|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
import torch |
|
import nvdiffrast.torch as dr |
|
import imageio |
|
|
|
|
|
|
|
|
|
|
|
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: |
|
return torch.sum(x*y, -1, keepdim=True) |
|
|
|
def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor: |
|
return 2*dot(x, n)*n - x |
|
|
|
def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: |
|
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) |
|
|
|
def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: |
|
return x / length(x, eps) |
|
|
|
def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor: |
|
return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w) |
|
|
|
|
|
|
|
|
|
|
|
def _rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: |
|
return torch.where(f <= 0.0031308, f * 12.92, torch.pow(torch.clamp(f, 0.0031308), 1.0/2.4)*1.055 - 0.055) |
|
|
|
def rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: |
|
assert f.shape[-1] == 3 or f.shape[-1] == 4 |
|
out = torch.cat((_rgb_to_srgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _rgb_to_srgb(f) |
|
assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] |
|
return out |
|
|
|
def _srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: |
|
return torch.where(f <= 0.04045, f / 12.92, torch.pow((torch.clamp(f, 0.04045) + 0.055) / 1.055, 2.4)) |
|
|
|
def srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: |
|
assert f.shape[-1] == 3 or f.shape[-1] == 4 |
|
out = torch.cat((_srgb_to_rgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _srgb_to_rgb(f) |
|
assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] |
|
return out |
|
|
|
def reinhard(f: torch.Tensor) -> torch.Tensor: |
|
return f/(1+f) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mse_to_psnr(mse): |
|
"""Compute PSNR given an MSE (we assume the maximum pixel value is 1).""" |
|
return -10. / np.log(10.) * np.log(mse) |
|
|
|
def psnr_to_mse(psnr): |
|
"""Compute MSE given a PSNR (we assume the maximum pixel value is 1).""" |
|
return np.exp(-0.1 * np.log(10.) * psnr) |
|
|
|
|
|
|
|
|
|
|
|
def get_miplevels(texture: np.ndarray) -> float: |
|
minDim = min(texture.shape[0], texture.shape[1]) |
|
return np.floor(np.log2(minDim)) |
|
|
|
def tex_2d(tex_map : torch.Tensor, coords : torch.Tensor, filter='nearest') -> torch.Tensor: |
|
tex_map = tex_map[None, ...] |
|
tex_map = tex_map.permute(0, 3, 1, 2) |
|
tex = torch.nn.functional.grid_sample(tex_map, coords[None, None, ...] * 2 - 1, mode=filter, align_corners=False) |
|
tex = tex.permute(0, 2, 3, 1) |
|
return tex[0, 0, ...] |
|
|
|
|
|
|
|
|
|
|
|
def cube_to_dir(s, x, y): |
|
if s == 0: rx, ry, rz = torch.ones_like(x), -y, -x |
|
elif s == 1: rx, ry, rz = -torch.ones_like(x), -y, x |
|
elif s == 2: rx, ry, rz = x, torch.ones_like(x), y |
|
elif s == 3: rx, ry, rz = x, -torch.ones_like(x), -y |
|
elif s == 4: rx, ry, rz = x, -y, torch.ones_like(x) |
|
elif s == 5: rx, ry, rz = -x, -y, -torch.ones_like(x) |
|
return torch.stack((rx, ry, rz), dim=-1) |
|
|
|
def latlong_to_cubemap(latlong_map, res): |
|
cubemap = torch.zeros(6, res[0], res[1], latlong_map.shape[-1], dtype=torch.float32, device='cuda') |
|
for s in range(6): |
|
gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), |
|
torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'), |
|
indexing='ij') |
|
v = safe_normalize(cube_to_dir(s, gx, gy)) |
|
|
|
tu = torch.atan2(v[..., 0:1], -v[..., 2:3]) / (2 * np.pi) + 0.5 |
|
tv = torch.acos(torch.clamp(v[..., 1:2], min=-1, max=1)) / np.pi |
|
texcoord = torch.cat((tu, tv), dim=-1) |
|
|
|
cubemap[s, ...] = dr.texture(latlong_map[None, ...], texcoord[None, ...], filter_mode='linear')[0] |
|
return cubemap |
|
|
|
def cubemap_to_latlong(cubemap, res): |
|
gy, gx = torch.meshgrid(torch.linspace( 0.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), |
|
torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'), |
|
indexing='ij') |
|
|
|
sintheta, costheta = torch.sin(gy*np.pi), torch.cos(gy*np.pi) |
|
sinphi, cosphi = torch.sin(gx*np.pi), torch.cos(gx*np.pi) |
|
|
|
reflvec = torch.stack(( |
|
sintheta*sinphi, |
|
costheta, |
|
-sintheta*cosphi |
|
), dim=-1) |
|
return dr.texture(cubemap[None, ...], reflvec[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')[0] |
|
|
|
|
|
|
|
|
|
|
|
def scale_img_hwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: |
|
return scale_img_nhwc(x[None, ...], size, mag, min)[0] |
|
|
|
def scale_img_nhwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: |
|
size = tuple(int(s) for s in size) |
|
assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other" |
|
y = x.permute(0, 3, 1, 2) |
|
if x.shape[1] > size[0] and x.shape[2] > size[1]: |
|
y = torch.nn.functional.interpolate(y, size, mode=min) |
|
else: |
|
if mag == 'bilinear' or mag == 'bicubic': |
|
y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True) |
|
else: |
|
y = torch.nn.functional.interpolate(y, size, mode=mag) |
|
return y.permute(0, 2, 3, 1).contiguous() |
|
|
|
def avg_pool_nhwc(x : torch.Tensor, size) -> torch.Tensor: |
|
y = x.permute(0, 3, 1, 2) |
|
y = torch.nn.functional.avg_pool2d(y, size) |
|
return y.permute(0, 2, 3, 1).contiguous() |
|
|
|
|
|
|
|
|
|
|
|
def segment_sum(data: torch.Tensor, segment_ids: torch.Tensor) -> torch.Tensor: |
|
num_segments = torch.unique_consecutive(segment_ids).shape[0] |
|
|
|
|
|
if len(segment_ids.shape) == 1: |
|
s = torch.prod(torch.tensor(data.shape[1:], dtype=torch.int64, device='cuda')).long() |
|
segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:]) |
|
|
|
assert data.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal" |
|
|
|
shape = [num_segments] + list(data.shape[1:]) |
|
result = torch.zeros(*shape, dtype=torch.float32, device='cuda') |
|
result = result.scatter_add(0, segment_ids, data) |
|
return result |
|
|
|
|
|
|
|
|
|
|
|
def fovx_to_fovy(fovx, aspect): |
|
return np.arctan(np.tan(fovx / 2) / aspect) * 2.0 |
|
|
|
def focal_length_to_fovy(focal_length, sensor_height): |
|
return 2 * np.arctan(0.5 * sensor_height / focal_length) |
|
|
|
|
|
def perspective(fovy=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None): |
|
y = np.tan(fovy / 2) |
|
return torch.tensor([[1/(y*aspect), 0, 0, 0], |
|
[ 0, 1/-y, 0, 0], |
|
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], |
|
[ 0, 0, -1, 0]], dtype=torch.float32, device=device) |
|
|
|
|
|
def perspective_offcenter(fovy, fraction, rx, ry, aspect=1.0, n=0.1, f=1000.0, device=None): |
|
y = np.tan(fovy / 2) |
|
|
|
|
|
R, L = aspect*y, -aspect*y |
|
T, B = y, -y |
|
|
|
|
|
width = (R-L)*fraction |
|
height = (T-B)*fraction |
|
xstart = (R-L)*rx |
|
ystart = (T-B)*ry |
|
|
|
l = L + xstart |
|
r = l + width |
|
b = B + ystart |
|
t = b + height |
|
|
|
|
|
return torch.tensor([[2/(r-l), 0, (r+l)/(r-l), 0], |
|
[ 0, -2/(t-b), (t+b)/(t-b), 0], |
|
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], |
|
[ 0, 0, -1, 0]], dtype=torch.float32, device=device) |
|
|
|
def translate(x, y, z, device=None): |
|
return torch.tensor([[1, 0, 0, x], |
|
[0, 1, 0, y], |
|
[0, 0, 1, z], |
|
[0, 0, 0, 1]], dtype=torch.float32, device=device) |
|
|
|
def rotate_x(a, device=None): |
|
s, c = np.sin(a), np.cos(a) |
|
return torch.tensor([[1, 0, 0, 0], |
|
[0, c,-s, 0], |
|
[0, s, c, 0], |
|
[0, 0, 0, 1]], dtype=torch.float32, device=device) |
|
|
|
def rotate_y(a, device=None): |
|
s, c = np.sin(a), np.cos(a) |
|
return torch.tensor([[ c, 0, s, 0], |
|
[ 0, 1, 0, 0], |
|
[-s, 0, c, 0], |
|
[ 0, 0, 0, 1]], dtype=torch.float32, device=device) |
|
|
|
def scale(s, device=None): |
|
return torch.tensor([[ s, 0, 0, 0], |
|
[ 0, s, 0, 0], |
|
[ 0, 0, s, 0], |
|
[ 0, 0, 0, 1]], dtype=torch.float32, device=device) |
|
|
|
def lookAt(eye, at, up): |
|
a = eye - at |
|
w = a / torch.linalg.norm(a) |
|
u = torch.cross(up, w) |
|
u = u / torch.linalg.norm(u) |
|
v = torch.cross(w, u) |
|
translate = torch.tensor([[1, 0, 0, -eye[0]], |
|
[0, 1, 0, -eye[1]], |
|
[0, 0, 1, -eye[2]], |
|
[0, 0, 0, 1]], dtype=eye.dtype, device=eye.device) |
|
rotate = torch.tensor([[u[0], u[1], u[2], 0], |
|
[v[0], v[1], v[2], 0], |
|
[w[0], w[1], w[2], 0], |
|
[0, 0, 0, 1]], dtype=eye.dtype, device=eye.device) |
|
return rotate @ translate |
|
|
|
@torch.no_grad() |
|
def random_rotation_translation(t, device=None): |
|
m = np.random.normal(size=[3, 3]) |
|
m[1] = np.cross(m[0], m[2]) |
|
m[2] = np.cross(m[0], m[1]) |
|
m = m / np.linalg.norm(m, axis=1, keepdims=True) |
|
m = np.pad(m, [[0, 1], [0, 1]], mode='constant') |
|
m[3, 3] = 1.0 |
|
m[:3, 3] = np.random.uniform(-t, t, size=[3]) |
|
return torch.tensor(m, dtype=torch.float32, device=device) |
|
|
|
@torch.no_grad() |
|
def random_rotation(device=None): |
|
m = np.random.normal(size=[3, 3]) |
|
m[1] = np.cross(m[0], m[2]) |
|
m[2] = np.cross(m[0], m[1]) |
|
m = m / np.linalg.norm(m, axis=1, keepdims=True) |
|
m = np.pad(m, [[0, 1], [0, 1]], mode='constant') |
|
m[3, 3] = 1.0 |
|
m[:3, 3] = np.array([0,0,0]).astype(np.float32) |
|
return torch.tensor(m, dtype=torch.float32, device=device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def lines_focal(o, d): |
|
d = safe_normalize(d) |
|
I = torch.eye(3, dtype=o.dtype, device=o.device) |
|
S = torch.sum(d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...], dim=0) |
|
C = torch.sum((d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...]) @ o[..., None], dim=0).squeeze(1) |
|
return torch.linalg.pinv(S) @ C |
|
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
def cosine_sample(N, size=None): |
|
|
|
N = N/torch.linalg.norm(N) |
|
|
|
dx0 = torch.tensor([0, N[2], -N[1]], dtype=N.dtype, device=N.device) |
|
dx1 = torch.tensor([-N[2], 0, N[0]], dtype=N.dtype, device=N.device) |
|
|
|
dx = torch.where(dot(dx0, dx0) > dot(dx1, dx1), dx0, dx1) |
|
|
|
dx = dx / torch.linalg.norm(dx) |
|
dy = torch.cross(N,dx) |
|
dy = dy / torch.linalg.norm(dy) |
|
|
|
|
|
if size is None: |
|
phi = 2.0 * np.pi * np.random.uniform() |
|
s = np.random.uniform() |
|
else: |
|
phi = 2.0 * np.pi * torch.rand(*size, 1, dtype=N.dtype, device=N.device) |
|
s = torch.rand(*size, 1, dtype=N.dtype, device=N.device) |
|
costheta = np.sqrt(s) |
|
sintheta = np.sqrt(1.0 - s) |
|
|
|
|
|
x = np.cos(phi)*sintheta |
|
y = np.sin(phi)*sintheta |
|
z = costheta |
|
|
|
|
|
return dx*x + dy*y + N*z |
|
|
|
|
|
|
|
|
|
|
|
def bilinear_downsample(x : torch.tensor) -> torch.Tensor: |
|
w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 |
|
w = w.expand(x.shape[-1], 1, 4, 4) |
|
x = torch.nn.functional.conv2d(x.permute(0, 3, 1, 2), w, padding=1, stride=2, groups=x.shape[-1]) |
|
return x.permute(0, 2, 3, 1) |
|
|
|
|
|
|
|
|
|
|
|
def bilinear_downsample(x : torch.tensor, spp) -> torch.Tensor: |
|
w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 |
|
g = x.shape[-1] |
|
w = w.expand(g, 1, 4, 4) |
|
x = x.permute(0, 3, 1, 2) |
|
steps = int(np.log2(spp)) |
|
for _ in range(steps): |
|
xp = torch.nn.functional.pad(x, (1,1,1,1), mode='replicate') |
|
x = torch.nn.functional.conv2d(xp, w, padding=0, stride=2, groups=g) |
|
return x.permute(0, 2, 3, 1).contiguous() |
|
|
|
|
|
|
|
|
|
|
|
_glfw_initialized = False |
|
def init_glfw(): |
|
global _glfw_initialized |
|
try: |
|
import glfw |
|
glfw.ERROR_REPORTING = 'raise' |
|
glfw.default_window_hints() |
|
glfw.window_hint(glfw.VISIBLE, glfw.FALSE) |
|
test = glfw.create_window(8, 8, "Test", None, None) |
|
except glfw.GLFWError as e: |
|
if e.error_code == glfw.NOT_INITIALIZED: |
|
glfw.init() |
|
_glfw_initialized = True |
|
|
|
|
|
|
|
|
|
|
|
_glfw_window = None |
|
def display_image(image, title=None): |
|
|
|
import OpenGL.GL as gl |
|
import glfw |
|
|
|
|
|
image = np.asarray(image[..., 0:3]) if image.shape[-1] == 4 else np.asarray(image) |
|
height, width, channels = image.shape |
|
|
|
|
|
init_glfw() |
|
if title is None: |
|
title = 'Debug window' |
|
global _glfw_window |
|
if _glfw_window is None: |
|
glfw.default_window_hints() |
|
_glfw_window = glfw.create_window(width, height, title, None, None) |
|
glfw.make_context_current(_glfw_window) |
|
glfw.show_window(_glfw_window) |
|
glfw.swap_interval(0) |
|
else: |
|
glfw.make_context_current(_glfw_window) |
|
glfw.set_window_title(_glfw_window, title) |
|
glfw.set_window_size(_glfw_window, width, height) |
|
|
|
|
|
glfw.poll_events() |
|
gl.glClearColor(0, 0, 0, 1) |
|
gl.glClear(gl.GL_COLOR_BUFFER_BIT) |
|
gl.glWindowPos2f(0, 0) |
|
gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1) |
|
gl_format = {3: gl.GL_RGB, 2: gl.GL_RG, 1: gl.GL_LUMINANCE}[channels] |
|
gl_dtype = {'uint8': gl.GL_UNSIGNED_BYTE, 'float32': gl.GL_FLOAT}[image.dtype.name] |
|
gl.glDrawPixels(width, height, gl_format, gl_dtype, image[::-1]) |
|
glfw.swap_buffers(_glfw_window) |
|
if glfw.window_should_close(_glfw_window): |
|
return False |
|
return True |
|
|
|
|
|
|
|
|
|
|
|
def save_image(fn, x : np.ndarray): |
|
try: |
|
if os.path.splitext(fn)[1] == ".png": |
|
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8), compress_level=3) |
|
else: |
|
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8)) |
|
except: |
|
print("WARNING: FAILED to save image %s" % fn) |
|
|
|
def save_image_raw(fn, x : np.ndarray): |
|
try: |
|
imageio.imwrite(fn, x) |
|
except: |
|
print("WARNING: FAILED to save image %s" % fn) |
|
|
|
|
|
def load_image_raw(fn) -> np.ndarray: |
|
return imageio.imread(fn) |
|
|
|
def load_image(fn) -> np.ndarray: |
|
img = load_image_raw(fn) |
|
if img.dtype == np.float32: |
|
return img |
|
else: |
|
return img.astype(np.float32) / 255 |
|
|
|
|
|
|
|
def time_to_text(x): |
|
if x > 3600: |
|
return "%.2f h" % (x / 3600) |
|
elif x > 60: |
|
return "%.2f m" % (x / 60) |
|
else: |
|
return "%.2f s" % x |
|
|
|
|
|
|
|
def checkerboard(res, checker_size) -> np.ndarray: |
|
tiles_y = (res[0] + (checker_size*2) - 1) // (checker_size*2) |
|
tiles_x = (res[1] + (checker_size*2) - 1) // (checker_size*2) |
|
check = np.kron([[1, 0] * tiles_x, [0, 1] * tiles_x] * tiles_y, np.ones((checker_size, checker_size)))*0.33 + 0.33 |
|
check = check[:res[0], :res[1]] |
|
return np.stack((check, check, check), axis=-1) |
|
|
|
|