
return obj.load_obj(path, clear_ks=True, mtl_override=None, return_attributes=return_attributes, scale_factor=scale_factor)
def custom_collate_fn(batch):
return batch
def collate_fn_wrapper(batch):
return custom_collate_fn(batch)
class DataModuleFromConfig(pl.LightningDataModule):
def __init__(
self,
batch_size=8,
num_workers=4,
train=None,
validation=None,
test=None,
**kwargs,
):
super().__init__()
self.batch_size = batch_size
self.num_workers = num_workers
self.dataset_configs = dict()
if train is not None:
self.dataset_configs['train'] = train
if validation is not None:
self.dataset_configs['validation'] = validation
if test is not None:
self.dataset_configs['test'] = test
def setup(self, stage):
if stage in ['fit']:
self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs)
else:
raise NotImplementedError
def custom_collate_fn(self, batch):
collated_batch = {}
for key in batch[0].keys():
if key == 'input_env' or key == 'target_env':
collated_batch[key] = [d[key] for d in batch]
else:
collated_batch[key] = torch.stack([d[key] for d in batch], dim=0)
return collated_batch
def convert_to_white_bg(self, image):
alpha = image[:, :, 3:]
return image[:, :, :3] * alpha + 1. * (1 - alpha)
def load_obj(self, path):
return obj.load_obj(path, clear_ks=True, mtl_override=None)
def train_dataloader(self):
sampler = DistributedSampler(self.datasets['train'])
return wds.WebLoader(self.datasets['train'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler, collate_fn=collate_fn_wrapper)
def val_dataloader(self):
sampler = DistributedSampler(self.datasets['validation'])
return wds.WebLoader(self.datasets['validation'], batch_size=1, num_workers=self.num_workers, shuffle=False, sampler=sampler, collate_fn=collate_fn_wrapper)
def test_dataloader(self):
return wds.WebLoader(self.datasets['test'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
class ObjaverseData(Dataset):
def __init__(self,
root_dir='Objaverse_highQuality',
light_dir= 'env_mipmap',
input_view_num=6,
target_view_num=4,
total_view_n=18,
distance=3.5,
fov=50,
camera_random=False,
validation=False,
):
self.root_dir = Path(root_dir)
self.light_dir = light_dir
self.all_env_name = []
for temp_dir in os.listdir(light_dir):
if os.listdir(os.path.join(self.light_dir, temp_dir)):
self.all_env_name.append(temp_dir)
self.input_view_num = input_view_num
self.target_view_num = target_view_num
self.total_view_n = total_view_n
self.fov = fov
self.camera_random = camera_random
self.train_res = [512, 512]
self.cam_near_far = [0.1, 1000.0]
self.fov_rad = np.deg2rad(fov)
self.fov_deg = fov
self.spp = 1
self.cam_radius = distance
self.layers = 1
numbers = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
self.combinations = list(itertools.product(numbers, repeat=2))
self.paths = os.listdir(self.root_dir)
# with open("BJ_Mesh_list.json", 'r') as file:
# self.paths = json.load(file)
print('total training object num:', len(self.paths))
self.depth_scale = 6.0
total_objects = len(self.paths)
print('============= length of dataset %d =============' % total_objects)
def __len__(self):
return len(self.paths)
def load_obj(self, path):
return obj.load_obj(path, clear_ks=True, mtl_override=None)
def sample_spherical(self, phi, theta, cam_radius):
theta = np.deg2rad(theta)
phi = np.deg2rad(phi)
z = cam_radius * np.cos(phi) * np.sin(theta)
x = cam_radius * np.sin(phi) * np.sin(theta)
y = cam_radius * np.cos(theta)
return x, y, z
def _random_scene(self, cam_radius, fov_rad):
iter_res = self.train_res
proj_mtx = render_utils.perspective(fov_rad, iter_res[1] / iter_res[0], self.cam_near_far[0], self.cam_near_far[1])
azimuths = random.uniform(0, 360)
elevations = random.uniform(30, 150)
mv_embedding = spherical_camera_pose(azimuths, 90-elevations, cam_radius)
x, y, z = self.sample_spherical(azimuths, elevations, cam_radius)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
return mv[None, ...], mvp[None, ...], campos[None, ...], mv_embedding[None, ...], iter_res, self.spp # Add batch dimension
def load_im(self, path, color):
'''
replace background pixel with random color in rendering
'''
pil_img = Image.open(path)
image = np.asarray(pil_img, dtype=np.float32) / 255.
alpha = image[:, :, 3:]
image = image[:, :, :3] * alpha + color * (1 - alpha)
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
return image, alpha
def load_albedo(self, path, color, mask):
'''
replace background pixel with random color in rendering
'''
pil_img = Image.open(path)
image = np.asarray(pil_img, dtype=np.float32) / 255.
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
color = torch.ones_like(image)
image = image * mask + color * (1 - mask)
return image
def convert_to_white_bg(self, image):
alpha = image[:, :, 3:]
return image[:, :, :3] * alpha + 1. * (1 - alpha)
def calculate_fov(self, initial_distance, initial_fov, new_distance):
initial_fov_rad = math.radians(initial_fov)
height = 2 * initial_distance * math.tan(initial_fov_rad / 2)
new_fov_rad = 2 * math.atan(height / (2 * new_distance))
new_fov = math.degrees(new_fov_rad)
return new_fov
def __getitem__(self, index):
obj_path = os.path.join(self.root_dir, self.paths[index])
mesh_attributes = torch.load(obj_path, map_location=torch.device('cpu'))
pose_list = []
env_list = []
material_list = []
camera_pos = []
c2w_list = []
camera_embedding_list = []
random_env = False
random_mr = False
if random.random() > 0.5:
random_env = True
if random.random() > 0.5:
random_mr = True
selected_env = random.randint(0, len(self.all_env_name)-1)
materials = random.choice(self.combinations)
if self.camera_random:
random_perturbation = random.uniform(-1.5, 1.5)
cam_radius = self.cam_radius + random_perturbation
fov_deg = self.calculate_fov(initial_distance=self.cam_radius, initial_fov=self.fov_deg, new_distance=cam_radius)
fov_rad = np.deg2rad(fov_deg)
else:
cam_radius = self.cam_radius
fov_rad = self.fov_rad
fov_deg = self.fov_deg
if len(self.input_view_num) >= 1:
input_view_num = random.choice(self.input_view_num)
else:
input_view_num = self.input_view_num
for _ in range(input_view_num + self.target_view_num):
mv, mvp, campos, mv_mebedding, iter_res, iter_spp = self._random_scene(cam_radius, fov_rad)
if random_env:
selected_env = random.randint(0, len(self.all_env_name)-1)
env_path = os.path.join(self.light_dir, self.all_env_name[selected_env])
env = load_mipmap(env_path)
if random_mr:
materials = random.choice(self.combinations)
pose_list.append(mvp)
camera_pos.append(campos)
c2w_list.append(mv)
env_list.append(env)
material_list.append(materials)
camera_embedding_list.append(mv_mebedding)
data = {
'mesh_attributes': mesh_attributes,
'input_view_num': input_view_num,
'target_view_num': self.target_view_num,
'obj_path': obj_path,
'pose_list': pose_list,
'camera_pos': camera_pos,
'c2w_list': c2w_list,
'env_list': env_list,
'material_list': material_list,
'camera_embedding_list': camera_embedding_list,
'fov_deg':fov_deg,
'raduis': cam_radius
}
return data
class ValidationData(Dataset):
def __init__(self,
root_dir='objaverse/',
input_view_num=6,
input_image_size=320,
fov=30,
):
self.root_dir = Path(root_dir)
self.input_view_num = input_view_num
self.input_image_size = input_image_size
self.fov = fov
self.light_dir = 'env_mipmap'
# with open('Mesh_list.json') as f:
# filtered_dict = json.load(f)
self.paths = os.listdir(self.root_dir)
# self.paths = filtered_dict
print('============= length of dataset %d =============' % len(self.paths))
cam_distance = 4.0
azimuths = np.array([30, 90, 150, 210, 270, 330])
elevations = np.array([20, -10, 20, -10, 20, -10])
azimuths = np.deg2rad(azimuths)
elevations = np.deg2rad(elevations)
x = cam_distance * np.cos(elevations) * np.cos(azimuths)
y = cam_distance * np.cos(elevations) * np.sin(azimuths)
z = cam_distance * np.sin(elevations)
cam_locations = np.stack([x, y, z], axis=-1)
cam_locations = torch.from_numpy(cam_locations).float()
c2ws = center_looking_at_camera_pose(cam_locations)
self.c2ws = c2ws.float()
self.Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(6, 1, 1).float()
render_c2ws = get_circular_camera_poses(M=8, radius=cam_distance, elevation=20.0)
render_Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(render_c2ws.shape[0], 1, 1)
self.render_c2ws = render_c2ws.float()
self.render_Ks = render_Ks.float()
def __len__(self):
return len(self.paths)
def load_im(self, path, color):
'''
replace background pixel with random color in rendering
'''
pil_img = Image.open(path)
pil_img = pil_img.resize((self.input_image_size, self.input_image_size), resample=Image.BICUBIC)
image = np.asarray(pil_img, dtype=np.float32) / 255.
if image.shape[-1] == 4:
alpha = image[:, :, 3:]
image = image[:, :, :3] * alpha + color * (1 - alpha)
else:
alpha = np.ones_like(image[:, :, :1])
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
return image, alpha
def load_mat(self, path, color):
'''
replace background pixel with random color in rendering
'''
pil_img = Image.open(path)
pil_img = pil_img.resize((384,384), resample=Image.BICUBIC)
image = np.asarray(pil_img, dtype=np.float32) / 255.
if image.shape[-1] == 4:
alpha = image[:, :, 3:]
image = image[:, :, :3] * alpha + color * (1 - alpha)
else:
alpha = np.ones_like(image[:, :, :1])
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
return image, alpha
def load_albedo(self, path, color, mask):
'''
replace background pixel with random color in rendering
'''
pil_img = Image.open(path)
pil_img = pil_img.resize((self.input_image_size, self.input_image_size), resample=Image.BICUBIC)
image = np.asarray(pil_img, dtype=np.float32) / 255.
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
color = torch.ones_like(image)
image = image * mask + color * (1 - mask)
return image
def __getitem__(self, index):
# load data
input_image_path = os.path.join(self.root_dir, self.paths[index])
'''background color, default: white'''
bkg_color = [1.0, 1.0, 1.0]
image_list = []
albedo_list = []
alpha_list = []
specular_list = []
diffuse_list = []
metallic_list = []
roughness_list = []
exist_comb_list = []
for subfolder in os.listdir(input_image_path):
found_numeric_subfolder=False
subfolder_path = os.path.join(input_image_path, subfolder)
if os.path.isdir(subfolder_path) and '_' in subfolder and 'specular' not in subfolder and 'diffuse' not in subfolder:
try:
parts = subfolder.split('_')
float(parts[0]) # 尝试将分隔符前后的字符串转换为浮点数
float(parts[1])
found_numeric_subfolder = True
except ValueError:
continue
if found_numeric_subfolder:
exist_comb_list.append(subfolder)
selected_one_comb = random.choice(exist_comb_list)
for idx in range(self.input_view_num):
img_path = find_matching_files(os.path.join(input_image_path, selected_one_comb, 'rgb'), idx)
albedo_path = img_path.replace('rgb', 'albedo')
metallic_path = img_path.replace('rgb', 'metallic')
roughness_path = img_path.replace('rgb', 'roughness')
image, alpha = self.load_im(img_path, bkg_color)
albedo = self.load_albedo(albedo_path, bkg_color, alpha)
metallic,_ = self.load_mat(metallic_path, bkg_color)
roughness,_ = self.load_mat(roughness_path, bkg_color)
light_num = os.path.basename(img_path).split('_')[1].split('.')[0]
light_path = os.path.join(self.light_dir, str(int(light_num)+1))
specular, diffuse = load_mipmap(light_path)
image_list.append(image)
alpha_list.append(alpha)
albedo_list.append(albedo)
metallic_list.append(metallic)
roughness_list.append(roughness)
specular_list.append(specular)
diffuse_list.append(diffuse)
images = torch.stack(image_list, dim=0).float()
alphas = torch.stack(alpha_list, dim=0).float()
albedo = torch.stack(albedo_list, dim=0).float()
metallic = torch.stack(metallic_list, dim=0).float()
roughness = torch.stack(roughness_list, dim=0).float()
data = {
'input_images': images,
'input_alphas': alphas,
'input_c2ws': self.c2ws,
'input_Ks': self.Ks,
'input_albedos': albedo[:self.input_view_num],
'input_metallics': metallic[:self.input_view_num],
'input_roughness': roughness[:self.input_view_num],
'specular': specular_list[:self.input_view_num],
'diffuse': diffuse_list[:self.input_view_num],
'render_c2ws': self.render_c2ws,
'render_Ks': self.render_Ks,
}
return data
if __name__ == '__main__':
dataset = ObjaverseData()
dataset.new(1)
|