JiantaoLin
new
2fe3da0
raw
history blame
13.8 kB
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import torch
import os
import sys
sys.path.insert(0, os.path.join(sys.path[0], '../..'))
import renderutils as ru
RES = 4
DTYPE = torch.float32
def relative_loss(name, ref, cuda):
ref = ref.float()
cuda = cuda.float()
print(name, torch.max(torch.abs(ref - cuda) / torch.abs(ref + 1e-7)).item())
def test_normal():
pos_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
pos_ref = pos_cuda.clone().detach().requires_grad_(True)
view_pos_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
view_pos_ref = view_pos_cuda.clone().detach().requires_grad_(True)
perturbed_nrm_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
perturbed_nrm_ref = perturbed_nrm_cuda.clone().detach().requires_grad_(True)
smooth_nrm_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
smooth_nrm_ref = smooth_nrm_cuda.clone().detach().requires_grad_(True)
smooth_tng_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
smooth_tng_ref = smooth_tng_cuda.clone().detach().requires_grad_(True)
geom_nrm_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
geom_nrm_ref = geom_nrm_cuda.clone().detach().requires_grad_(True)
target = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda')
ref = ru.prepare_shading_normal(pos_ref, view_pos_ref, perturbed_nrm_ref, smooth_nrm_ref, smooth_tng_ref, geom_nrm_ref, True, use_python=True)
ref_loss = torch.nn.MSELoss()(ref, target)
ref_loss.backward()
cuda = ru.prepare_shading_normal(pos_cuda, view_pos_cuda, perturbed_nrm_cuda, smooth_nrm_cuda, smooth_tng_cuda, geom_nrm_cuda, True)
cuda_loss = torch.nn.MSELoss()(cuda, target)
cuda_loss.backward()
print("-------------------------------------------------------------")
print(" bent normal")
print("-------------------------------------------------------------")
relative_loss("res:", ref, cuda)
relative_loss("pos:", pos_ref.grad, pos_cuda.grad)
relative_loss("view_pos:", view_pos_ref.grad, view_pos_cuda.grad)
relative_loss("perturbed_nrm:", perturbed_nrm_ref.grad, perturbed_nrm_cuda.grad)
relative_loss("smooth_nrm:", smooth_nrm_ref.grad, smooth_nrm_cuda.grad)
relative_loss("smooth_tng:", smooth_tng_ref.grad, smooth_tng_cuda.grad)
relative_loss("geom_nrm:", geom_nrm_ref.grad, geom_nrm_cuda.grad)
def test_schlick():
f0_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
f0_ref = f0_cuda.clone().detach().requires_grad_(True)
f90_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
f90_ref = f90_cuda.clone().detach().requires_grad_(True)
cosT_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) * 2.0
cosT_cuda = cosT_cuda.clone().detach().requires_grad_(True)
cosT_ref = cosT_cuda.clone().detach().requires_grad_(True)
target = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda')
ref = ru._fresnel_shlick(f0_ref, f90_ref, cosT_ref, use_python=True)
ref_loss = torch.nn.MSELoss()(ref, target)
ref_loss.backward()
cuda = ru._fresnel_shlick(f0_cuda, f90_cuda, cosT_cuda)
cuda_loss = torch.nn.MSELoss()(cuda, target)
cuda_loss.backward()
print("-------------------------------------------------------------")
print(" Fresnel shlick")
print("-------------------------------------------------------------")
relative_loss("res:", ref, cuda)
relative_loss("f0:", f0_ref.grad, f0_cuda.grad)
relative_loss("f90:", f90_ref.grad, f90_cuda.grad)
relative_loss("cosT:", cosT_ref.grad, cosT_cuda.grad)
def test_ndf_ggx():
alphaSqr_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True)
alphaSqr_cuda = alphaSqr_cuda.clone().detach().requires_grad_(True)
alphaSqr_ref = alphaSqr_cuda.clone().detach().requires_grad_(True)
cosT_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) * 3.0 - 1
cosT_cuda = cosT_cuda.clone().detach().requires_grad_(True)
cosT_ref = cosT_cuda.clone().detach().requires_grad_(True)
target = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda')
ref = ru._ndf_ggx(alphaSqr_ref, cosT_ref, use_python=True)
ref_loss = torch.nn.MSELoss()(ref, target)
ref_loss.backward()
cuda = ru._ndf_ggx(alphaSqr_cuda, cosT_cuda)
cuda_loss = torch.nn.MSELoss()(cuda, target)
cuda_loss.backward()
print("-------------------------------------------------------------")
print(" Ndf GGX")
print("-------------------------------------------------------------")
relative_loss("res:", ref, cuda)
relative_loss("alpha:", alphaSqr_ref.grad, alphaSqr_cuda.grad)
relative_loss("cosT:", cosT_ref.grad, cosT_cuda.grad)
def test_lambda_ggx():
alphaSqr_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True)
alphaSqr_ref = alphaSqr_cuda.clone().detach().requires_grad_(True)
cosT_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) * 3.0 - 1
cosT_cuda = cosT_cuda.clone().detach().requires_grad_(True)
cosT_ref = cosT_cuda.clone().detach().requires_grad_(True)
target = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda')
ref = ru._lambda_ggx(alphaSqr_ref, cosT_ref, use_python=True)
ref_loss = torch.nn.MSELoss()(ref, target)
ref_loss.backward()
cuda = ru._lambda_ggx(alphaSqr_cuda, cosT_cuda)
cuda_loss = torch.nn.MSELoss()(cuda, target)
cuda_loss.backward()
print("-------------------------------------------------------------")
print(" Lambda GGX")
print("-------------------------------------------------------------")
relative_loss("res:", ref, cuda)
relative_loss("alpha:", alphaSqr_ref.grad, alphaSqr_cuda.grad)
relative_loss("cosT:", cosT_ref.grad, cosT_cuda.grad)
def test_masking_smith():
alphaSqr_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True)
alphaSqr_ref = alphaSqr_cuda.clone().detach().requires_grad_(True)
cosThetaI_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True)
cosThetaI_ref = cosThetaI_cuda.clone().detach().requires_grad_(True)
cosThetaO_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True)
cosThetaO_ref = cosThetaO_cuda.clone().detach().requires_grad_(True)
target = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda')
ref = ru._masking_smith(alphaSqr_ref, cosThetaI_ref, cosThetaO_ref, use_python=True)
ref_loss = torch.nn.MSELoss()(ref, target)
ref_loss.backward()
cuda = ru._masking_smith(alphaSqr_cuda, cosThetaI_cuda, cosThetaO_cuda)
cuda_loss = torch.nn.MSELoss()(cuda, target)
cuda_loss.backward()
print("-------------------------------------------------------------")
print(" Smith masking term")
print("-------------------------------------------------------------")
relative_loss("res:", ref, cuda)
relative_loss("alpha:", alphaSqr_ref.grad, alphaSqr_cuda.grad)
relative_loss("cosThetaI:", cosThetaI_ref.grad, cosThetaI_cuda.grad)
relative_loss("cosThetaO:", cosThetaO_ref.grad, cosThetaO_cuda.grad)
def test_lambert():
normals_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
normals_ref = normals_cuda.clone().detach().requires_grad_(True)
wi_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
wi_ref = wi_cuda.clone().detach().requires_grad_(True)
target = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda')
ref = ru.lambert(normals_ref, wi_ref, use_python=True)
ref_loss = torch.nn.MSELoss()(ref, target)
ref_loss.backward()
cuda = ru.lambert(normals_cuda, wi_cuda)
cuda_loss = torch.nn.MSELoss()(cuda, target)
cuda_loss.backward()
print("-------------------------------------------------------------")
print(" Lambert")
print("-------------------------------------------------------------")
relative_loss("res:", ref, cuda)
relative_loss("nrm:", normals_ref.grad, normals_cuda.grad)
relative_loss("wi:", wi_ref.grad, wi_cuda.grad)
def test_frostbite():
normals_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
normals_ref = normals_cuda.clone().detach().requires_grad_(True)
wi_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
wi_ref = wi_cuda.clone().detach().requires_grad_(True)
wo_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
wo_ref = wo_cuda.clone().detach().requires_grad_(True)
rough_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True)
rough_ref = rough_cuda.clone().detach().requires_grad_(True)
target = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda')
ref = ru.frostbite_diffuse(normals_ref, wi_ref, wo_ref, rough_ref, use_python=True)
ref_loss = torch.nn.MSELoss()(ref, target)
ref_loss.backward()
cuda = ru.frostbite_diffuse(normals_cuda, wi_cuda, wo_cuda, rough_cuda)
cuda_loss = torch.nn.MSELoss()(cuda, target)
cuda_loss.backward()
print("-------------------------------------------------------------")
print(" Frostbite")
print("-------------------------------------------------------------")
relative_loss("res:", ref, cuda)
relative_loss("nrm:", normals_ref.grad, normals_cuda.grad)
relative_loss("wo:", wo_ref.grad, wo_cuda.grad)
relative_loss("wi:", wi_ref.grad, wi_cuda.grad)
relative_loss("rough:", rough_ref.grad, rough_cuda.grad)
def test_pbr_specular():
col_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
col_ref = col_cuda.clone().detach().requires_grad_(True)
nrm_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
nrm_ref = nrm_cuda.clone().detach().requires_grad_(True)
wi_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
wi_ref = wi_cuda.clone().detach().requires_grad_(True)
wo_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
wo_ref = wo_cuda.clone().detach().requires_grad_(True)
alpha_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True)
alpha_ref = alpha_cuda.clone().detach().requires_grad_(True)
target = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda')
ref = ru.pbr_specular(col_ref, nrm_ref, wo_ref, wi_ref, alpha_ref, use_python=True)
ref_loss = torch.nn.MSELoss()(ref, target)
ref_loss.backward()
cuda = ru.pbr_specular(col_cuda, nrm_cuda, wo_cuda, wi_cuda, alpha_cuda)
cuda_loss = torch.nn.MSELoss()(cuda, target)
cuda_loss.backward()
print("-------------------------------------------------------------")
print(" Pbr specular")
print("-------------------------------------------------------------")
relative_loss("res:", ref, cuda)
if col_ref.grad is not None:
relative_loss("col:", col_ref.grad, col_cuda.grad)
if nrm_ref.grad is not None:
relative_loss("nrm:", nrm_ref.grad, nrm_cuda.grad)
if wi_ref.grad is not None:
relative_loss("wi:", wi_ref.grad, wi_cuda.grad)
if wo_ref.grad is not None:
relative_loss("wo:", wo_ref.grad, wo_cuda.grad)
if alpha_ref.grad is not None:
relative_loss("alpha:", alpha_ref.grad, alpha_cuda.grad)
def test_pbr_bsdf(bsdf):
kd_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
kd_ref = kd_cuda.clone().detach().requires_grad_(True)
arm_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
arm_ref = arm_cuda.clone().detach().requires_grad_(True)
pos_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
pos_ref = pos_cuda.clone().detach().requires_grad_(True)
nrm_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
nrm_ref = nrm_cuda.clone().detach().requires_grad_(True)
view_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
view_ref = view_cuda.clone().detach().requires_grad_(True)
light_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
light_ref = light_cuda.clone().detach().requires_grad_(True)
target = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda')
ref = ru.pbr_bsdf(kd_ref, arm_ref, pos_ref, nrm_ref, view_ref, light_ref, use_python=True, bsdf=bsdf)
ref_loss = torch.nn.MSELoss()(ref, target)
ref_loss.backward()
cuda = ru.pbr_bsdf(kd_cuda, arm_cuda, pos_cuda, nrm_cuda, view_cuda, light_cuda, bsdf=bsdf)
cuda_loss = torch.nn.MSELoss()(cuda, target)
cuda_loss.backward()
print("-------------------------------------------------------------")
print(" Pbr BSDF")
print("-------------------------------------------------------------")
relative_loss("res:", ref, cuda)
if kd_ref.grad is not None:
relative_loss("kd:", kd_ref.grad, kd_cuda.grad)
if arm_ref.grad is not None:
relative_loss("arm:", arm_ref.grad, arm_cuda.grad)
if pos_ref.grad is not None:
relative_loss("pos:", pos_ref.grad, pos_cuda.grad)
if nrm_ref.grad is not None:
relative_loss("nrm:", nrm_ref.grad, nrm_cuda.grad)
if view_ref.grad is not None:
relative_loss("view:", view_ref.grad, view_cuda.grad)
if light_ref.grad is not None:
relative_loss("light:", light_ref.grad, light_cuda.grad)
test_normal()
test_schlick()
test_ndf_ggx()
test_lambda_ggx()
test_masking_smith()
test_lambert()
test_frostbite()
test_pbr_specular()
test_pbr_bsdf('lambert')
test_pbr_bsdf('frostbite')