|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
import os |
|
import sys |
|
sys.path.insert(0, os.path.join(sys.path[0], '../..')) |
|
import renderutils as ru |
|
|
|
RES = 8 |
|
DTYPE = torch.float32 |
|
|
|
def tonemap_srgb(f): |
|
return torch.where(f > 0.0031308, torch.pow(torch.clamp(f, min=0.0031308), 1.0/2.4)*1.055 - 0.055, 12.92*f) |
|
|
|
def l1(output, target): |
|
x = torch.clamp(output, min=0, max=65535) |
|
r = torch.clamp(target, min=0, max=65535) |
|
x = tonemap_srgb(torch.log(x + 1)) |
|
r = tonemap_srgb(torch.log(r + 1)) |
|
return torch.nn.functional.l1_loss(x,r) |
|
|
|
def relative_loss(name, ref, cuda): |
|
ref = ref.float() |
|
cuda = cuda.float() |
|
print(name, torch.max(torch.abs(ref - cuda) / torch.abs(ref + 1e-7)).item()) |
|
|
|
def test_loss(loss, tonemapper): |
|
img_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) |
|
img_ref = img_cuda.clone().detach().requires_grad_(True) |
|
target_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) |
|
target_ref = target_cuda.clone().detach().requires_grad_(True) |
|
|
|
ref_loss = ru.image_loss(img_ref, target_ref, loss=loss, tonemapper=tonemapper, use_python=True) |
|
ref_loss.backward() |
|
|
|
cuda_loss = ru.image_loss(img_cuda, target_cuda, loss=loss, tonemapper=tonemapper) |
|
cuda_loss.backward() |
|
|
|
print("-------------------------------------------------------------") |
|
print(" Loss: %s, %s" % (loss, tonemapper)) |
|
print("-------------------------------------------------------------") |
|
|
|
relative_loss("res:", ref_loss, cuda_loss) |
|
relative_loss("img:", img_ref.grad, img_cuda.grad) |
|
relative_loss("target:", target_ref.grad, target_cuda.grad) |
|
|
|
|
|
test_loss('l1', 'none') |
|
test_loss('l1', 'log_srgb') |
|
test_loss('mse', 'log_srgb') |
|
test_loss('smape', 'none') |
|
test_loss('relmse', 'none') |
|
test_loss('mse', 'none') |