PRM / app.py
LTT's picture
Update app.py
af9c065 verified
raw
history blame
21.4 kB
import spaces
import os
import subprocess
import shlex
subprocess.run(
shlex.split(
"pip install ./nvdiffrast-0.3.1.torch-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
)
)
# target_path = "/root/.cache/torch_extensions/py310_cu121"
# --target {target_path}
# os.makedirs(target_path, exist_ok=False)
subprocess.run(
shlex.split(
"pip install ./renderutils_plugin-1.0-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
)
)
# os.environ["CXX"] = os.popen("which g++").read().strip()
# os.environ["CC"] = os.popen("which gcc").read().strip()
os.environ['CUDA_LAUNCH_BLOCKING']="1"
os.environ['TORCH_USE_CUDA_DSA'] = "1"
import nvdiffrast.torch as dr
import imageio
import numpy as np
import torch
import rembg
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from einops import rearrange, repeat
from tqdm import tqdm
import glm
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from src.data.objaverse import load_mipmap
from src.utils import render_utils
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
FOV_to_intrinsics,
get_zero123plus_input_cameras,
get_circular_camera_poses,
)
from src.utils.mesh_util import save_obj, save_glb
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
import sys
import tempfile
from huggingface_hub import hf_hub_download
def install_cuda_toolkit():
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
print("==> finfish install")
import shutil
def find_cuda():
# Check if CUDA_HOME or CUDA_PATH environment variables are set
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home and os.path.exists(cuda_home):
return cuda_home
# Search for the nvcc executable in the system's PATH
nvcc_path = shutil.which('nvcc')
if nvcc_path:
# Remove the 'bin/nvcc' part to get the CUDA installation path
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
return cuda_path
return None
# import os
# # 确保 CUDA_HOME 设置正确
# os.environ["CUDA_HOME"] = "/usr/local/cuda"
# os.environ["PATH"] += os.pathsep + os.path.join(os.environ["CUDA_HOME"], "bin")
# os.environ["LD_LIBRARY_PATH"] = os.environ.get("LD_LIBRARY_PATH", "") + os.pathsep + os.path.join(os.environ["CUDA_HOME"], "lib64")
print(f"GPU: {torch.cuda.is_available()}")
if torch.cuda.is_available() and torch.cuda.device_count() >= 2:
device0 = torch.device('cuda:0')
device1 = torch.device('cuda:0')
else:
device0 = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device1 = device0
# Define the cache directory for model files
model_cache_dir = './ckpts/'
os.makedirs(model_cache_dir, exist_ok=True)
@spaces.GPU
def get_render_cameras(batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False, fov=50):
"""
Get the rendering camera parameters.
"""
train_res = [512, 512]
cam_near_far = [0.1, 1000.0]
fovy = np.deg2rad(fov)
proj_mtx = render_utils.perspective(fovy, train_res[1] / train_res[0], cam_near_far[0], cam_near_far[1])
all_mv = []
all_mvp = []
all_campos = []
if isinstance(elevation, tuple):
elevation_0 = np.deg2rad(elevation[0])
elevation_1 = np.deg2rad(elevation[1])
for i in range(M//2):
azimuth = 2 * np.pi * i / (M // 2)
z = radius * np.cos(azimuth) * np.sin(elevation_0)
x = radius * np.sin(azimuth) * np.sin(elevation_0)
y = radius * np.cos(elevation_0)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
all_mv.append(mv[None, ...].cuda())
all_mvp.append(mvp[None, ...].cuda())
all_campos.append(campos[None, ...].cuda())
for i in range(M//2):
azimuth = 2 * np.pi * i / (M // 2)
z = radius * np.cos(azimuth) * np.sin(elevation_1)
x = radius * np.sin(azimuth) * np.sin(elevation_1)
y = radius * np.cos(elevation_1)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
all_mv.append(mv[None, ...].cuda())
all_mvp.append(mvp[None, ...].cuda())
all_campos.append(campos[None, ...].cuda())
else:
# elevation = 90 - elevation
for i in range(M):
azimuth = 2 * np.pi * i / M
z = radius * np.cos(azimuth) * np.sin(elevation)
x = radius * np.sin(azimuth) * np.sin(elevation)
y = radius * np.cos(elevation)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
all_mv.append(mv[None, ...].cuda())
all_mvp.append(mvp[None, ...].cuda())
all_campos.append(campos[None, ...].cuda())
all_mv = torch.stack(all_mv, dim=0).unsqueeze(0).squeeze(2)
all_mvp = torch.stack(all_mvp, dim=0).unsqueeze(0).squeeze(2)
all_campos = torch.stack(all_campos, dim=0).unsqueeze(0).squeeze(2)
return all_mv, all_mvp, all_campos
@spaces.GPU
def render_frames(model, planes, render_cameras, camera_pos, env, materials, render_size=512, chunk_size=1, is_flexicubes=False):
"""
Render frames from triplanes.
"""
frames = []
albedos = []
pbr_spec_lights = []
pbr_diffuse_lights = []
normals = []
alphas = []
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
if is_flexicubes:
out = model.forward_geometry(
planes,
render_cameras[:, i:i+chunk_size],
camera_pos[:, i:i+chunk_size],
[[env]*chunk_size],
[[materials]*chunk_size],
render_size=render_size,
)
frame = out['pbr_img']
albedo = out['albedo']
pbr_spec_light = out['pbr_spec_light']
pbr_diffuse_light = out['pbr_diffuse_light']
normal = out['normal']
alpha = out['mask']
else:
frame = model.forward_synthesizer(
planes,
render_cameras[i],
render_size=render_size,
)['images_rgb']
frames.append(frame)
albedos.append(albedo)
pbr_spec_lights.append(pbr_spec_light)
pbr_diffuse_lights.append(pbr_diffuse_light)
normals.append(normal)
alphas.append(alpha)
frames = torch.cat(frames, dim=1)[0] # we suppose batch size is always 1
alphas = torch.cat(alphas, dim=1)[0]
albedos = torch.cat(albedos, dim=1)[0]
pbr_spec_lights = torch.cat(pbr_spec_lights, dim=1)[0]
pbr_diffuse_lights = torch.cat(pbr_diffuse_lights, dim=1)[0]
normals = torch.cat(normals, dim=0).permute(0,3,1,2)[:,:3]
return frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas
def images_to_video(images, output_path, fps=30):
# images: (N, C, H, W)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
frames = []
for i in range(images.shape[0]):
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
f"Frame shape mismatch: {frame.shape} vs {images.shape}"
assert frame.min() >= 0 and frame.max() <= 255, \
f"Frame value out of range: {frame.min()} ~ {frame.max()}"
frames.append(frame)
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')
###############################################################################
# Configuration.
###############################################################################
seed_everything(0)
config_path = 'configs/PRM_inference.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config
IS_FLEXICUBES = True
device = torch.device('cuda')
# load diffusion model
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="zero123plus",
torch_dtype=torch.float16,
cache_dir=model_cache_dir
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
# load custom white-background UNet
print('Loading custom white-background unet ...')
if os.path.exists(infer_config.unet_path):
unet_ckpt_path = infer_config.unet_path
else:
unet_ckpt_path = hf_hub_download(repo_id="LTT/xxx", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)
pipeline = pipeline.to(device)
# load reconstruction model
print('Loading reconstruction model ...')
model = instantiate_from_config(model_config)
if os.path.exists(infer_config.model_path):
model_ckpt_path = infer_config.model_path
else:
model_ckpt_path = hf_hub_download(repo_id="LTT/xxx", filename="final_ckpt.ckpt", repo_type="model")
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
print('Loading Finished!')
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def preprocess(input_image, do_remove_background):
rembg_session = rembg.new_session() if do_remove_background else None
if do_remove_background:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
return input_image
@spaces.GPU
def generate_mvs(input_image, sample_steps, sample_seed):
seed_everything(sample_seed)
# sampling
generator = torch.Generator(device=device0)
z123_image = pipeline(
input_image,
num_inference_steps=sample_steps,
generator=generator,
).images[0]
show_image = np.asarray(z123_image, dtype=np.uint8)
show_image = torch.from_numpy(show_image) # (960, 640, 3)
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
show_image = Image.fromarray(show_image.numpy())
return z123_image, show_image
def make_mesh(mesh_fpath, planes):
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
with torch.no_grad():
# get mesh
mesh_out = model.extract_mesh(
planes,
use_texture_map=False,
**infer_config,
)
vertices, faces, vertex_colors = mesh_out
vertices = vertices[:, [1, 2, 0]]
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
save_obj(vertices, faces, vertex_colors, mesh_fpath)
print(f"Mesh saved to {mesh_fpath}")
return mesh_fpath, mesh_glb_fpath
install_cuda_toolkit()
@spaces.GPU
def make3d(images):
os.environ['CUDA_HOME'] = '/usr/local/cuda-12.1'
os.environ['PATH'] += ':/usr/local/cuda-12.1/bin'
os.environ['LD_LIBRARY_PATH'] += ':/usr/local/cuda-12.1/lib64'
cuda_path = find_cuda()
if cuda_path:
print(f"CUDA installation found at: {cuda_path}")
else:
print("CUDA installation not found")
print(f"CUDA_HOME:{os.environ.get('CUDA_HOME')}")
print(f"CUDA_HOME exist:{os.path.exists(os.environ.get('CUDA_HOME'))}")
subprocess.run(['nvidia-smi']) # 测试 CUDA 是否可用
global model
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device, fovy=30.0, use_renderer=False)
model = model.eval()
images = np.asarray(images, dtype=np.float32) / 255.0
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=3.2, fov=30).to(device).to(device1)
all_mv, all_mvp, all_campos = get_render_cameras(
batch_size=1,
M=240,
radius=4.5,
elevation=(90, 60.0),
is_flexicubes=IS_FLEXICUBES,
fov=30
)
images = images.unsqueeze(0).to(device1)
images = v2.functional.resize(images, (512, 512), interpolation=3, antialias=True).clamp(0, 1)
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
print(mesh_fpath)
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
ENV = load_mipmap("env_mipmap/6")
materials = (0.0,0.9)
with torch.no_grad():
# get triplane
planes = model.forward_planes(images, input_cameras)
# # get video
chunk_size = 20 if IS_FLEXICUBES else 1
render_size = 512
frames = []
frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
model,
planes,
render_cameras=all_mvp,
camera_pos=all_campos,
env=ENV,
materials=materials,
render_size=render_size,
chunk_size=chunk_size,
is_flexicubes=IS_FLEXICUBES,
)
normals = (torch.nn.functional.normalize(normals) + 1) / 2
normals = normals * alphas + (1-alphas)
all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
images_to_video(
all_frames,
video_fpath,
fps=30,
)
print(f"Video saved to {video_fpath}")
mesh_fpath, mesh_glb_fpath = make_mesh(mesh_fpath, planes)
# return mesh_fpath, mesh_glb_fpath
return video_fpath, mesh_fpath, mesh_glb_fpath
import gradio as gr
_HEADER_ = '''
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/g3956/PRM' target='_blank'><b>PRM: Photometric Stereo based Large Reconstruction Model</b></a></h2>
**PRM** is a feed-forward framework for high-quality 3D mesh generation with fine-grained local details from a single image.
Code: <a href='https://github.com/g3956/PRM' target='_blank'>GitHub</a>.
'''
_CITE_ = r"""
If PRM is helpful, please help to ⭐ the <a href='https://github.com/g3956/PRM' target='_blank'>Github Repo</a>. Thanks!
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xu2024instantmesh,
title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models},
author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying},
journal={arXiv preprint arXiv:2404.07191},
year={2024}
}
```
📋 **License**
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/datasets/choosealicense/licenses/resolve/main/markdown/apache-2.0.md) for details.
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>jlin695@connect.hkust-gz.edu.cn</b>.
"""
with gr.Blocks() as demo:
gr.Markdown(_HEADER_)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Input Image",
image_mode="RGBA",
sources="upload",
width=256,
height=256,
type="pil",
elem_id="content_image",
)
processed_image = gr.Image(
label="Processed Image",
image_mode="RGBA",
width=256,
height=256,
type="pil",
interactive=False
)
with gr.Row():
with gr.Group():
do_remove_background = gr.Checkbox(
label="Remove Background", value=True
)
sample_seed = gr.Number(value=42, label="Seed Value", precision=0)
sample_steps = gr.Slider(
label="Sample Steps",
minimum=30,
maximum=100,
value=75,
step=5
)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
gr.Examples(
examples=[
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
],
inputs=[input_image],
label="Examples",
examples_per_page=20
)
with gr.Column():
with gr.Row():
with gr.Column():
mv_show_images = gr.Image(
label="Generated Multi-views",
type="pil",
width=379,
interactive=False
)
with gr.Column():
with gr.Column():
output_video = gr.Video(
label="video", format="mp4",
width=768,
autoplay=True,
interactive=False
)
with gr.Row():
with gr.Tab("OBJ"):
output_model_obj = gr.Model3D(
label="Output Model (OBJ Format)",
#width=768,
interactive=False,
)
gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
with gr.Tab("GLB"):
output_model_glb = gr.Model3D(
label="Output Model (GLB Format)",
#width=768,
interactive=False,
)
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
with gr.Row():
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
gr.Markdown(_CITE_)
mv_images = gr.State()
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image, do_remove_background],
outputs=[processed_image],
).success(
fn=generate_mvs,
inputs=[processed_image, sample_steps, sample_seed],
outputs=[mv_images, mv_show_images],
).success(
fn=make3d,
inputs=[mv_images],
# outputs=[output_model_obj, output_model_glb]
outputs=[output_video, output_model_obj, output_model_glb]
)
# demo.queue(max_size=10)
demo.launch()