JiantaoLin
new
2fe3da0
raw
history blame
2.23 kB
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
import torch
import os
import sys
sys.path.insert(0, os.path.join(sys.path[0], '../..'))
import renderutils as ru
RES = 8
DTYPE = torch.float32
def tonemap_srgb(f):
return torch.where(f > 0.0031308, torch.pow(torch.clamp(f, min=0.0031308), 1.0/2.4)*1.055 - 0.055, 12.92*f)
def l1(output, target):
x = torch.clamp(output, min=0, max=65535)
r = torch.clamp(target, min=0, max=65535)
x = tonemap_srgb(torch.log(x + 1))
r = tonemap_srgb(torch.log(r + 1))
return torch.nn.functional.l1_loss(x,r)
def relative_loss(name, ref, cuda):
ref = ref.float()
cuda = cuda.float()
print(name, torch.max(torch.abs(ref - cuda) / torch.abs(ref + 1e-7)).item())
def test_loss(loss, tonemapper):
img_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
img_ref = img_cuda.clone().detach().requires_grad_(True)
target_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True)
target_ref = target_cuda.clone().detach().requires_grad_(True)
ref_loss = ru.image_loss(img_ref, target_ref, loss=loss, tonemapper=tonemapper, use_python=True)
ref_loss.backward()
cuda_loss = ru.image_loss(img_cuda, target_cuda, loss=loss, tonemapper=tonemapper)
cuda_loss.backward()
print("-------------------------------------------------------------")
print(" Loss: %s, %s" % (loss, tonemapper))
print("-------------------------------------------------------------")
relative_loss("res:", ref_loss, cuda_loss)
relative_loss("img:", img_ref.grad, img_cuda.grad)
relative_loss("target:", target_ref.grad, target_cuda.grad)
test_loss('l1', 'none')
test_loss('l1', 'log_srgb')
test_loss('mse', 'log_srgb')
test_loss('smape', 'none')
test_loss('relmse', 'none')
test_loss('mse', 'none')