File size: 11,156 Bytes
2fe3da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from tqdm import tqdm
from torchvision.transforms import v2
from torchvision.utils import make_grid, save_image
from einops import rearrange

from src.utils.train_util import instantiate_from_config
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, DDPMScheduler, UNet2DConditionModel
from .pipeline import RefOnlyNoisedUNet


def scale_latents(latents):
    latents = (latents - 0.22) * 0.75
    return latents


def unscale_latents(latents):
    latents = latents / 0.75 + 0.22
    return latents


def scale_image(image):
    image = image * 0.5 / 0.8
    return image


def unscale_image(image):
    image = image / 0.5 * 0.8
    return image


def extract_into_tensor(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


class MVDiffusion(pl.LightningModule):
    def __init__(
        self,
        stable_diffusion_config,
        drop_cond_prob=0.1,
    ):
        super(MVDiffusion, self).__init__()

        self.drop_cond_prob = drop_cond_prob

        self.register_schedule()

        # init modules
        pipeline = DiffusionPipeline.from_pretrained(**stable_diffusion_config)
        pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
            pipeline.scheduler.config, timestep_spacing='trailing'
        )
        self.pipeline = pipeline

        train_sched = DDPMScheduler.from_config(self.pipeline.scheduler.config)
        if isinstance(self.pipeline.unet, UNet2DConditionModel):
            self.pipeline.unet = RefOnlyNoisedUNet(self.pipeline.unet, train_sched, self.pipeline.scheduler)

        self.train_scheduler = train_sched      # use ddpm scheduler during training

        self.unet = pipeline.unet

        # validation output buffer
        self.validation_step_outputs = []

    def register_schedule(self):
        self.num_timesteps = 1000

        # replace scaled_linear schedule with linear schedule as Zero123++
        beta_start = 0.00085
        beta_end = 0.0120
        betas = torch.linspace(beta_start, beta_end, 1000, dtype=torch.float32)
        
        alphas = 1. - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0)
        alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0)

        self.register_buffer('betas', betas.float())
        self.register_buffer('alphas_cumprod', alphas_cumprod.float())
        self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev.float())

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod).float())
        self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1 - alphas_cumprod).float())
        
        self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod).float())
        self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1).float())
    
    def on_fit_start(self):
        device = torch.device(f'cuda:{self.global_rank}')
        self.pipeline.to(device)
        if self.global_rank == 0:
            os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True)
            os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True)
    
    def prepare_batch_data(self, batch):
        # prepare stable diffusion input
        cond_imgs = batch['cond_imgs']      # (B, C, H, W)
        cond_imgs = cond_imgs.to(self.device)

        # random resize the condition image
        cond_size = np.random.randint(128, 513)
        cond_imgs = v2.functional.resize(cond_imgs, cond_size, interpolation=3, antialias=True).clamp(0, 1)

        target_imgs = batch['target_imgs']  # (B, 6, C, H, W)
        target_imgs = v2.functional.resize(target_imgs, 320, interpolation=3, antialias=True).clamp(0, 1)
        target_imgs = rearrange(target_imgs, 'b (x y) c h w -> b c (x h) (y w)', x=3, y=2)    # (B, C, 3H, 2W)
        target_imgs = target_imgs.to(self.device)

        return cond_imgs, target_imgs
    
    @torch.no_grad()
    def forward_vision_encoder(self, images):
        dtype = next(self.pipeline.vision_encoder.parameters()).dtype
        image_pil = [v2.functional.to_pil_image(images[i]) for i in range(images.shape[0])]
        image_pt = self.pipeline.feature_extractor_clip(images=image_pil, return_tensors="pt").pixel_values
        image_pt = image_pt.to(device=self.device, dtype=dtype)
        global_embeds = self.pipeline.vision_encoder(image_pt, output_hidden_states=False).image_embeds
        global_embeds = global_embeds.unsqueeze(-2)

        encoder_hidden_states = self.pipeline._encode_prompt("", self.device, 1, False)[0]
        ramp = global_embeds.new_tensor(self.pipeline.config.ramping_coefficients).unsqueeze(-1)
        encoder_hidden_states = encoder_hidden_states + global_embeds * ramp

        return encoder_hidden_states
    
    @torch.no_grad()
    def encode_condition_image(self, images):
        dtype = next(self.pipeline.vae.parameters()).dtype
        image_pil = [v2.functional.to_pil_image(images[i]) for i in range(images.shape[0])]
        image_pt = self.pipeline.feature_extractor_vae(images=image_pil, return_tensors="pt").pixel_values
        image_pt = image_pt.to(device=self.device, dtype=dtype)
        latents = self.pipeline.vae.encode(image_pt).latent_dist.sample()
        return latents
    
    @torch.no_grad()
    def encode_target_images(self, images):
        dtype = next(self.pipeline.vae.parameters()).dtype
        # equals to scaling images to [-1, 1] first and then call scale_image
        images = (images - 0.5) / 0.8   # [-0.625, 0.625]
        posterior = self.pipeline.vae.encode(images.to(dtype)).latent_dist
        latents = posterior.sample() * self.pipeline.vae.config.scaling_factor
        latents = scale_latents(latents)
        return latents
    
    def forward_unet(self, latents, t, prompt_embeds, cond_latents):
        dtype = next(self.pipeline.unet.parameters()).dtype
        latents = latents.to(dtype)
        prompt_embeds = prompt_embeds.to(dtype)
        cond_latents = cond_latents.to(dtype)
        cross_attention_kwargs = dict(cond_lat=cond_latents)
        pred_noise = self.pipeline.unet(
            latents,
            t,
            encoder_hidden_states=prompt_embeds,
            cross_attention_kwargs=cross_attention_kwargs,
            return_dict=False,
        )[0]
        return pred_noise
    
    def predict_start_from_z_and_v(self, x_t, t, v):
        return (
            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
        )

    def get_v(self, x, noise, t):
        return (
            extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
        )
    
    def training_step(self, batch, batch_idx):
        # get input
        cond_imgs, target_imgs = self.prepare_batch_data(batch)

        # sample random timestep
        B = cond_imgs.shape[0]
        
        t = torch.randint(0, self.num_timesteps, size=(B,)).long().to(self.device)

        # classifier-free guidance
        if np.random.rand() < self.drop_cond_prob:
            prompt_embeds = self.pipeline._encode_prompt([""]*B, self.device, 1, False)
            cond_latents = self.encode_condition_image(torch.zeros_like(cond_imgs))
        else:
            prompt_embeds = self.forward_vision_encoder(cond_imgs)
            cond_latents = self.encode_condition_image(cond_imgs)

        latents = self.encode_target_images(target_imgs)
        noise = torch.randn_like(latents)
        latents_noisy = self.train_scheduler.add_noise(latents, noise, t)
        
        v_pred = self.forward_unet(latents_noisy, t, prompt_embeds, cond_latents)
        v_target = self.get_v(latents, noise, t)

        loss, loss_dict = self.compute_loss(v_pred, v_target)

        # logging
        self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True)
        self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False)
        lr = self.optimizers().param_groups[0]['lr']
        self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)

        if self.global_step % 500 == 0 and self.global_rank == 0:
            with torch.no_grad():
                latents_pred = self.predict_start_from_z_and_v(latents_noisy, t, v_pred)

                latents = unscale_latents(latents_pred)
                images = unscale_image(self.pipeline.vae.decode(latents / self.pipeline.vae.config.scaling_factor, return_dict=False)[0])   # [-1, 1]
                images = (images * 0.5 + 0.5).clamp(0, 1)
                images = torch.cat([target_imgs, images], dim=-2)

                grid = make_grid(images, nrow=images.shape[0], normalize=True, value_range=(0, 1))
                save_image(grid, os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png'))

        return loss
        
    def compute_loss(self, noise_pred, noise_gt):
        loss = F.mse_loss(noise_pred, noise_gt)

        prefix = 'train'
        loss_dict = {}
        loss_dict.update({f'{prefix}/loss': loss})

        return loss, loss_dict

    @torch.no_grad()
    def validation_step(self, batch, batch_idx):
        # get input
        cond_imgs, target_imgs = self.prepare_batch_data(batch)

        images_pil = [v2.functional.to_pil_image(cond_imgs[i]) for i in range(cond_imgs.shape[0])]

        outputs = []
        for cond_img in images_pil:
            latent = self.pipeline(cond_img, num_inference_steps=75, output_type='latent').images
            image = unscale_image(self.pipeline.vae.decode(latent / self.pipeline.vae.config.scaling_factor, return_dict=False)[0])   # [-1, 1]
            image = (image * 0.5 + 0.5).clamp(0, 1)
            outputs.append(image)
        outputs = torch.cat(outputs, dim=0).to(self.device)
        images = torch.cat([target_imgs, outputs], dim=-2)
        
        self.validation_step_outputs.append(images)
    
    @torch.no_grad()
    def on_validation_epoch_end(self):
        images = torch.cat(self.validation_step_outputs, dim=0)

        all_images = self.all_gather(images)
        all_images = rearrange(all_images, 'r b c h w -> (r b) c h w')

        if self.global_rank == 0:
            grid = make_grid(all_images, nrow=8, normalize=True, value_range=(0, 1))
            save_image(grid, os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png'))

        self.validation_step_outputs.clear()  # free memory

    def configure_optimizers(self):
        lr = self.learning_rate

        optimizer = torch.optim.AdamW(self.unet.parameters(), lr=lr)
        scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 3000, eta_min=lr/4)

        return {'optimizer': optimizer, 'lr_scheduler': scheduler}