JiantaoLin
new
2fe3da0
raw
history blame
19.6 kB
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import os
import numpy as np
import torch
import nvdiffrast.torch as dr
import imageio
#----------------------------------------------------------------------------
# Vector operations
#----------------------------------------------------------------------------
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return torch.sum(x*y, -1, keepdim=True)
def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor:
return 2*dot(x, n)*n - x
def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN
def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return x / length(x, eps)
def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor:
return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w)
#----------------------------------------------------------------------------
# sRGB color transforms
#----------------------------------------------------------------------------
def _rgb_to_srgb(f: torch.Tensor) -> torch.Tensor:
return torch.where(f <= 0.0031308, f * 12.92, torch.pow(torch.clamp(f, 0.0031308), 1.0/2.4)*1.055 - 0.055)
def rgb_to_srgb(f: torch.Tensor) -> torch.Tensor:
assert f.shape[-1] == 3 or f.shape[-1] == 4
out = torch.cat((_rgb_to_srgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _rgb_to_srgb(f)
assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2]
return out
def _srgb_to_rgb(f: torch.Tensor) -> torch.Tensor:
return torch.where(f <= 0.04045, f / 12.92, torch.pow((torch.clamp(f, 0.04045) + 0.055) / 1.055, 2.4))
def srgb_to_rgb(f: torch.Tensor) -> torch.Tensor:
assert f.shape[-1] == 3 or f.shape[-1] == 4
out = torch.cat((_srgb_to_rgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _srgb_to_rgb(f)
assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2]
return out
def reinhard(f: torch.Tensor) -> torch.Tensor:
return f/(1+f)
#-----------------------------------------------------------------------------------
# Metrics (taken from jaxNerf source code, in order to replicate their measurements)
#
# https://github.com/google-research/google-research/blob/301451a62102b046bbeebff49a760ebeec9707b8/jaxnerf/nerf/utils.py#L266
#
#-----------------------------------------------------------------------------------
def mse_to_psnr(mse):
"""Compute PSNR given an MSE (we assume the maximum pixel value is 1)."""
return -10. / np.log(10.) * np.log(mse)
def psnr_to_mse(psnr):
"""Compute MSE given a PSNR (we assume the maximum pixel value is 1)."""
return np.exp(-0.1 * np.log(10.) * psnr)
#----------------------------------------------------------------------------
# Displacement texture lookup
#----------------------------------------------------------------------------
def get_miplevels(texture: np.ndarray) -> float:
minDim = min(texture.shape[0], texture.shape[1])
return np.floor(np.log2(minDim))
def tex_2d(tex_map : torch.Tensor, coords : torch.Tensor, filter='nearest') -> torch.Tensor:
tex_map = tex_map[None, ...] # Add batch dimension
tex_map = tex_map.permute(0, 3, 1, 2) # NHWC -> NCHW
tex = torch.nn.functional.grid_sample(tex_map, coords[None, None, ...] * 2 - 1, mode=filter, align_corners=False)
tex = tex.permute(0, 2, 3, 1) # NCHW -> NHWC
return tex[0, 0, ...]
#----------------------------------------------------------------------------
# Cubemap utility functions
#----------------------------------------------------------------------------
def cube_to_dir(s, x, y):
if s == 0: rx, ry, rz = torch.ones_like(x), -y, -x
elif s == 1: rx, ry, rz = -torch.ones_like(x), -y, x
elif s == 2: rx, ry, rz = x, torch.ones_like(x), y
elif s == 3: rx, ry, rz = x, -torch.ones_like(x), -y
elif s == 4: rx, ry, rz = x, -y, torch.ones_like(x)
elif s == 5: rx, ry, rz = -x, -y, -torch.ones_like(x)
return torch.stack((rx, ry, rz), dim=-1)
def latlong_to_cubemap(latlong_map, res):
cubemap = torch.zeros(6, res[0], res[1], latlong_map.shape[-1], dtype=torch.float32, device='cuda')
for s in range(6):
gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'),
torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'),
indexing='ij')
v = safe_normalize(cube_to_dir(s, gx, gy))
tu = torch.atan2(v[..., 0:1], -v[..., 2:3]) / (2 * np.pi) + 0.5
tv = torch.acos(torch.clamp(v[..., 1:2], min=-1, max=1)) / np.pi
texcoord = torch.cat((tu, tv), dim=-1)
cubemap[s, ...] = dr.texture(latlong_map[None, ...], texcoord[None, ...], filter_mode='linear')[0]
return cubemap
def cubemap_to_latlong(cubemap, res):
gy, gx = torch.meshgrid(torch.linspace( 0.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'),
torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'),
indexing='ij')
sintheta, costheta = torch.sin(gy*np.pi), torch.cos(gy*np.pi)
sinphi, cosphi = torch.sin(gx*np.pi), torch.cos(gx*np.pi)
reflvec = torch.stack((
sintheta*sinphi,
costheta,
-sintheta*cosphi
), dim=-1)
return dr.texture(cubemap[None, ...], reflvec[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')[0]
#----------------------------------------------------------------------------
# Image scaling
#----------------------------------------------------------------------------
def scale_img_hwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor:
return scale_img_nhwc(x[None, ...], size, mag, min)[0]
def scale_img_nhwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor:
size = tuple(int(s) for s in size)
assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other"
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger
y = torch.nn.functional.interpolate(y, size, mode=min)
else: # Magnification
if mag == 'bilinear' or mag == 'bicubic':
y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True)
else:
y = torch.nn.functional.interpolate(y, size, mode=mag)
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
def avg_pool_nhwc(x : torch.Tensor, size) -> torch.Tensor:
y = x.permute(0, 3, 1, 2) # NHWC -> NCHW
y = torch.nn.functional.avg_pool2d(y, size)
return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
#----------------------------------------------------------------------------
# Behaves similar to tf.segment_sum
#----------------------------------------------------------------------------
def segment_sum(data: torch.Tensor, segment_ids: torch.Tensor) -> torch.Tensor:
num_segments = torch.unique_consecutive(segment_ids).shape[0]
# Repeats ids until same dimension as data
if len(segment_ids.shape) == 1:
s = torch.prod(torch.tensor(data.shape[1:], dtype=torch.int64, device='cuda')).long()
segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:])
assert data.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal"
shape = [num_segments] + list(data.shape[1:])
result = torch.zeros(*shape, dtype=torch.float32, device='cuda')
result = result.scatter_add(0, segment_ids, data)
return result
#----------------------------------------------------------------------------
# Matrix helpers.
#----------------------------------------------------------------------------
def fovx_to_fovy(fovx, aspect):
return np.arctan(np.tan(fovx / 2) / aspect) * 2.0
def focal_length_to_fovy(focal_length, sensor_height):
return 2 * np.arctan(0.5 * sensor_height / focal_length)
# Reworked so this matches gluPerspective / glm::perspective, using fovy
def perspective(fovy=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None):
y = np.tan(fovy / 2)
return torch.tensor([[1/(y*aspect), 0, 0, 0],
[ 0, 1/-y, 0, 0],
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)],
[ 0, 0, -1, 0]], dtype=torch.float32, device=device)
# Reworked so this matches gluPerspective / glm::perspective, using fovy
def perspective_offcenter(fovy, fraction, rx, ry, aspect=1.0, n=0.1, f=1000.0, device=None):
y = np.tan(fovy / 2)
# Full frustum
R, L = aspect*y, -aspect*y
T, B = y, -y
# Create a randomized sub-frustum
width = (R-L)*fraction
height = (T-B)*fraction
xstart = (R-L)*rx
ystart = (T-B)*ry
l = L + xstart
r = l + width
b = B + ystart
t = b + height
# https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix
return torch.tensor([[2/(r-l), 0, (r+l)/(r-l), 0],
[ 0, -2/(t-b), (t+b)/(t-b), 0],
[ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)],
[ 0, 0, -1, 0]], dtype=torch.float32, device=device)
def translate(x, y, z, device=None):
return torch.tensor([[1, 0, 0, x],
[0, 1, 0, y],
[0, 0, 1, z],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_x(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[1, 0, 0, 0],
[0, c,-s, 0],
[0, s, c, 0],
[0, 0, 0, 1]], dtype=torch.float32, device=device)
def rotate_y(a, device=None):
s, c = np.sin(a), np.cos(a)
return torch.tensor([[ c, 0, s, 0],
[ 0, 1, 0, 0],
[-s, 0, c, 0],
[ 0, 0, 0, 1]], dtype=torch.float32, device=device)
def scale(s, device=None):
return torch.tensor([[ s, 0, 0, 0],
[ 0, s, 0, 0],
[ 0, 0, s, 0],
[ 0, 0, 0, 1]], dtype=torch.float32, device=device)
def lookAt(eye, at, up):
a = eye - at
w = a / torch.linalg.norm(a)
u = torch.cross(up, w)
u = u / torch.linalg.norm(u)
v = torch.cross(w, u)
translate = torch.tensor([[1, 0, 0, -eye[0]],
[0, 1, 0, -eye[1]],
[0, 0, 1, -eye[2]],
[0, 0, 0, 1]], dtype=eye.dtype, device=eye.device)
rotate = torch.tensor([[u[0], u[1], u[2], 0],
[v[0], v[1], v[2], 0],
[w[0], w[1], w[2], 0],
[0, 0, 0, 1]], dtype=eye.dtype, device=eye.device)
return rotate @ translate
@torch.no_grad()
def random_rotation_translation(t, device=None):
m = np.random.normal(size=[3, 3])
m[1] = np.cross(m[0], m[2])
m[2] = np.cross(m[0], m[1])
m = m / np.linalg.norm(m, axis=1, keepdims=True)
m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
m[3, 3] = 1.0
m[:3, 3] = np.random.uniform(-t, t, size=[3])
return torch.tensor(m, dtype=torch.float32, device=device)
@torch.no_grad()
def random_rotation(device=None):
m = np.random.normal(size=[3, 3])
m[1] = np.cross(m[0], m[2])
m[2] = np.cross(m[0], m[1])
m = m / np.linalg.norm(m, axis=1, keepdims=True)
m = np.pad(m, [[0, 1], [0, 1]], mode='constant')
m[3, 3] = 1.0
m[:3, 3] = np.array([0,0,0]).astype(np.float32)
return torch.tensor(m, dtype=torch.float32, device=device)
#----------------------------------------------------------------------------
# Compute focal points of a set of lines using least squares.
# handy for poorly centered datasets
#----------------------------------------------------------------------------
def lines_focal(o, d):
d = safe_normalize(d)
I = torch.eye(3, dtype=o.dtype, device=o.device)
S = torch.sum(d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...], dim=0)
C = torch.sum((d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...]) @ o[..., None], dim=0).squeeze(1)
return torch.linalg.pinv(S) @ C
#----------------------------------------------------------------------------
# Cosine sample around a vector N
#----------------------------------------------------------------------------
@torch.no_grad()
def cosine_sample(N, size=None):
# construct local frame
N = N/torch.linalg.norm(N)
dx0 = torch.tensor([0, N[2], -N[1]], dtype=N.dtype, device=N.device)
dx1 = torch.tensor([-N[2], 0, N[0]], dtype=N.dtype, device=N.device)
dx = torch.where(dot(dx0, dx0) > dot(dx1, dx1), dx0, dx1)
#dx = dx0 if np.dot(dx0,dx0) > np.dot(dx1,dx1) else dx1
dx = dx / torch.linalg.norm(dx)
dy = torch.cross(N,dx)
dy = dy / torch.linalg.norm(dy)
# cosine sampling in local frame
if size is None:
phi = 2.0 * np.pi * np.random.uniform()
s = np.random.uniform()
else:
phi = 2.0 * np.pi * torch.rand(*size, 1, dtype=N.dtype, device=N.device)
s = torch.rand(*size, 1, dtype=N.dtype, device=N.device)
costheta = np.sqrt(s)
sintheta = np.sqrt(1.0 - s)
# cartesian vector in local space
x = np.cos(phi)*sintheta
y = np.sin(phi)*sintheta
z = costheta
# local to world
return dx*x + dy*y + N*z
#----------------------------------------------------------------------------
# Bilinear downsample by 2x.
#----------------------------------------------------------------------------
def bilinear_downsample(x : torch.tensor) -> torch.Tensor:
w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0
w = w.expand(x.shape[-1], 1, 4, 4)
x = torch.nn.functional.conv2d(x.permute(0, 3, 1, 2), w, padding=1, stride=2, groups=x.shape[-1])
return x.permute(0, 2, 3, 1)
#----------------------------------------------------------------------------
# Bilinear downsample log(spp) steps
#----------------------------------------------------------------------------
def bilinear_downsample(x : torch.tensor, spp) -> torch.Tensor:
w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0
g = x.shape[-1]
w = w.expand(g, 1, 4, 4)
x = x.permute(0, 3, 1, 2) # NHWC -> NCHW
steps = int(np.log2(spp))
for _ in range(steps):
xp = torch.nn.functional.pad(x, (1,1,1,1), mode='replicate')
x = torch.nn.functional.conv2d(xp, w, padding=0, stride=2, groups=g)
return x.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC
#----------------------------------------------------------------------------
# Singleton initialize GLFW
#----------------------------------------------------------------------------
_glfw_initialized = False
def init_glfw():
global _glfw_initialized
try:
import glfw
glfw.ERROR_REPORTING = 'raise'
glfw.default_window_hints()
glfw.window_hint(glfw.VISIBLE, glfw.FALSE)
test = glfw.create_window(8, 8, "Test", None, None) # Create a window and see if not initialized yet
except glfw.GLFWError as e:
if e.error_code == glfw.NOT_INITIALIZED:
glfw.init()
_glfw_initialized = True
#----------------------------------------------------------------------------
# Image display function using OpenGL.
#----------------------------------------------------------------------------
_glfw_window = None
def display_image(image, title=None):
# Import OpenGL
import OpenGL.GL as gl
import glfw
# Zoom image if requested.
image = np.asarray(image[..., 0:3]) if image.shape[-1] == 4 else np.asarray(image)
height, width, channels = image.shape
# Initialize window.
init_glfw()
if title is None:
title = 'Debug window'
global _glfw_window
if _glfw_window is None:
glfw.default_window_hints()
_glfw_window = glfw.create_window(width, height, title, None, None)
glfw.make_context_current(_glfw_window)
glfw.show_window(_glfw_window)
glfw.swap_interval(0)
else:
glfw.make_context_current(_glfw_window)
glfw.set_window_title(_glfw_window, title)
glfw.set_window_size(_glfw_window, width, height)
# Update window.
glfw.poll_events()
gl.glClearColor(0, 0, 0, 1)
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
gl.glWindowPos2f(0, 0)
gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1)
gl_format = {3: gl.GL_RGB, 2: gl.GL_RG, 1: gl.GL_LUMINANCE}[channels]
gl_dtype = {'uint8': gl.GL_UNSIGNED_BYTE, 'float32': gl.GL_FLOAT}[image.dtype.name]
gl.glDrawPixels(width, height, gl_format, gl_dtype, image[::-1])
glfw.swap_buffers(_glfw_window)
if glfw.window_should_close(_glfw_window):
return False
return True
#----------------------------------------------------------------------------
# Image save/load helper.
#----------------------------------------------------------------------------
def save_image(fn, x : np.ndarray):
try:
if os.path.splitext(fn)[1] == ".png":
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8), compress_level=3) # Low compression for faster saving
else:
imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8))
except:
print("WARNING: FAILED to save image %s" % fn)
def save_image_raw(fn, x : np.ndarray):
try:
imageio.imwrite(fn, x)
except:
print("WARNING: FAILED to save image %s" % fn)
def load_image_raw(fn) -> np.ndarray:
return imageio.imread(fn)
def load_image(fn) -> np.ndarray:
img = load_image_raw(fn)
if img.dtype == np.float32: # HDR image
return img
else: # LDR image
return img.astype(np.float32) / 255
#----------------------------------------------------------------------------
def time_to_text(x):
if x > 3600:
return "%.2f h" % (x / 3600)
elif x > 60:
return "%.2f m" % (x / 60)
else:
return "%.2f s" % x
#----------------------------------------------------------------------------
def checkerboard(res, checker_size) -> np.ndarray:
tiles_y = (res[0] + (checker_size*2) - 1) // (checker_size*2)
tiles_x = (res[1] + (checker_size*2) - 1) // (checker_size*2)
check = np.kron([[1, 0] * tiles_x, [0, 1] * tiles_x] * tiles_y, np.ones((checker_size, checker_size)))*0.33 + 0.33
check = check[:res[0], :res[1]]
return np.stack((check, check, check), axis=-1)