diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..f6b1f326ca4ab7cf0c8798856f8fe0020ff82d58 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +*.png filter=lfs diff=lfs merge=lfs -text diff --git a/README copy.md b/README copy.md new file mode 100644 index 0000000000000000000000000000000000000000..69bec7b4a4c46b7f6e3ec0ef00304f59ad408784 --- /dev/null +++ b/README copy.md @@ -0,0 +1,111 @@ + + +
+ +# PRM: Photometric Stereo based Large Reconstruction Model + + + +
+ + + +
+ +--- + +An official implementation of PRM, a feed-forward framework for high-quality 3D mesh generation with photometric stereo images. + + +![image](https://github.com/g3956/PRM/blob/main/assets/teaser.png) + +# 🚩 Features +- [x] Release inference and training code. +- [x] Release model weights. +- [x] Release huggingface gradio demo. Please try it at [demo](https://huggingface.co/spaces/TencentARC/InstantMesh) link. +- [x] Release ComfyUI demo. + +# ⚙️ Dependencies and Installation + +We recommend using `Python>=3.10`, `PyTorch>=2.1.0`, and `CUDA>=12.1`. +```bash +conda create --name PRM python=3.10 +conda activate PRM +pip install -U pip + +# Ensure Ninja is installed +conda install Ninja + +# Install the correct version of CUDA +conda install cuda -c nvidia/label/cuda-12.1.0 + +# Install PyTorch and xformers +# You may need to install another xformers version if you use a different PyTorch version +pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu121 +pip install xformers==0.0.22.post7 + +# Install Triton +pip install triton + +# Install other requirements +pip install -r requirements.txt +``` + +# 💫 Inference + +## Download the pretrained model + +The pretrained model can be found [model card](https://huggingface.co/LTT/PRM). + +Our inference script will download the models automatically. Alternatively, you can manually download the models and put them under the `ckpts/` directory. + +# 💻 Training + +We provide our training code to facilitate future research. +For training data, we used filtered Objaverse for training. Before training, you need to pre-processe the environment maps and GLB files into formats that fit our dataloader. +For preprocessing GLB files, please run +```bash +# GLB files to OBJ files +python train.py --base configs/instant-mesh-large-train.yaml --gpus 0,1,2,3,4,5,6,7 --num_nodes 1 +``` +then +```bash +# OBJ files to mesh files that can be readed +python obj2mesh.py path_to_obj save_path +``` +For preprocessing environment maps, please run +```bash +# Pre-process environment maps +python light2map.py path_to_env save_path +``` + + +To train the sparse-view reconstruction models, please run: +```bash +# Training on Mesh representation +python train.py --base configs/PRM.yaml --gpus 0,1,2,3,4,5,6,7 --num_nodes 1 +``` +Note that you need to change to root_dir and light_dir to pathes that you save the preprocessed GLB files and environment maps. + +# :books: Citation + +If you find our work useful for your research or applications, please cite using this BibTeX: + +```BibTeX +@article{xu2024instantmesh, + title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models}, + author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying}, + journal={arXiv preprint arXiv:2404.07191}, + year={2024} +} +``` + +# 🤗 Acknowledgements + +We thank the authors of the following projects for their excellent contributions to 3D generative AI! + +- [FlexiCubes](https://github.com/nv-tlabs/FlexiCubes) +- [InstantMesh]([https://instant-3d.github.io/](https://github.com/TencentARC/InstantMesh)) + + + diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..2c9ee0ee442756d5ceb197e200b70d0284705170 --- /dev/null +++ b/app.py @@ -0,0 +1,499 @@ +import os +import imageio +import numpy as np +import torch +import rembg +from PIL import Image +from torchvision.transforms import v2 +from pytorch_lightning import seed_everything +from omegaconf import OmegaConf +from einops import rearrange, repeat +from tqdm import tqdm +import glm +from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler + +from src.data.objaverse import load_mipmap +from src.utils import render_utils +from src.utils.train_util import instantiate_from_config +from src.utils.camera_util import ( + FOV_to_intrinsics, + get_zero123plus_input_cameras, + get_circular_camera_poses, +) +from src.utils.mesh_util import save_obj, save_glb +from src.utils.infer_util import remove_background, resize_foreground, images_to_video + +import tempfile +from huggingface_hub import hf_hub_download + + +if torch.cuda.is_available() and torch.cuda.device_count() >= 2: + device0 = torch.device('cuda:0') + device1 = torch.device('cuda:0') +else: + device0 = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + device1 = device0 + +# Define the cache directory for model files +model_cache_dir = './ckpts/' +os.makedirs(model_cache_dir, exist_ok=True) + +def get_render_cameras(batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False, fov=50): + """ + Get the rendering camera parameters. + """ + train_res = [512, 512] + cam_near_far = [0.1, 1000.0] + fovy = np.deg2rad(fov) + proj_mtx = render_utils.perspective(fovy, train_res[1] / train_res[0], cam_near_far[0], cam_near_far[1]) + all_mv = [] + all_mvp = [] + all_campos = [] + if isinstance(elevation, tuple): + elevation_0 = np.deg2rad(elevation[0]) + elevation_1 = np.deg2rad(elevation[1]) + for i in range(M//2): + azimuth = 2 * np.pi * i / (M // 2) + z = radius * np.cos(azimuth) * np.sin(elevation_0) + x = radius * np.sin(azimuth) * np.sin(elevation_0) + y = radius * np.cos(elevation_0) + + eye = glm.vec3(x, y, z) + at = glm.vec3(0.0, 0.0, 0.0) + up = glm.vec3(0.0, 1.0, 0.0) + view_matrix = glm.lookAt(eye, at, up) + mv = torch.from_numpy(np.array(view_matrix)) + mvp = proj_mtx @ (mv) #w2c + campos = torch.linalg.inv(mv)[:3, 3] + all_mv.append(mv[None, ...].cuda()) + all_mvp.append(mvp[None, ...].cuda()) + all_campos.append(campos[None, ...].cuda()) + for i in range(M//2): + azimuth = 2 * np.pi * i / (M // 2) + z = radius * np.cos(azimuth) * np.sin(elevation_1) + x = radius * np.sin(azimuth) * np.sin(elevation_1) + y = radius * np.cos(elevation_1) + + eye = glm.vec3(x, y, z) + at = glm.vec3(0.0, 0.0, 0.0) + up = glm.vec3(0.0, 1.0, 0.0) + view_matrix = glm.lookAt(eye, at, up) + mv = torch.from_numpy(np.array(view_matrix)) + mvp = proj_mtx @ (mv) #w2c + campos = torch.linalg.inv(mv)[:3, 3] + all_mv.append(mv[None, ...].cuda()) + all_mvp.append(mvp[None, ...].cuda()) + all_campos.append(campos[None, ...].cuda()) + else: + # elevation = 90 - elevation + for i in range(M): + azimuth = 2 * np.pi * i / M + z = radius * np.cos(azimuth) * np.sin(elevation) + x = radius * np.sin(azimuth) * np.sin(elevation) + y = radius * np.cos(elevation) + + eye = glm.vec3(x, y, z) + at = glm.vec3(0.0, 0.0, 0.0) + up = glm.vec3(0.0, 1.0, 0.0) + view_matrix = glm.lookAt(eye, at, up) + mv = torch.from_numpy(np.array(view_matrix)) + mvp = proj_mtx @ (mv) #w2c + campos = torch.linalg.inv(mv)[:3, 3] + all_mv.append(mv[None, ...].cuda()) + all_mvp.append(mvp[None, ...].cuda()) + all_campos.append(campos[None, ...].cuda()) + all_mv = torch.stack(all_mv, dim=0).unsqueeze(0).squeeze(2) + all_mvp = torch.stack(all_mvp, dim=0).unsqueeze(0).squeeze(2) + all_campos = torch.stack(all_campos, dim=0).unsqueeze(0).squeeze(2) + return all_mv, all_mvp, all_campos + + +def render_frames(model, planes, render_cameras, camera_pos, env, materials, render_size=512, chunk_size=1, is_flexicubes=False): + """ + Render frames from triplanes. + """ + frames = [] + albedos = [] + pbr_spec_lights = [] + pbr_diffuse_lights = [] + normals = [] + alphas = [] + for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): + if is_flexicubes: + out = model.forward_geometry( + planes, + render_cameras[:, i:i+chunk_size], + camera_pos[:, i:i+chunk_size], + [[env]*chunk_size], + [[materials]*chunk_size], + render_size=render_size, + ) + frame = out['pbr_img'] + albedo = out['albedo'] + pbr_spec_light = out['pbr_spec_light'] + pbr_diffuse_light = out['pbr_diffuse_light'] + normal = out['normal'] + alpha = out['mask'] + else: + frame = model.forward_synthesizer( + planes, + render_cameras[i], + render_size=render_size, + )['images_rgb'] + frames.append(frame) + albedos.append(albedo) + pbr_spec_lights.append(pbr_spec_light) + pbr_diffuse_lights.append(pbr_diffuse_light) + normals.append(normal) + alphas.append(alpha) + + frames = torch.cat(frames, dim=1)[0] # we suppose batch size is always 1 + alphas = torch.cat(alphas, dim=1)[0] + albedos = torch.cat(albedos, dim=1)[0] + pbr_spec_lights = torch.cat(pbr_spec_lights, dim=1)[0] + pbr_diffuse_lights = torch.cat(pbr_diffuse_lights, dim=1)[0] + normals = torch.cat(normals, dim=0).permute(0,3,1,2)[:,:3] + return frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas + + + +def images_to_video(images, output_path, fps=30): + # images: (N, C, H, W) + os.makedirs(os.path.dirname(output_path), exist_ok=True) + frames = [] + for i in range(images.shape[0]): + frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) + assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ + f"Frame shape mismatch: {frame.shape} vs {images.shape}" + assert frame.min() >= 0 and frame.max() <= 255, \ + f"Frame value out of range: {frame.min()} ~ {frame.max()}" + frames.append(frame) + imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264') + + +############################################################################### +# Configuration. +############################################################################### + +seed_everything(0) + +config_path = 'configs/PRM_inference.yaml' +config = OmegaConf.load(config_path) +config_name = os.path.basename(config_path).replace('.yaml', '') +model_config = config.model_config +infer_config = config.infer_config + +IS_FLEXICUBES = True + +device = torch.device('cuda') + +# load diffusion model +print('Loading diffusion model ...') +pipeline = DiffusionPipeline.from_pretrained( + "sudo-ai/zero123plus-v1.2", + custom_pipeline="zero123plus", + torch_dtype=torch.float16, + cache_dir=model_cache_dir +) +pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( + pipeline.scheduler.config, timestep_spacing='trailing' +) + +# load custom white-background UNet +print('Loading custom white-background unet ...') +if os.path.exists(infer_config.unet_path): + unet_ckpt_path = infer_config.unet_path +else: + unet_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="diffusion_pytorch_model.bin", repo_type="model") +state_dict = torch.load(unet_ckpt_path, map_location='cpu') +pipeline.unet.load_state_dict(state_dict, strict=True) + +pipeline = pipeline.to(device) + +# load reconstruction model +print('Loading reconstruction model ...') +model = instantiate_from_config(model_config) +if os.path.exists(infer_config.model_path): + model_ckpt_path = infer_config.model_path +else: + model_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="final_ckpt.ckpt", repo_type="model") +state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] +state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')} +model.load_state_dict(state_dict, strict=True) + +model = model.to(device1) +if IS_FLEXICUBES: + model.init_flexicubes_geometry(device1, fovy=30.0) +model = model.eval() + +print('Loading Finished!') + + +def check_input_image(input_image): + if input_image is None: + raise gr.Error("No image uploaded!") + + +def preprocess(input_image, do_remove_background): + + rembg_session = rembg.new_session() if do_remove_background else None + if do_remove_background: + input_image = remove_background(input_image, rembg_session) + input_image = resize_foreground(input_image, 0.85) + + return input_image + + +def generate_mvs(input_image, sample_steps, sample_seed): + + seed_everything(sample_seed) + + # sampling + generator = torch.Generator(device=device0) + z123_image = pipeline( + input_image, + num_inference_steps=sample_steps, + generator=generator, + ).images[0] + + show_image = np.asarray(z123_image, dtype=np.uint8) + show_image = torch.from_numpy(show_image) # (960, 640, 3) + show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2) + show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3) + show_image = Image.fromarray(show_image.numpy()) + + return z123_image, show_image + + +def make_mesh(mesh_fpath, planes): + + mesh_basename = os.path.basename(mesh_fpath).split('.')[0] + mesh_dirname = os.path.dirname(mesh_fpath) + mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") + + with torch.no_grad(): + # get mesh + + mesh_out = model.extract_mesh( + planes, + use_texture_map=False, + **infer_config, + ) + + vertices, faces, vertex_colors = mesh_out + vertices = vertices[:, [1, 2, 0]] + + save_glb(vertices, faces, vertex_colors, mesh_glb_fpath) + save_obj(vertices, faces, vertex_colors, mesh_fpath) + + print(f"Mesh saved to {mesh_fpath}") + + return mesh_fpath, mesh_glb_fpath + + +def make3d(images): + + images = np.asarray(images, dtype=np.float32) / 255.0 + images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) + images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) + + input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=3.2, fov=30).to(device).to(device1) + all_mv, all_mvp, all_campos = get_render_cameras( + batch_size=1, + M=240, + radius=4.5, + elevation=(90, 60.0), + is_flexicubes=IS_FLEXICUBES, + fov=30 + ) + + images = images.unsqueeze(0).to(device1) + images = v2.functional.resize(images, (512, 512), interpolation=3, antialias=True).clamp(0, 1) + + mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name + print(mesh_fpath) + mesh_basename = os.path.basename(mesh_fpath).split('.')[0] + mesh_dirname = os.path.dirname(mesh_fpath) + video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") + ENV = load_mipmap("env_mipmap/6") + materials = (0.0,0.9) + with torch.no_grad(): + # get triplane + planes = model.forward_planes(images, input_cameras) + + # get video + chunk_size = 20 if IS_FLEXICUBES else 1 + render_size = 512 + + frames = [] + frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames( + model, + planes, + render_cameras=all_mvp, + camera_pos=all_campos, + env=ENV, + materials=materials, + render_size=render_size, + chunk_size=chunk_size, + is_flexicubes=IS_FLEXICUBES, + ) + normals = (torch.nn.functional.normalize(normals) + 1) / 2 + normals = normals * alphas + (1-alphas) + all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3) + + images_to_video( + all_frames, + video_fpath, + fps=30, + ) + + print(f"Video saved to {video_fpath}") + + mesh_fpath, mesh_glb_fpath = make_mesh(mesh_fpath, planes) + + return video_fpath, mesh_fpath, mesh_glb_fpath + + +import gradio as gr + +_HEADER_ = ''' +

Official 🤗 Gradio Demo

PRM: Photometric Stereo based Large Reconstruction Model

+ +**PRM** is a feed-forward framework for high-quality 3D mesh generation with fine-grained local details from a single image. + +Code: GitHub. Techenical report: ArXiv. +''' + +_CITE_ = r""" +If PRM is helpful, please help to ⭐ the Github Repo. Thanks! +--- +📝 **Citation** + +If you find our work useful for your research or applications, please cite using this bibtex: +```bibtex +@article{xu2024instantmesh, + title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models}, + author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying}, + journal={arXiv preprint arXiv:2404.07191}, + year={2024} +} +``` + +📋 **License** + +Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details. + +📧 **Contact** + +If you have any questions, feel free to open a discussion or contact us at jlin695@connect.hkust-gz.edu.cn. +""" + +with gr.Blocks() as demo: + gr.Markdown(_HEADER_) + with gr.Row(variant="panel"): + with gr.Column(): + with gr.Row(): + input_image = gr.Image( + label="Input Image", + image_mode="RGBA", + sources="upload", + width=256, + height=256, + type="pil", + elem_id="content_image", + ) + processed_image = gr.Image( + label="Processed Image", + image_mode="RGBA", + width=256, + height=256, + type="pil", + interactive=False + ) + with gr.Row(): + with gr.Group(): + do_remove_background = gr.Checkbox( + label="Remove Background", value=True + ) + sample_seed = gr.Number(value=42, label="Seed Value", precision=0) + + sample_steps = gr.Slider( + label="Sample Steps", + minimum=30, + maximum=100, + value=75, + step=5 + ) + + with gr.Row(): + submit = gr.Button("Generate", elem_id="generate", variant="primary") + + with gr.Row(variant="panel"): + gr.Examples( + examples=[ + os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) + ], + inputs=[input_image], + label="Examples", + examples_per_page=20 + ) + + with gr.Column(): + + with gr.Row(): + + with gr.Column(): + mv_show_images = gr.Image( + label="Generated Multi-views", + type="pil", + width=379, + interactive=False + ) + + with gr.Column(): + with gr.Column(): + output_video = gr.Video( + label="video", format="mp4", + width=768, + autoplay=True, + interactive=False + ) + + with gr.Row(): + with gr.Tab("OBJ"): + output_model_obj = gr.Model3D( + label="Output Model (OBJ Format)", + #width=768, + interactive=False, + ) + gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.") + with gr.Tab("GLB"): + output_model_glb = gr.Model3D( + label="Output Model (GLB Format)", + #width=768, + interactive=False, + ) + gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.") + + with gr.Row(): + gr.Markdown('''Try a different seed value if the result is unsatisfying (Default: 42).''') + + gr.Markdown(_CITE_) + mv_images = gr.State() + + submit.click(fn=check_input_image, inputs=[input_image]).success( + fn=preprocess, + inputs=[input_image, do_remove_background], + outputs=[processed_image], + ).success( + fn=generate_mvs, + inputs=[processed_image, sample_steps, sample_seed], + outputs=[mv_images, mv_show_images], + ).success( + fn=make3d, + inputs=[mv_images], + outputs=[output_video, output_model_obj, output_model_glb] + ) + +demo.queue(max_size=10) +demo.launch(server_port=1211) diff --git a/configs/PRM.yaml b/configs/PRM.yaml new file mode 100644 index 0000000000000000000000000000000000000000..05390efe2aa76948cc540efc05544d53410be1c4 --- /dev/null +++ b/configs/PRM.yaml @@ -0,0 +1,71 @@ +model: + base_learning_rate: 4.0e-06 + target: src.model_mesh.MVRecon + params: + mesh_save_root: Objaverse + init_ckpt: nerf_base.ckpt + input_size: 512 + render_size: 512 + use_tv_loss: true + sample_points: null + use_gt_albedo: false + + lrm_generator_config: + target: src.models.lrm_mesh.PRM + params: + encoder_feat_dim: 768 + encoder_freeze: false + encoder_model_name: facebook/dino-vitb16 + transformer_dim: 1024 + transformer_layers: 16 + transformer_heads: 16 + triplane_low_res: 32 + triplane_high_res: 64 + triplane_dim: 80 + rendering_samples_per_ray: 128 + grid_res: 128 + grid_scale: 2.1 + + +data: + target: src.data.objaverse.DataModuleFromConfig + params: + batch_size: 1 + num_workers: 8 + train: + target: src.data.objaverse.ObjaverseData + params: + root_dir: Objaverse + light_dir: env_mipmap + input_view_num: [6] + target_view_num: 6 + total_view_n: 18 + distance: 5.0 + fov: 30 + camera_random: true + validation: false + validation: + target: src.data.objaverse.ValidationData + params: + root_dir: Objaverse + input_view_num: 6 + input_image_size: 320 + fov: 30 + + +lightning: + modelcheckpoint: + params: + every_n_train_steps: 100 + save_top_k: -1 + save_last: true + callbacks: {} + + trainer: + benchmark: true + max_epochs: -1 + val_check_interval: 2000000000 + num_sanity_val_steps: 0 + accumulate_grad_batches: 8 + log_every_n_steps: 1 + check_val_every_n_epoch: null # if not set this, validation does not run diff --git a/configs/PRM_inference.yaml b/configs/PRM_inference.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d7c582300f18380c61c9463f612cfe98c707813a --- /dev/null +++ b/configs/PRM_inference.yaml @@ -0,0 +1,22 @@ +model_config: + target: src.models.lrm_mesh.PRM + params: + encoder_feat_dim: 768 + encoder_freeze: false + encoder_model_name: facebook/dino-vitb16 + transformer_dim: 1024 + transformer_layers: 16 + transformer_heads: 16 + triplane_low_res: 32 + triplane_high_res: 64 + triplane_dim: 80 + rendering_samples_per_ray: 128 + grid_res: 128 + grid_scale: 2.1 + + +infer_config: + unet_path: ckpts/diffusion_pytorch_model.bin + model_path: ckpts/final_ckpt.ckpt + texture_resolution: 2048 + render_resolution: 512 \ No newline at end of file diff --git a/light2map.py b/light2map.py new file mode 100644 index 0000000000000000000000000000000000000000..ab511f8c2ec292d522dcedee4369afce9b2402e3 --- /dev/null +++ b/light2map.py @@ -0,0 +1,95 @@ +import sys +from src.models.geometry.render import renderutils as ru +import torch +from src.models.geometry.render import util +import nvdiffrast.torch as dr +import os + +from PIL import Image +import torchvision.transforms.functional as TF +import torchvision.utils as vutils +import imageio +os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1" +LIGHT_MIN_RES = 16 + +MIN_ROUGHNESS = 0.04 +MAX_ROUGHNESS = 1.00 + +class cubemap_mip(torch.autograd.Function): + @staticmethod + def forward(ctx, cubemap): + return util.avg_pool_nhwc(cubemap, (2,2)) + + @staticmethod + def backward(ctx, dout): + res = dout.shape[1] * 2 + out = torch.zeros(6, res, res, dout.shape[-1], dtype=torch.float32, device="cuda") + for s in range(6): + gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"), + torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"), + indexing='ij') + v = util.safe_normalize(util.cube_to_dir(s, gx, gy)) + out[s, ...] = dr.texture(dout[None, ...] * 0.25, v[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube') + return out + +def build_mips(base, cutoff=0.99): + specular = [base] + while specular[-1].shape[1] > LIGHT_MIN_RES: + specular.append(cubemap_mip.apply(specular[-1])) + #specular.append(util.avg_pool_nhwc(specular[-1], (2,2))) + + diffuse = ru.diffuse_cubemap(specular[-1]) + + for idx in range(len(specular) - 1): + roughness = (idx / (len(specular) - 2)) * (MAX_ROUGHNESS - MIN_ROUGHNESS) + MIN_ROUGHNESS + specular[idx] = ru.specular_cubemap(specular[idx], roughness, cutoff) + specular[-1] = ru.specular_cubemap(specular[-1], 1.0, cutoff) + + return specular, diffuse + + +# Load from latlong .HDR file +def _load_env_hdr(fn, scale=1.0): + latlong_img = torch.tensor(util.load_image(fn), dtype=torch.float32, device='cuda')*scale + cubemap = util.latlong_to_cubemap(latlong_img, [512, 512]) + + specular, diffuse = build_mips(cubemap) + + return specular, diffuse + +def main(path_hdr, save_path_map): + all_envs = os.listdir(path_hdr) + + for env in all_envs: + env_path = os.path.join(path_hdr, env) + base_n = os.path.basename(env_path).split('.')[0] + + try: + if not os.path.exists(os.path.join(save_path_map, base_n)): + os.makedirs(os.path.join(save_path_map, base_n)) + specular, diffuse = _load_env_hdr(env_path) + for i in range(len(specular)): + tensor = specular[i] + torch.save(tensor, os.path.join(save_path_map, base_n, f'specular_{i}.pth')) + + torch.save(diffuse, os.path.join(save_path_map, base_n, 'diffuse.pth')) + except Exception as e: + print(f"Error processing {env}: {e}") + continue + +if __name__ == "__main__": + if len(sys.argv) != 3: + print("Usage: python script.py ") + sys.exit(1) + + path_hdr = sys.argv[1] + save_path_map = sys.argv[2] + + if not os.path.exists(path_hdr): + print(f"Error: path_hdr '{path_hdr}' does not exist.") + sys.exit(1) + + if not os.path.exists(save_path_map): + os.makedirs(save_path_map) + + main(path_hdr, save_path_map) \ No newline at end of file diff --git a/obj2mesh.py b/obj2mesh.py new file mode 100644 index 0000000000000000000000000000000000000000..fee8bfa759d6b401b0e01cece3a6c9ed9d434141 --- /dev/null +++ b/obj2mesh.py @@ -0,0 +1,121 @@ +import json +import os +import torch +import psutil +import gc +from tqdm import tqdm +from concurrent.futures import ThreadPoolExecutor, as_completed +from src.data.objaverse import load_obj +from src.utils import mesh +from src.utils.material import Material +import argparse + + +def bytes_to_megabytes(bytes): + return bytes / (1024 * 1024) + + +def bytes_to_gigabytes(bytes): + return bytes / (1024 * 1024 * 1024) + + +def print_memory_usage(stage): + process = psutil.Process(os.getpid()) + memory_info = process.memory_info() + allocated = torch.cuda.memory_allocated() / 1024**2 + cached = torch.cuda.memory_reserved() / 1024**2 + print( + f"[{stage}] Process memory: {memory_info.rss / 1024**2:.2f} MB, " + f"Allocated CUDA memory: {allocated:.2f} MB, Cached CUDA memory: {cached:.2f} MB" + ) + + +def process_obj(index, root_dir, final_save_dir, paths): + obj_path = os.path.join(root_dir, paths[index], paths[index] + '.obj') + mtl_path = os.path.join(root_dir, paths[index], paths[index] + '.mtl') + + if os.path.exists(os.path.join(final_save_dir, f"{paths[index]}.pth")): + return None + + try: + with torch.no_grad(): + ref_mesh, vertices, faces, normals, nfaces, texcoords, tfaces, uber_material = load_obj( + obj_path, return_attributes=True + ) + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + ref_mesh = mesh.compute_tangents(ref_mesh) + + with open(mtl_path, 'r') as file: + lines = file.readlines() + + if len(lines) >= 250: + return None + + final_mesh_attributes = { + "v_pos": ref_mesh.v_pos.detach().cpu(), + "v_nrm": ref_mesh.v_nrm.detach().cpu(), + "v_tex": ref_mesh.v_tex.detach().cpu(), + "v_tng": ref_mesh.v_tng.detach().cpu(), + "t_pos_idx": ref_mesh.t_pos_idx.detach().cpu(), + "t_nrm_idx": ref_mesh.t_nrm_idx.detach().cpu(), + "t_tex_idx": ref_mesh.t_tex_idx.detach().cpu(), + "t_tng_idx": ref_mesh.t_tng_idx.detach().cpu(), + "mat_dict": {key: ref_mesh.material[key] for key in ref_mesh.material.mat_keys}, + } + + torch.save(final_mesh_attributes, f"{final_save_dir}/{paths[index]}.pth") + print(f"==> Saved to {final_save_dir}/{paths[index]}.pth") + + del ref_mesh + torch.cuda.empty_cache() + return paths[index] + + except Exception as e: + print(f"Failed to process {paths[index]}: {e}") + return None + + finally: + gc.collect() + torch.cuda.empty_cache() + + +def main(root_dir, save_dir): + os.makedirs(save_dir, exist_ok=True) + finish_lists = os.listdir(save_dir) + paths = os.listdir(root_dir) + + valid_uid = [] + + print_memory_usage("Start") + + batch_size = 100 + num_batches = (len(paths) + batch_size - 1) // batch_size + + for batch in tqdm(range(num_batches)): + start_index = batch * batch_size + end_index = min(start_index + batch_size, len(paths)) + + with ThreadPoolExecutor(max_workers=8) as executor: + futures = [ + executor.submit(process_obj, index, root_dir, save_dir, paths) + for index in range(start_index, end_index) + ] + for future in as_completed(futures): + result = future.result() + if result is not None: + valid_uid.append(result) + + print_memory_usage(f"=====> After processing batch {batch + 1}") + torch.cuda.empty_cache() + gc.collect() + + print_memory_usage("End") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Process OBJ files and save final results.") + parser.add_argument("root_dir", type=str, help="Directory containing the root OBJ files.") + parser.add_argument("save_dir", type=str, help="Directory to save the processed results.") + args = parser.parse_args() + + main(args.root_dir, args.save_dir) diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..ca752a4c805901b0b7a12c97b170b620dcf2f1d5 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,21 @@ +pytorch-lightning==2.1.2 +gradio==3.41.2 +huggingface-hub +einops +omegaconf +torchmetrics +webdataset +accelerate +tensorboard +PyMCubes +trimesh +rembg +transformers==4.34.1 +diffusers==0.20.2 +bitsandbytes +imageio[ffmpeg] +xatlas +plyfile +git+https://github.com/NVlabs/nvdiffrast/ +PyGLM==2.7.0 +open3d \ No newline at end of file diff --git a/run.py b/run.py new file mode 100644 index 0000000000000000000000000000000000000000..887377a598379498d6b69cdcbd3cf3ff3e9374fc --- /dev/null +++ b/run.py @@ -0,0 +1,355 @@ +import os +import argparse +import glm +import numpy as np +import torch +import rembg +from PIL import Image +from torchvision.transforms import v2 +import torchvision +from pytorch_lightning import seed_everything +from omegaconf import OmegaConf +from einops import rearrange, repeat +from tqdm import tqdm +from huggingface_hub import hf_hub_download +from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler + +from src.data.objaverse import load_mipmap +from src.utils import render_utils +from src.utils.train_util import instantiate_from_config +from src.utils.camera_util import ( + FOV_to_intrinsics, + center_looking_at_camera_pose, + get_zero123plus_input_cameras, + get_circular_camera_poses, +) +from src.utils.mesh_util import save_obj, save_obj_with_mtl +from src.utils.infer_util import remove_background, resize_foreground, save_video + +def str_to_tuple(arg_str): + try: + return eval(arg_str) + except: + raise argparse.ArgumentTypeError("Tuple argument must be in the format (x, y)") + + +def get_render_cameras(batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False, fov=50): + """ + Get the rendering camera parameters. + """ + train_res = [512, 512] + cam_near_far = [0.1, 1000.0] + fovy = np.deg2rad(fov) + proj_mtx = render_utils.perspective(fovy, train_res[1] / train_res[0], cam_near_far[0], cam_near_far[1]) + all_mv = [] + all_mvp = [] + all_campos = [] + if isinstance(elevation, tuple): + elevation_0 = np.deg2rad(elevation[0]) + elevation_1 = np.deg2rad(elevation[1]) + for i in range(M//2): + azimuth = 2 * np.pi * i / (M // 2) + z = radius * np.cos(azimuth) * np.sin(elevation_0) + x = radius * np.sin(azimuth) * np.sin(elevation_0) + y = radius * np.cos(elevation_0) + + eye = glm.vec3(x, y, z) + at = glm.vec3(0.0, 0.0, 0.0) + up = glm.vec3(0.0, 1.0, 0.0) + view_matrix = glm.lookAt(eye, at, up) + mv = torch.from_numpy(np.array(view_matrix)) + mvp = proj_mtx @ (mv) #w2c + campos = torch.linalg.inv(mv)[:3, 3] + all_mv.append(mv[None, ...].cuda()) + all_mvp.append(mvp[None, ...].cuda()) + all_campos.append(campos[None, ...].cuda()) + for i in range(M//2): + azimuth = 2 * np.pi * i / (M // 2) + z = radius * np.cos(azimuth) * np.sin(elevation_1) + x = radius * np.sin(azimuth) * np.sin(elevation_1) + y = radius * np.cos(elevation_1) + + eye = glm.vec3(x, y, z) + at = glm.vec3(0.0, 0.0, 0.0) + up = glm.vec3(0.0, 1.0, 0.0) + view_matrix = glm.lookAt(eye, at, up) + mv = torch.from_numpy(np.array(view_matrix)) + mvp = proj_mtx @ (mv) #w2c + campos = torch.linalg.inv(mv)[:3, 3] + all_mv.append(mv[None, ...].cuda()) + all_mvp.append(mvp[None, ...].cuda()) + all_campos.append(campos[None, ...].cuda()) + else: + # elevation = 90 - elevation + for i in range(M): + azimuth = 2 * np.pi * i / M + z = radius * np.cos(azimuth) * np.sin(elevation) + x = radius * np.sin(azimuth) * np.sin(elevation) + y = radius * np.cos(elevation) + + eye = glm.vec3(x, y, z) + at = glm.vec3(0.0, 0.0, 0.0) + up = glm.vec3(0.0, 1.0, 0.0) + view_matrix = glm.lookAt(eye, at, up) + mv = torch.from_numpy(np.array(view_matrix)) + mvp = proj_mtx @ (mv) #w2c + campos = torch.linalg.inv(mv)[:3, 3] + all_mv.append(mv[None, ...].cuda()) + all_mvp.append(mvp[None, ...].cuda()) + all_campos.append(campos[None, ...].cuda()) + all_mv = torch.stack(all_mv, dim=0).unsqueeze(0).squeeze(2) + all_mvp = torch.stack(all_mvp, dim=0).unsqueeze(0).squeeze(2) + all_campos = torch.stack(all_campos, dim=0).unsqueeze(0).squeeze(2) + return all_mv, all_mvp, all_campos + +def render_frames(model, planes, render_cameras, camera_pos, env, materials, render_size=512, chunk_size=1, is_flexicubes=False): + """ + Render frames from triplanes. + """ + frames = [] + albedos = [] + pbr_spec_lights = [] + pbr_diffuse_lights = [] + normals = [] + alphas = [] + for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): + if is_flexicubes: + out = model.forward_geometry( + planes, + render_cameras[:, i:i+chunk_size], + camera_pos[:, i:i+chunk_size], + [[env]*chunk_size], + [[materials]*chunk_size], + render_size=render_size, + ) + frame = out['pbr_img'] + albedo = out['albedo'] + pbr_spec_light = out['pbr_spec_light'] + pbr_diffuse_light = out['pbr_diffuse_light'] + normal = out['normal'] + alpha = out['mask'] + else: + frame = model.forward_synthesizer( + planes, + render_cameras[i], + render_size=render_size, + )['images_rgb'] + frames.append(frame) + albedos.append(albedo) + pbr_spec_lights.append(pbr_spec_light) + pbr_diffuse_lights.append(pbr_diffuse_light) + normals.append(normal) + alphas.append(alpha) + + frames = torch.cat(frames, dim=1)[0] # we suppose batch size is always 1 + alphas = torch.cat(alphas, dim=1)[0] + albedos = torch.cat(albedos, dim=1)[0] + pbr_spec_lights = torch.cat(pbr_spec_lights, dim=1)[0] + pbr_diffuse_lights = torch.cat(pbr_diffuse_lights, dim=1)[0] + normals = torch.cat(normals, dim=0).permute(0,3,1,2)[:,:3] + return frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas + + +############################################################################### +# Arguments. +############################################################################### + +parser = argparse.ArgumentParser() +parser.add_argument('config', type=str, help='Path to config file.') +parser.add_argument('input_path', type=str, help='Path to input image or directory.') +parser.add_argument('--output_path', type=str, default='outputs/', help='Output directory.') +parser.add_argument('--model_ckpt_path', type=str, default="", help='Output directory.') +parser.add_argument('--diffusion_steps', type=int, default=100, help='Denoising Sampling steps.') +parser.add_argument('--seed', type=int, default=42, help='Random seed for sampling.') +parser.add_argument('--scale', type=float, default=1.0, help='Scale of generated object.') +parser.add_argument('--materials', type=str_to_tuple, default=(1.0, 0.1), help=' metallic and roughness') +parser.add_argument('--distance', type=float, default=4.5, help='Render distance.') +parser.add_argument('--fov', type=float, default=30, help='Render distance.') +parser.add_argument('--env_path', type=str, default='data/env_mipmap/2', help='environment map') +parser.add_argument('--view', type=int, default=6, choices=[4, 6], help='Number of input views.') +parser.add_argument('--no_rembg', action='store_true', help='Do not remove input background.') +parser.add_argument('--export_texmap', action='store_true', help='Export a mesh with texture map.') +parser.add_argument('--save_video', action='store_true', help='Save a circular-view video.') +args = parser.parse_args() +seed_everything(args.seed) + +############################################################################### +# Stage 0: Configuration. +############################################################################### + +config = OmegaConf.load(args.config) +config_name = os.path.basename(args.config).replace('.yaml', '') +model_config = config.model_config +infer_config = config.infer_config + +IS_FLEXICUBES = True + +device = torch.device('cuda') + +# load diffusion model +print('Loading diffusion model ...') +pipeline = DiffusionPipeline.from_pretrained( + "sudo-ai/zero123plus-v1.2", + custom_pipeline="zero123plus", + torch_dtype=torch.float16, +) +pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( + pipeline.scheduler.config, timestep_spacing='trailing' +) + +# load custom white-background UNet +print('Loading custom white-background unet ...') +if os.path.exists(infer_config.unet_path): + unet_ckpt_path = infer_config.unet_path +else: + unet_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="diffusion_pytorch_model.bin", repo_type="model") +state_dict = torch.load(unet_ckpt_path, map_location='cpu') +pipeline.unet.load_state_dict(state_dict, strict=True) + +pipeline = pipeline.to(device) + +# load reconstruction model +print('Loading reconstruction model ...') +model = instantiate_from_config(model_config) +if os.path.exists(infer_config.model_path): + model_ckpt_path = infer_config.model_path +else: + model_ckpt_path = hf_hub_download(repo_id="LTT/PRM", filename="final_ckpt.ckpt", repo_type="model") +state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] +state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')} +model.load_state_dict(state_dict, strict=True) + +model = model.to(device) +if IS_FLEXICUBES: + model.init_flexicubes_geometry(device, fovy=50.0) +model = model.eval() + +# make output directories +image_path = os.path.join(args.output_path, config_name, 'images') +mesh_path = os.path.join(args.output_path, config_name, 'meshes') +video_path = os.path.join(args.output_path, config_name, 'videos') +os.makedirs(image_path, exist_ok=True) +os.makedirs(mesh_path, exist_ok=True) +os.makedirs(video_path, exist_ok=True) + +# process input files +if os.path.isdir(args.input_path): + input_files = [ + os.path.join(args.input_path, file) + for file in os.listdir(args.input_path) + if file.endswith('.png') or file.endswith('.jpg') or file.endswith('.webp') + ] +else: + input_files = [args.input_path] +print(f'Total number of input images: {len(input_files)}') + +############################################################################### +# Stage 1: Multiview generation. +############################################################################### + +rembg_session = None if args.no_rembg else rembg.new_session() + +outputs = [] +for idx, image_file in enumerate(input_files): + name = os.path.basename(image_file).split('.')[0] + print(f'[{idx+1}/{len(input_files)}] Imagining {name} ...') + + # remove background optionally + input_image = Image.open(image_file) + if not args.no_rembg: + input_image = remove_background(input_image, rembg_session) + input_image = resize_foreground(input_image, 0.85) + # sampling + output_image = pipeline( + input_image, + num_inference_steps=args.diffusion_steps, + ).images[0] + print(f"Image saved to {os.path.join(image_path, f'{name}.png')}") + + images = np.asarray(output_image, dtype=np.float32) / 255.0 + images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) + images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) + torchvision.utils.save_image(images, os.path.join(image_path, f'{name}.png')) + sample = {'name': name, 'images': images} + +# delete pipeline to save memory +# del pipeline + +############################################################################### +# Stage 2: Reconstruction. +############################################################################### + + input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=3.2*args.scale, fov=30).to(device) + chunk_size = 20 if IS_FLEXICUBES else 1 + +# for idx, sample in enumerate(outputs): + name = sample['name'] + print(f'[{idx+1}/{len(outputs)}] Creating {name} ...') + + images = sample['images'].unsqueeze(0).to(device) + images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1) + + with torch.no_grad(): + # get triplane + planes = model.forward_planes(images, input_cameras) + + mesh_path_idx = os.path.join(mesh_path, f'{name}.obj') + + mesh_out = model.extract_mesh( + planes, + use_texture_map=args.export_texmap, + **infer_config, + ) + if args.export_texmap: + vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out + save_obj_with_mtl( + vertices.data.cpu().numpy(), + uvs.data.cpu().numpy(), + faces.data.cpu().numpy(), + mesh_tex_idx.data.cpu().numpy(), + tex_map.permute(1, 2, 0).data.cpu().numpy(), + mesh_path_idx, + ) + else: + vertices, faces, vertex_colors = mesh_out + save_obj(vertices, faces, vertex_colors, mesh_path_idx) + print(f"Mesh saved to {mesh_path_idx}") + + render_size = 512 + if args.save_video: + video_path_idx = os.path.join(video_path, f'{name}.mp4') + render_size = infer_config.render_resolution + ENV = load_mipmap(args.env_path) + materials = args.materials + + all_mv, all_mvp, all_campos = get_render_cameras( + batch_size=1, + M=240, + radius=args.distance, + elevation=(90, 60.0), + is_flexicubes=IS_FLEXICUBES, + fov=args.fov + ) + + frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames( + model, + planes, + render_cameras=all_mvp, + camera_pos=all_campos, + env=ENV, + materials=materials, + render_size=render_size, + chunk_size=chunk_size, + is_flexicubes=IS_FLEXICUBES, + ) + normals = (torch.nn.functional.normalize(normals) + 1) / 2 + normals = normals * alphas + (1-alphas) + all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3) + + # breakpoint() + save_video( + all_frames, + video_path_idx, + fps=30, + ) + print(f"Video saved to {video_path_idx}") diff --git a/run.sh b/run.sh new file mode 100644 index 0000000000000000000000000000000000000000..8c58044024567db4a2b6cbd601713b361840653b --- /dev/null +++ b/run.sh @@ -0,0 +1,7 @@ +python run.py configs/PRM_inference.yaml examples/ \ +--seed 10 \ +--materials "(0.0, 0.9)" \ +--env_path "./env_mipmap/6" \ +--output_path "output/" \ +--save_video \ +--export_texmap \ diff --git a/run_hpc.sh b/run_hpc.sh new file mode 100644 index 0000000000000000000000000000000000000000..1dcb0ef0df42f3366612b31c154501a52e9de359 --- /dev/null +++ b/run_hpc.sh @@ -0,0 +1,16 @@ +source /hpc2ssd/softwares/anaconda3/bin/activate instantmesh +module load cuda/12.1 compilers/gcc-11.1.0 compilers/icc-2023.1.0 cmake/3.27.0 +export CXX=$(which g++) +export CC=$(which gcc) +export CPLUS_INCLUDE_PATH=/hpc2ssd/softwares/cuda/cuda-12.1/targets/x86_64-linux/include:$CPLUS_INCLUDE_PATH +export CUDA_LAUNCH_BLOCKING=1 +export NCCL_TIMEOUT=3600 +export CUDA_VISIBLE_DEVICES="0" +# python app.py +python run.py configs/PRM_inference.yaml examples/恐龙套装.webp \ +--seed 10 \ +--materials "(0.0, 0.9)" \ +--env_path "./env_mipmap/6" \ +--output_path "output/" \ +--save_video \ +--export_texmap \ diff --git a/src/__init__.py b/src/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/__pycache__/__init__.cpython-310.pyc b/src/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7f3ba6c9b67345f1ea51123db3bebc2a6d3594c9 Binary files /dev/null and b/src/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/data/__init__.py b/src/data/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/data/__pycache__/__init__.cpython-310.pyc b/src/data/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c8f27da087fdfd7abc81aad1295c42f20c50d526 Binary files /dev/null and b/src/data/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/data/__pycache__/objaverse.cpython-310.pyc b/src/data/__pycache__/objaverse.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bf959d1b8a52da20dfb28a95915c2e0fb06b834a Binary files /dev/null and b/src/data/__pycache__/objaverse.cpython-310.pyc differ diff --git a/src/data/bsdf_256_256.bin b/src/data/bsdf_256_256.bin new file mode 100644 index 0000000000000000000000000000000000000000..feb212d2f9a623c0569fe26ec97a0c244cd7729e Binary files /dev/null and b/src/data/bsdf_256_256.bin differ diff --git a/src/data/objaverse.py b/src/data/objaverse.py new file mode 100644 index 0000000000000000000000000000000000000000..a919cab54edd8f33a58a637208c754f98884df92 --- /dev/null +++ b/src/data/objaverse.py @@ -0,0 +1,509 @@ +import os, sys +import math +import json +import glm +from pathlib import Path + +import random +import numpy as np +from PIL import Image +import webdataset as wds +import pytorch_lightning as pl +import sys +from src.utils import obj, render_utils +import torch +import torch.nn.functional as F +from torch.utils.data import Dataset +from torch.utils.data.distributed import DistributedSampler +import random +import itertools +from src.utils.train_util import instantiate_from_config +from src.utils.camera_util import ( + FOV_to_intrinsics, + center_looking_at_camera_pose, + get_circular_camera_poses, +) +os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1" +import re + +def spherical_camera_pose(azimuths: np.ndarray, elevations: np.ndarray, radius=2.5): + azimuths = np.deg2rad(azimuths) + elevations = np.deg2rad(elevations) + + xs = radius * np.cos(elevations) * np.cos(azimuths) + ys = radius * np.cos(elevations) * np.sin(azimuths) + zs = radius * np.sin(elevations) + + cam_locations = np.stack([xs, ys, zs], axis=-1) + cam_locations = torch.from_numpy(cam_locations).float() + + c2ws = center_looking_at_camera_pose(cam_locations) + return c2ws + +def find_matching_files(base_path, idx): + formatted_idx = '%03d' % idx + pattern = re.compile(r'^%s_\d+\.png$' % formatted_idx) + matching_files = [] + + if os.path.exists(base_path): + for filename in os.listdir(base_path): + if pattern.match(filename): + matching_files.append(filename) + + return os.path.join(base_path, matching_files[0]) + +def load_mipmap(env_path): + diffuse_path = os.path.join(env_path, "diffuse.pth") + diffuse = torch.load(diffuse_path, map_location=torch.device('cpu')) + + specular = [] + for i in range(6): + specular_path = os.path.join(env_path, f"specular_{i}.pth") + specular_tensor = torch.load(specular_path, map_location=torch.device('cpu')) + specular.append(specular_tensor) + return [specular, diffuse] + +def convert_to_white_bg(image, write_bg=True): + alpha = image[:, :, 3:] + if write_bg: + return image[:, :, :3] * alpha + 1. * (1 - alpha) + else: + return image[:, :, :3] * alpha + +def load_obj(path, return_attributes=False, scale_factor=1.0): + return obj.load_obj(path, clear_ks=True, mtl_override=None, return_attributes=return_attributes, scale_factor=scale_factor) + +def custom_collate_fn(batch): + return batch + + +def collate_fn_wrapper(batch): + return custom_collate_fn(batch) + +class DataModuleFromConfig(pl.LightningDataModule): + def __init__( + self, + batch_size=8, + num_workers=4, + train=None, + validation=None, + test=None, + **kwargs, + ): + super().__init__() + + self.batch_size = batch_size + self.num_workers = num_workers + + self.dataset_configs = dict() + if train is not None: + self.dataset_configs['train'] = train + if validation is not None: + self.dataset_configs['validation'] = validation + if test is not None: + self.dataset_configs['test'] = test + + def setup(self, stage): + + if stage in ['fit']: + self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs) + else: + raise NotImplementedError + + def custom_collate_fn(self, batch): + collated_batch = {} + for key in batch[0].keys(): + if key == 'input_env' or key == 'target_env': + collated_batch[key] = [d[key] for d in batch] + else: + collated_batch[key] = torch.stack([d[key] for d in batch], dim=0) + return collated_batch + + def convert_to_white_bg(self, image): + alpha = image[:, :, 3:] + return image[:, :, :3] * alpha + 1. * (1 - alpha) + + def load_obj(self, path): + return obj.load_obj(path, clear_ks=True, mtl_override=None) + + def train_dataloader(self): + + sampler = DistributedSampler(self.datasets['train']) + return wds.WebLoader(self.datasets['train'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler, collate_fn=collate_fn_wrapper) + + def val_dataloader(self): + + sampler = DistributedSampler(self.datasets['validation']) + return wds.WebLoader(self.datasets['validation'], batch_size=1, num_workers=self.num_workers, shuffle=False, sampler=sampler, collate_fn=collate_fn_wrapper) + + def test_dataloader(self): + + return wds.WebLoader(self.datasets['test'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False) + + +class ObjaverseData(Dataset): + def __init__(self, + root_dir='Objaverse_highQuality', + light_dir= 'env_mipmap', + input_view_num=6, + target_view_num=4, + total_view_n=18, + distance=3.5, + fov=50, + camera_random=False, + validation=False, + ): + self.root_dir = Path(root_dir) + self.light_dir = light_dir + self.all_env_name = [] + for temp_dir in os.listdir(light_dir): + if os.listdir(os.path.join(self.light_dir, temp_dir)): + self.all_env_name.append(temp_dir) + + self.input_view_num = input_view_num + self.target_view_num = target_view_num + self.total_view_n = total_view_n + self.fov = fov + self.camera_random = camera_random + + self.train_res = [512, 512] + self.cam_near_far = [0.1, 1000.0] + self.fov_rad = np.deg2rad(fov) + self.fov_deg = fov + self.spp = 1 + self.cam_radius = distance + self.layers = 1 + + numbers = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] + self.combinations = list(itertools.product(numbers, repeat=2)) + + self.paths = os.listdir(self.root_dir) + + # with open("BJ_Mesh_list.json", 'r') as file: + # self.paths = json.load(file) + + print('total training object num:', len(self.paths)) + + self.depth_scale = 6.0 + + total_objects = len(self.paths) + print('============= length of dataset %d =============' % total_objects) + + def __len__(self): + return len(self.paths) + + def load_obj(self, path): + return obj.load_obj(path, clear_ks=True, mtl_override=None) + + def sample_spherical(self, phi, theta, cam_radius): + theta = np.deg2rad(theta) + phi = np.deg2rad(phi) + + z = cam_radius * np.cos(phi) * np.sin(theta) + x = cam_radius * np.sin(phi) * np.sin(theta) + y = cam_radius * np.cos(theta) + + return x, y, z + + def _random_scene(self, cam_radius, fov_rad): + iter_res = self.train_res + proj_mtx = render_utils.perspective(fov_rad, iter_res[1] / iter_res[0], self.cam_near_far[0], self.cam_near_far[1]) + + azimuths = random.uniform(0, 360) + elevations = random.uniform(30, 150) + mv_embedding = spherical_camera_pose(azimuths, 90-elevations, cam_radius) + x, y, z = self.sample_spherical(azimuths, elevations, cam_radius) + eye = glm.vec3(x, y, z) + at = glm.vec3(0.0, 0.0, 0.0) + up = glm.vec3(0.0, 1.0, 0.0) + view_matrix = glm.lookAt(eye, at, up) + mv = torch.from_numpy(np.array(view_matrix)) + mvp = proj_mtx @ (mv) #w2c + campos = torch.linalg.inv(mv)[:3, 3] + return mv[None, ...], mvp[None, ...], campos[None, ...], mv_embedding[None, ...], iter_res, self.spp # Add batch dimension + + def load_im(self, path, color): + ''' + replace background pixel with random color in rendering + ''' + pil_img = Image.open(path) + + image = np.asarray(pil_img, dtype=np.float32) / 255. + alpha = image[:, :, 3:] + image = image[:, :, :3] * alpha + color * (1 - alpha) + + image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float() + alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float() + return image, alpha + + def load_albedo(self, path, color, mask): + ''' + replace background pixel with random color in rendering + ''' + pil_img = Image.open(path) + + image = np.asarray(pil_img, dtype=np.float32) / 255. + image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float() + + color = torch.ones_like(image) + image = image * mask + color * (1 - mask) + return image + + def convert_to_white_bg(self, image): + alpha = image[:, :, 3:] + return image[:, :, :3] * alpha + 1. * (1 - alpha) + + def calculate_fov(self, initial_distance, initial_fov, new_distance): + initial_fov_rad = math.radians(initial_fov) + + height = 2 * initial_distance * math.tan(initial_fov_rad / 2) + + new_fov_rad = 2 * math.atan(height / (2 * new_distance)) + + new_fov = math.degrees(new_fov_rad) + + return new_fov + + def __getitem__(self, index): + obj_path = os.path.join(self.root_dir, self.paths[index]) + mesh_attributes = torch.load(obj_path, map_location=torch.device('cpu')) + pose_list = [] + env_list = [] + material_list = [] + camera_pos = [] + c2w_list = [] + camera_embedding_list = [] + random_env = False + random_mr = False + if random.random() > 0.5: + random_env = True + if random.random() > 0.5: + random_mr = True + selected_env = random.randint(0, len(self.all_env_name)-1) + materials = random.choice(self.combinations) + if self.camera_random: + random_perturbation = random.uniform(-1.5, 1.5) + cam_radius = self.cam_radius + random_perturbation + fov_deg = self.calculate_fov(initial_distance=self.cam_radius, initial_fov=self.fov_deg, new_distance=cam_radius) + fov_rad = np.deg2rad(fov_deg) + else: + cam_radius = self.cam_radius + fov_rad = self.fov_rad + fov_deg = self.fov_deg + + if len(self.input_view_num) >= 1: + input_view_num = random.choice(self.input_view_num) + else: + input_view_num = self.input_view_num + for _ in range(input_view_num + self.target_view_num): + mv, mvp, campos, mv_mebedding, iter_res, iter_spp = self._random_scene(cam_radius, fov_rad) + if random_env: + selected_env = random.randint(0, len(self.all_env_name)-1) + env_path = os.path.join(self.light_dir, self.all_env_name[selected_env]) + env = load_mipmap(env_path) + if random_mr: + materials = random.choice(self.combinations) + pose_list.append(mvp) + camera_pos.append(campos) + c2w_list.append(mv) + env_list.append(env) + material_list.append(materials) + camera_embedding_list.append(mv_mebedding) + data = { + 'mesh_attributes': mesh_attributes, + 'input_view_num': input_view_num, + 'target_view_num': self.target_view_num, + 'obj_path': obj_path, + 'pose_list': pose_list, + 'camera_pos': camera_pos, + 'c2w_list': c2w_list, + 'env_list': env_list, + 'material_list': material_list, + 'camera_embedding_list': camera_embedding_list, + 'fov_deg':fov_deg, + 'raduis': cam_radius + } + + return data + +class ValidationData(Dataset): + def __init__(self, + root_dir='objaverse/', + input_view_num=6, + input_image_size=320, + fov=30, + ): + self.root_dir = Path(root_dir) + self.input_view_num = input_view_num + self.input_image_size = input_image_size + self.fov = fov + self.light_dir = 'env_mipmap' + + # with open('Mesh_list.json') as f: + # filtered_dict = json.load(f) + + self.paths = os.listdir(self.root_dir) + + # self.paths = filtered_dict + print('============= length of dataset %d =============' % len(self.paths)) + + cam_distance = 4.0 + azimuths = np.array([30, 90, 150, 210, 270, 330]) + elevations = np.array([20, -10, 20, -10, 20, -10]) + azimuths = np.deg2rad(azimuths) + elevations = np.deg2rad(elevations) + + x = cam_distance * np.cos(elevations) * np.cos(azimuths) + y = cam_distance * np.cos(elevations) * np.sin(azimuths) + z = cam_distance * np.sin(elevations) + + cam_locations = np.stack([x, y, z], axis=-1) + cam_locations = torch.from_numpy(cam_locations).float() + c2ws = center_looking_at_camera_pose(cam_locations) + self.c2ws = c2ws.float() + self.Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(6, 1, 1).float() + + render_c2ws = get_circular_camera_poses(M=8, radius=cam_distance, elevation=20.0) + render_Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(render_c2ws.shape[0], 1, 1) + self.render_c2ws = render_c2ws.float() + self.render_Ks = render_Ks.float() + + def __len__(self): + return len(self.paths) + + def load_im(self, path, color): + ''' + replace background pixel with random color in rendering + ''' + pil_img = Image.open(path) + pil_img = pil_img.resize((self.input_image_size, self.input_image_size), resample=Image.BICUBIC) + + image = np.asarray(pil_img, dtype=np.float32) / 255. + if image.shape[-1] == 4: + alpha = image[:, :, 3:] + image = image[:, :, :3] * alpha + color * (1 - alpha) + else: + alpha = np.ones_like(image[:, :, :1]) + + image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float() + alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float() + return image, alpha + + def load_mat(self, path, color): + ''' + replace background pixel with random color in rendering + ''' + pil_img = Image.open(path) + pil_img = pil_img.resize((384,384), resample=Image.BICUBIC) + + image = np.asarray(pil_img, dtype=np.float32) / 255. + if image.shape[-1] == 4: + alpha = image[:, :, 3:] + image = image[:, :, :3] * alpha + color * (1 - alpha) + else: + alpha = np.ones_like(image[:, :, :1]) + + image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float() + alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float() + return image, alpha + + def load_albedo(self, path, color, mask): + ''' + replace background pixel with random color in rendering + ''' + pil_img = Image.open(path) + pil_img = pil_img.resize((self.input_image_size, self.input_image_size), resample=Image.BICUBIC) + + image = np.asarray(pil_img, dtype=np.float32) / 255. + image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float() + + color = torch.ones_like(image) + image = image * mask + color * (1 - mask) + return image + + def __getitem__(self, index): + + # load data + input_image_path = os.path.join(self.root_dir, self.paths[index]) + + '''background color, default: white''' + bkg_color = [1.0, 1.0, 1.0] + + image_list = [] + albedo_list = [] + alpha_list = [] + specular_list = [] + diffuse_list = [] + metallic_list = [] + roughness_list = [] + + exist_comb_list = [] + for subfolder in os.listdir(input_image_path): + found_numeric_subfolder=False + subfolder_path = os.path.join(input_image_path, subfolder) + if os.path.isdir(subfolder_path) and '_' in subfolder and 'specular' not in subfolder and 'diffuse' not in subfolder: + try: + parts = subfolder.split('_') + float(parts[0]) # 尝试将分隔符前后的字符串转换为浮点数 + float(parts[1]) + found_numeric_subfolder = True + except ValueError: + continue + if found_numeric_subfolder: + exist_comb_list.append(subfolder) + + selected_one_comb = random.choice(exist_comb_list) + + + for idx in range(self.input_view_num): + img_path = find_matching_files(os.path.join(input_image_path, selected_one_comb, 'rgb'), idx) + albedo_path = img_path.replace('rgb', 'albedo') + metallic_path = img_path.replace('rgb', 'metallic') + roughness_path = img_path.replace('rgb', 'roughness') + + image, alpha = self.load_im(img_path, bkg_color) + albedo = self.load_albedo(albedo_path, bkg_color, alpha) + metallic,_ = self.load_mat(metallic_path, bkg_color) + roughness,_ = self.load_mat(roughness_path, bkg_color) + + light_num = os.path.basename(img_path).split('_')[1].split('.')[0] + light_path = os.path.join(self.light_dir, str(int(light_num)+1)) + + specular, diffuse = load_mipmap(light_path) + + image_list.append(image) + alpha_list.append(alpha) + albedo_list.append(albedo) + metallic_list.append(metallic) + roughness_list.append(roughness) + specular_list.append(specular) + diffuse_list.append(diffuse) + + images = torch.stack(image_list, dim=0).float() + alphas = torch.stack(alpha_list, dim=0).float() + albedo = torch.stack(albedo_list, dim=0).float() + metallic = torch.stack(metallic_list, dim=0).float() + roughness = torch.stack(roughness_list, dim=0).float() + + data = { + 'input_images': images, + 'input_alphas': alphas, + 'input_c2ws': self.c2ws, + 'input_Ks': self.Ks, + + 'input_albedos': albedo[:self.input_view_num], + 'input_metallics': metallic[:self.input_view_num], + 'input_roughness': roughness[:self.input_view_num], + + 'specular': specular_list[:self.input_view_num], + 'diffuse': diffuse_list[:self.input_view_num], + + 'render_c2ws': self.render_c2ws, + 'render_Ks': self.render_Ks, + } + return data + + +if __name__ == '__main__': + dataset = ObjaverseData() + dataset.new(1) diff --git a/src/model_mesh.py b/src/model_mesh.py new file mode 100644 index 0000000000000000000000000000000000000000..c3248d36b1affc06b913b440af5994bcbdc3d1a0 --- /dev/null +++ b/src/model_mesh.py @@ -0,0 +1,642 @@ +import os +import time +import numpy as np +import torch +import torch.nn.functional as F +import gc +from torchvision.transforms import v2 +from torchvision.utils import make_grid, save_image +from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity +import pytorch_lightning as pl +from einops import rearrange, repeat +from src.utils.camera_util import FOV_to_intrinsics +from src.utils.material import Material +from src.utils.train_util import instantiate_from_config +import nvdiffrast.torch as dr +from src.utils import render +from src.utils.mesh import Mesh, compute_tangents +os.environ['PYOPENGL_PLATFORM'] = 'egl' + +# from pytorch3d.transforms import quaternion_to_matrix, euler_angles_to_matrix +GLCTX = [None] * torch.cuda.device_count() + +def initialize_extension(gpu_id): + global GLCTX + if GLCTX[gpu_id] is None: + print(f"Initializing extension module renderutils_plugin on GPU {gpu_id}...") + torch.cuda.set_device(gpu_id) + GLCTX[gpu_id] = dr.RasterizeCudaContext() + return GLCTX[gpu_id] + +# Regulrarization loss for FlexiCubes +def sdf_reg_loss_batch(sdf, all_edges): + sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2) + mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) + sdf_f1x6x2 = sdf_f1x6x2[mask] + sdf_diff = F.binary_cross_entropy_with_logits( + sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \ + F.binary_cross_entropy_with_logits( + sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float()) + return sdf_diff + +def rotate_x(a, device=None): + s, c = np.sin(a), np.cos(a) + return torch.tensor([[1, 0, 0, 0], + [0, c,-s, 0], + [0, s, c, 0], + [0, 0, 0, 1]], dtype=torch.float32, device=device) + + +def convert_to_white_bg(image, write_bg=True): + alpha = image[:, :, 3:] + if write_bg: + return image[:, :, :3] * alpha + 1. * (1 - alpha) + else: + return image[:, :, :3] * alpha + + +class MVRecon(pl.LightningModule): + def __init__( + self, + lrm_generator_config, + input_size=256, + render_size=512, + init_ckpt=None, + use_tv_loss=True, + mesh_save_root="Objaverse_highQuality", + sample_points=None, + use_gt_albedo=False, + ): + super(MVRecon, self).__init__() + + self.use_gt_albedo = use_gt_albedo + self.use_tv_loss = use_tv_loss + self.input_size = input_size + self.render_size = render_size + self.mesh_save_root = mesh_save_root + self.sample_points = sample_points + + self.lrm_generator = instantiate_from_config(lrm_generator_config) + self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg') + + if init_ckpt is not None: + sd = torch.load(init_ckpt, map_location='cpu')['state_dict'] + sd = {k: v for k, v in sd.items() if k.startswith('lrm_generator')} + sd_fc = {} + for k, v in sd.items(): + if k.startswith('lrm_generator.synthesizer.decoder.net.'): + if k.startswith('lrm_generator.synthesizer.decoder.net.6.'): # last layer + # Here we assume the density filed's isosurface threshold is t, + # we reverse the sign of density filed to initialize SDF field. + # -(w*x + b - t) = (-w)*x + (t - b) + if 'weight' in k: + sd_fc[k.replace('net.', 'net_sdf.')] = -v[0:1] + else: + sd_fc[k.replace('net.', 'net_sdf.')] = 10.0 - v[0:1] + sd_fc[k.replace('net.', 'net_rgb.')] = v[1:4] + else: + sd_fc[k.replace('net.', 'net_sdf.')] = v + sd_fc[k.replace('net.', 'net_rgb.')] = v + else: + sd_fc[k] = v + sd_fc = {k.replace('lrm_generator.', ''): v for k, v in sd_fc.items()} + # missing `net_deformation` and `net_weight` parameters + self.lrm_generator.load_state_dict(sd_fc, strict=False) + print(f'Loaded weights from {init_ckpt}') + + self.validation_step_outputs = [] + + def on_fit_start(self): + device = torch.device(f'cuda:{self.local_rank}') + self.lrm_generator.init_flexicubes_geometry(device) + if self.global_rank == 0: + os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True) + os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True) + + def collate_fn(self, batch): + gpu_id = torch.cuda.current_device() # 获取当前线程的 GPU ID + glctx = initialize_extension(gpu_id) + batch_size = len(batch) + input_view_num = batch[0]["input_view_num"] + target_view_num = batch[0]["target_view_num"] + iter_res = [512, 512] + iter_spp = 1 + layers = 1 + + # Initialize lists for input and target data + input_images, input_alphas, input_depths, input_normals, input_albedos = [], [], [], [], [] + input_spec_light, input_diff_light, input_spec_albedo,input_diff_albedo = [], [], [], [] + input_w2cs, input_Ks, input_camera_pos, input_c2ws = [], [], [], [] + input_env, input_materials = [], [] + input_camera_embeddings = [] # camera_embedding_list + + target_images, target_alphas, target_depths, target_normals, target_albedos = [], [], [], [], [] + target_spec_light, target_diff_light, target_spec_albedo, target_diff_albedo = [], [], [], [] + target_w2cs, target_Ks, target_camera_pos = [], [], [] + target_env, target_materials = [], [] + + for sample in batch: + obj_path = sample['obj_path'] + + with torch.no_grad(): + mesh_attributes = sample['mesh_attributes'] + v_pos = mesh_attributes["v_pos"].to(self.device) + v_nrm = mesh_attributes["v_nrm"].to(self.device) + v_tex = mesh_attributes["v_tex"].to(self.device) + v_tng = mesh_attributes["v_tng"].to(self.device) + t_pos_idx = mesh_attributes["t_pos_idx"].to(self.device) + t_nrm_idx = mesh_attributes["t_nrm_idx"].to(self.device) + t_tex_idx = mesh_attributes["t_tex_idx"].to(self.device) + t_tng_idx = mesh_attributes["t_tng_idx"].to(self.device) + material = Material(mesh_attributes["mat_dict"]) + material = material.to(self.device) + ref_mesh = Mesh(v_pos=v_pos, v_nrm=v_nrm, v_tex=v_tex, v_tng=v_tng, + t_pos_idx=t_pos_idx, t_nrm_idx=t_nrm_idx, + t_tex_idx=t_tex_idx, t_tng_idx=t_tng_idx, material=material) + + pose_list_sample = sample['pose_list'] # mvp + camera_pos_sample = sample['camera_pos'] # campos, mv.inverse + c2w_list_sample = sample['c2w_list'] # mv + env_list_sample = sample['env_list'] + material_list_sample = sample['material_list'] + camera_embeddings = sample["camera_embedding_list"] + fov_deg = sample['fov_deg'] + raduis = sample['raduis'] + # print(f"fov_deg:{fov_deg}, raduis:{raduis}") + + sample_input_images, sample_input_alphas, sample_input_depths, sample_input_normals, sample_input_albedos = [], [], [], [], [] + sample_input_w2cs, sample_input_Ks, sample_input_camera_pos, sample_input_c2ws = [], [], [], [] + sample_input_camera_embeddings = [] + sample_input_spec_light, sample_input_diff_light = [], [] + + sample_target_images, sample_target_alphas, sample_target_depths, sample_target_normals, sample_target_albedos = [], [], [], [], [] + sample_target_w2cs, sample_target_Ks, sample_target_camera_pos = [], [], [] + sample_target_spec_light, sample_target_diff_light = [], [] + + sample_input_env = [] + sample_input_materials = [] + sample_target_env = [] + sample_target_materials = [] + + for i in range(len(pose_list_sample)): + mvp = pose_list_sample[i] + campos = camera_pos_sample[i] + env = env_list_sample[i] + materials = material_list_sample[i] + camera_embedding = camera_embeddings[i] + + with torch.no_grad(): + buffer_dict = render.render_mesh(glctx, ref_mesh, mvp.to(self.device), campos.to(self.device), [env], None, None, + materials, iter_res, spp=iter_spp, num_layers=layers, msaa=True, + background=None, gt_render=True) + + image = convert_to_white_bg(buffer_dict['shaded'][0]) + albedo = convert_to_white_bg(buffer_dict['albedo'][0]).clamp(0., 1.) + alpha = buffer_dict['mask'][0][:, :, 3:] + depth = convert_to_white_bg(buffer_dict['depth'][0]) + normal = convert_to_white_bg(buffer_dict['gb_normal'][0], write_bg=False) + spec_light = convert_to_white_bg(buffer_dict['spec_light'][0]) + diff_light = convert_to_white_bg(buffer_dict['diff_light'][0]) + if i < input_view_num: + sample_input_images.append(image) + sample_input_albedos.append(albedo) + sample_input_alphas.append(alpha) + sample_input_depths.append(depth) + sample_input_normals.append(normal) + sample_input_spec_light.append(spec_light) + sample_input_diff_light.append(diff_light) + sample_input_w2cs.append(mvp) + sample_input_camera_pos.append(campos) + sample_input_c2ws.append(c2w_list_sample[i]) + sample_input_Ks.append(FOV_to_intrinsics(fov_deg)) + sample_input_env.append(env) + sample_input_materials.append(materials) + sample_input_camera_embeddings.append(camera_embedding) + else: + sample_target_images.append(image) + sample_target_albedos.append(albedo) + sample_target_alphas.append(alpha) + sample_target_depths.append(depth) + sample_target_normals.append(normal) + sample_target_spec_light.append(spec_light) + sample_target_diff_light.append(diff_light) + sample_target_w2cs.append(mvp) + sample_target_camera_pos.append(campos) + sample_target_Ks.append(FOV_to_intrinsics(fov_deg)) + sample_target_env.append(env) + sample_target_materials.append(materials) + + input_images.append(torch.stack(sample_input_images, dim=0).permute(0, 3, 1, 2)) + input_albedos.append(torch.stack(sample_input_albedos, dim=0).permute(0, 3, 1, 2)) + input_alphas.append(torch.stack(sample_input_alphas, dim=0).permute(0, 3, 1, 2)) + input_depths.append(torch.stack(sample_input_depths, dim=0).permute(0, 3, 1, 2)) + input_normals.append(torch.stack(sample_input_normals, dim=0).permute(0, 3, 1, 2)) + input_spec_light.append(torch.stack(sample_input_spec_light, dim=0).permute(0, 3, 1, 2)) + input_diff_light.append(torch.stack(sample_input_diff_light, dim=0).permute(0, 3, 1, 2)) + input_w2cs.append(torch.stack(sample_input_w2cs, dim=0)) + input_camera_pos.append(torch.stack(sample_input_camera_pos, dim=0)) + input_c2ws.append(torch.stack(sample_input_c2ws, dim=0)) + input_camera_embeddings.append(torch.stack(sample_input_camera_embeddings, dim=0)) + input_Ks.append(torch.stack(sample_input_Ks, dim=0)) + input_env.append(sample_input_env) + input_materials.append(sample_input_materials) + + target_images.append(torch.stack(sample_target_images, dim=0).permute(0, 3, 1, 2)) + target_albedos.append(torch.stack(sample_target_albedos, dim=0).permute(0, 3, 1, 2)) + target_alphas.append(torch.stack(sample_target_alphas, dim=0).permute(0, 3, 1, 2)) + target_depths.append(torch.stack(sample_target_depths, dim=0).permute(0, 3, 1, 2)) + target_normals.append(torch.stack(sample_target_normals, dim=0).permute(0, 3, 1, 2)) + target_spec_light.append(torch.stack(sample_target_spec_light, dim=0).permute(0, 3, 1, 2)) + target_diff_light.append(torch.stack(sample_target_diff_light, dim=0).permute(0, 3, 1, 2)) + target_w2cs.append(torch.stack(sample_target_w2cs, dim=0)) + target_camera_pos.append(torch.stack(sample_target_camera_pos, dim=0)) + target_Ks.append(torch.stack(sample_target_Ks, dim=0)) + target_env.append(sample_target_env) + target_materials.append(sample_target_materials) + + del ref_mesh + del material + del mesh_attributes + torch.cuda.empty_cache() + gc.collect() + + data = { + 'input_images': torch.stack(input_images, dim=0).detach().cpu(), # (batch_size, input_view_num, 3, H, W) + 'input_alphas': torch.stack(input_alphas, dim=0).detach().cpu(), # (batch_size, input_view_num, 1, H, W) + 'input_depths': torch.stack(input_depths, dim=0).detach().cpu(), + 'input_normals': torch.stack(input_normals, dim=0).detach().cpu(), + 'input_albedos': torch.stack(input_albedos, dim=0).detach().cpu(), + 'input_spec_light': torch.stack(input_spec_light, dim=0).detach().cpu(), + 'input_diff_light': torch.stack(input_diff_light, dim=0).detach().cpu(), + 'input_materials': input_materials, + 'input_w2cs': torch.stack(input_w2cs, dim=0).squeeze(2), # (batch_size, input_view_num, 4, 4) + 'input_Ks': torch.stack(input_Ks, dim=0).float(), # (batch_size, input_view_num, 3, 3) + 'input_env': input_env, + 'input_camera_pos': torch.stack(input_camera_pos, dim=0).squeeze(2), # (batch_size, input_view_num, 3) + 'input_c2ws': torch.stack(input_c2ws, dim=0).squeeze(2), # (batch_size, input_view_num, 4, 4) + 'input_camera_embedding': torch.stack(input_camera_embeddings, dim=0).squeeze(2), + + 'target_sample_points': None, + 'target_images': torch.stack(target_images, dim=0).detach().cpu(), # (batch_size, target_view_num, 3, H, W) + 'target_alphas': torch.stack(target_alphas, dim=0).detach().cpu(), # (batch_size, target_view_num, 1, H, W) + 'target_depths': torch.stack(target_depths, dim=0).detach().cpu(), + 'target_normals': torch.stack(target_normals, dim=0).detach().cpu(), + 'target_albedos': torch.stack(target_albedos, dim=0).detach().cpu(), + 'target_spec_light': torch.stack(target_spec_light, dim=0).detach().cpu(), + 'target_diff_light': torch.stack(target_diff_light, dim=0).detach().cpu(), + 'target_materials': target_materials, + 'target_w2cs': torch.stack(target_w2cs, dim=0).squeeze(2), # (batch_size, target_view_num, 4, 4) + 'target_Ks': torch.stack(target_Ks, dim=0).float(), # (batch_size, target_view_num, 3, 3) + 'target_env': target_env, + 'target_camera_pos': torch.stack(target_camera_pos, dim=0).squeeze(2) # (batch_size, target_view_num, 3) + } + + return data + + def prepare_batch_data(self, batch): + # breakpoint() + lrm_generator_input = {} + render_gt = {} + + # input images + images = batch['input_images'] + images = v2.functional.resize(images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) + batch_size = images.shape[0] + # breakpoint() + lrm_generator_input['images'] = images.to(self.device) + + # input cameras and render cameras + # input_c2ws = batch['input_c2ws'] + input_Ks = batch['input_Ks'] + # target_c2ws = batch['target_c2ws'] + input_camera_embedding = batch["input_camera_embedding"].to(self.device) + + input_w2cs = batch['input_w2cs'] + target_w2cs = batch['target_w2cs'] + render_w2cs = torch.cat([input_w2cs, target_w2cs], dim=1) + + input_camera_pos = batch['input_camera_pos'] + target_camera_pos = batch['target_camera_pos'] + render_camera_pos = torch.cat([input_camera_pos, target_camera_pos], dim=1) + + input_extrinsics = input_camera_embedding.flatten(-2) + input_extrinsics = input_extrinsics[:, :, :12] + input_intrinsics = input_Ks.flatten(-2).to(self.device) + input_intrinsics = torch.stack([ + input_intrinsics[:, :, 0], input_intrinsics[:, :, 4], + input_intrinsics[:, :, 2], input_intrinsics[:, :, 5], + ], dim=-1) + cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) + + # add noise to input_cameras + cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02 + + lrm_generator_input['cameras'] = cameras.to(self.device) + lrm_generator_input['render_cameras'] = render_w2cs.to(self.device) + lrm_generator_input['cameras_pos'] = render_camera_pos.to(self.device) + lrm_generator_input['env'] = [] + lrm_generator_input['materials'] = [] + for i in range(batch_size): + lrm_generator_input['env'].append( batch['input_env'][i] + batch['target_env'][i]) + lrm_generator_input['materials'].append( batch['input_materials'][i] + batch['target_materials'][i]) + lrm_generator_input['albedo'] = torch.cat([batch['input_albedos'],batch['target_albedos']],dim=1) + + # target images + target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1) + target_albedos = torch.cat([batch['input_albedos'], batch['target_albedos']], dim=1) + target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1) + target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1) + target_normals = torch.cat([batch['input_normals'], batch['target_normals']], dim=1) + target_spec_lights = torch.cat([batch['input_spec_light'], batch['target_spec_light']], dim=1) + target_diff_lights = torch.cat([batch['input_diff_light'], batch['target_diff_light']], dim=1) + + render_size = self.render_size + target_images = v2.functional.resize( + target_images, render_size, interpolation=3, antialias=True).clamp(0, 1) + target_depths = v2.functional.resize( + target_depths, render_size, interpolation=0, antialias=True) + target_alphas = v2.functional.resize( + target_alphas, render_size, interpolation=0, antialias=True) + target_normals = v2.functional.resize( + target_normals, render_size, interpolation=3, antialias=True) + + lrm_generator_input['render_size'] = render_size + + render_gt['target_sample_points'] = batch['target_sample_points'] + render_gt['target_images'] = target_images.to(self.device) + render_gt['target_albedos'] = target_albedos.to(self.device) + render_gt['target_depths'] = target_depths.to(self.device) + render_gt['target_alphas'] = target_alphas.to(self.device) + render_gt['target_normals'] = target_normals.to(self.device) + render_gt['target_spec_lights'] = target_spec_lights.to(self.device) + render_gt['target_diff_lights'] = target_diff_lights.to(self.device) + # render_gt['target_spec_albedos'] = target_spec_albedos.to(self.device) + # render_gt['target_diff_albedos'] = target_diff_albedos.to(self.device) + return lrm_generator_input, render_gt + + def prepare_validation_batch_data(self, batch): + lrm_generator_input = {} + + # input images + images = batch['input_images'] + images = v2.functional.resize( + images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) + + lrm_generator_input['images'] = images.to(self.device) + lrm_generator_input['specular_light'] = batch['specular'] + lrm_generator_input['diffuse_light'] = batch['diffuse'] + + lrm_generator_input['metallic'] = batch['input_metallics'] + lrm_generator_input['roughness'] = batch['input_roughness'] + + proj = self.perspective(0.449, 1, 0.1, 1000., self.device) + + # input cameras + input_c2ws = batch['input_c2ws'].flatten(-2) + input_Ks = batch['input_Ks'].flatten(-2) + + input_extrinsics = input_c2ws[:, :, :12] + input_intrinsics = torch.stack([ + input_Ks[:, :, 0], input_Ks[:, :, 4], + input_Ks[:, :, 2], input_Ks[:, :, 5], + ], dim=-1) + cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) + + lrm_generator_input['cameras'] = cameras.to(self.device) + + # render cameras + render_c2ws = batch['render_c2ws'] + + lrm_generator_input['camera_pos'] = torch.linalg.inv(render_w2cs.to(self.device) @ rotate_x(np.pi / 2, self.device))[..., :3, 3] + render_w2cs = ( render_w2cs @ rotate_x(np.pi / 2) ) + + lrm_generator_input['render_cameras'] = render_w2cs.to(self.device) + lrm_generator_input['render_size'] = 384 + + return lrm_generator_input + + def forward_lrm_generator(self, images, cameras, camera_pos,env, materials, albedo_map, render_cameras, render_size=512, sample_points=None, gt_albedo_map=None): + planes = torch.utils.checkpoint.checkpoint( + self.lrm_generator.forward_planes, + images, + cameras, + use_reentrant=False, + ) + out = self.lrm_generator.forward_geometry( + planes, + render_cameras, + camera_pos, + env, + materials, + albedo_map, + render_size, + sample_points, + gt_albedo_map + ) + return out + + def forward(self, lrm_generator_input, gt_albedo_map=None): + images = lrm_generator_input['images'] + cameras = lrm_generator_input['cameras'] + render_cameras = lrm_generator_input['render_cameras'] + render_size = lrm_generator_input['render_size'] + env = lrm_generator_input['env'] + materials = lrm_generator_input['materials'] + albedo_map = lrm_generator_input['albedo'] + camera_pos = lrm_generator_input['cameras_pos'] + + out = self.forward_lrm_generator( + images, cameras, camera_pos, env, materials, albedo_map, render_cameras, render_size=render_size, sample_points=self.sample_points, gt_albedo_map=gt_albedo_map) + + return out + + def training_step(self, batch, batch_idx): + batch = self.collate_fn(batch) + lrm_generator_input, render_gt = self.prepare_batch_data(batch) + if self.use_gt_albedo: + gt_albedo_map = render_gt['target_albedos'] + else: + gt_albedo_map = None + render_out = self.forward(lrm_generator_input, gt_albedo_map=gt_albedo_map) + + loss, loss_dict = self.compute_loss(render_out, render_gt) + + self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True, batch_size=len(batch['input_images']), sync_dist=True) + + if self.global_step % 20 == 0 and self.global_rank == 0 : + B, N, C, H, W = render_gt['target_images'].shape + N_in = lrm_generator_input['images'].shape[1] + + target_images = rearrange(render_gt['target_images'], 'b n c h w -> b c h (n w)') + render_images = rearrange(render_out['pbr_img'], 'b n c h w -> b c h (n w)') + target_alphas = rearrange(repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') + target_spec_light = rearrange(render_gt['target_spec_lights'], 'b n c h w -> b c h (n w)') + target_diff_light = rearrange(render_gt['target_diff_lights'], 'b n c h w -> b c h (n w)') + + render_alphas = rearrange(render_out['mask'], 'b n c h w -> b c h (n w)') + render_albodos = rearrange(render_out['albedo'], 'b n c h w -> b c h (n w)') + target_albedos = rearrange(render_gt['target_albedos'], 'b n c h w -> b c h (n w)') + + render_spec_light = rearrange(render_out['pbr_spec_light'], 'b n c h w -> b c h (n w)') + render_diffuse_light = rearrange(render_out['pbr_diffuse_light'], 'b n c h w -> b c h (n w)') + render_normal = rearrange(render_out['normal_img'], 'b n c h w -> b c h (n w)') + target_depths = rearrange(render_gt['target_depths'], 'b n c h w -> b c h (n w)') + render_depths = rearrange(render_out['depth'], 'b n c h w -> b c h (n w)') + target_normals = rearrange(render_gt['target_normals'], 'b n c h w -> b c h (n w)') + + MAX_DEPTH = torch.max(target_depths) + target_depths = target_depths / MAX_DEPTH * target_alphas + render_depths = render_depths / MAX_DEPTH * render_alphas + + grid = torch.cat([ + target_images, render_images, + target_alphas, render_alphas, + target_albedos, render_albodos, + target_spec_light, render_spec_light, + target_diff_light, render_diffuse_light, + (target_normals+1)/2, (render_normal+1)/2, + target_depths, render_depths + ], dim=-2).detach().cpu() + grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1)) + + image_path = os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png') + save_image(grid, image_path) + print(f"Saved image to {image_path}") + return loss + + + def total_variation_loss(self, img, beta=2.0): + bs_img, n_view, c_img, h_img, w_img = img.size() + tv_h = torch.pow(img[...,1:,:]-img[...,:-1,:], beta).sum() + tv_w = torch.pow(img[...,:,1:]-img[...,:,:-1], beta).sum() + return (tv_h+tv_w)/(bs_img*n_view*c_img*h_img*w_img) + + + def compute_loss(self, render_out, render_gt): + # NOTE: the rgb value range of OpenLRM is [0, 1] + render_albedo_image = render_out['albedo'] + render_pbr_image = render_out['pbr_img'] + render_spec_light = render_out['pbr_spec_light'] + render_diff_light = render_out['pbr_diffuse_light'] + + target_images = render_gt['target_images'].to(render_albedo_image) + target_albedos = render_gt['target_albedos'].to(render_albedo_image) + target_spec_light = render_gt['target_spec_lights'].to(render_albedo_image) + target_diff_light = render_gt['target_diff_lights'].to(render_albedo_image) + + render_images = rearrange(render_pbr_image, 'b n ... -> (b n) ...') * 2.0 - 1.0 + target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0 + + render_albedos = rearrange(render_albedo_image, 'b n ... -> (b n) ...') * 2.0 - 1.0 + target_albedos = rearrange(target_albedos, 'b n ... -> (b n) ...') * 2.0 - 1.0 + + render_spec_light = rearrange(render_spec_light, 'b n ... -> (b n) ...') * 2.0 - 1.0 + target_spec_light = rearrange(target_spec_light, 'b n ... -> (b n) ...') * 2.0 - 1.0 + + render_diff_light = rearrange(render_diff_light, 'b n ... -> (b n) ...') * 2.0 - 1.0 + target_diff_light = rearrange(target_diff_light, 'b n ... -> (b n) ...') * 2.0 - 1.0 + + + loss_mse = F.mse_loss(render_images, target_images) + loss_mse_albedo = F.mse_loss(render_albedos, target_albedos) + loss_rgb_lpips = 2.0 * self.lpips(render_images, target_images) + loss_albedo_lpips = 2.0 * self.lpips(render_albedos, target_albedos) + + loss_spec_light = F.mse_loss(render_spec_light, target_spec_light) + loss_diff_light = F.mse_loss(render_diff_light, target_diff_light) + loss_spec_light_lpips = 2.0 * self.lpips(render_spec_light.clamp(-1., 1.), target_spec_light.clamp(-1., 1.)) + loss_diff_light_lpips = 2.0 * self.lpips(render_diff_light.clamp(-1., 1.), target_diff_light.clamp(-1., 1.)) + + render_alphas = render_out['mask'][:,:,:1,:,:] + target_alphas = render_gt['target_alphas'] + + loss_mask = F.mse_loss(render_alphas, target_alphas) + render_depths = torch.mean(render_out['depth'], dim=2, keepdim=True) + target_depths = torch.mean(render_gt['target_depths'], dim=2, keepdim=True) + loss_depth = 0.5 * F.l1_loss(render_depths[(target_alphas>0)], target_depths[target_alphas>0]) + + render_normals = render_out['normal'][...,:3].permute(0,3,1,2).unsqueeze(0) + target_normals = render_gt['target_normals'] + similarity = (render_normals * target_normals).sum(dim=-3).abs() + normal_mask = target_alphas.squeeze(-3) + loss_normal = 1 - similarity[normal_mask>0].mean() + loss_normal = 0.2 * loss_normal * 1.0 + + # tv loss + if self.use_tv_loss: + triplane = render_out['triplane'] + tv_loss = self.total_variation_loss(triplane, beta=2.0) + + # flexicubes regularization loss + sdf = render_out['sdf'] + sdf_reg_loss = render_out['sdf_reg_loss'] + sdf_reg_loss_entropy = sdf_reg_loss_batch(sdf, self.lrm_generator.geometry.all_edges).mean() * 0.01 + _, flexicubes_surface_reg, flexicubes_weights_reg = sdf_reg_loss + flexicubes_surface_reg = flexicubes_surface_reg.mean() * 0.5 + flexicubes_weights_reg = flexicubes_weights_reg.mean() * 0.1 + + loss_reg = sdf_reg_loss_entropy + flexicubes_surface_reg + flexicubes_weights_reg + loss_reg = loss_reg + loss = loss_mse + loss_rgb_lpips + loss_albedo_lpips + loss_mask + loss_reg + loss_mse_albedo + loss_depth + \ + loss_normal + loss_spec_light + loss_diff_light + loss_spec_light_lpips + loss_diff_light_lpips + if self.use_tv_loss: + loss += tv_loss * 2e-4 + + prefix = 'train' + loss_dict = {} + + loss_dict.update({f'{prefix}/loss_mse': loss_mse.item()}) + loss_dict.update({f'{prefix}/loss_mse_albedo': loss_mse_albedo.item()}) + loss_dict.update({f'{prefix}/loss_rgb_lpips': loss_rgb_lpips.item()}) + loss_dict.update({f'{prefix}/loss_albedo_lpips': loss_albedo_lpips.item()}) + loss_dict.update({f'{prefix}/loss_mask': loss_mask.item()}) + loss_dict.update({f'{prefix}/loss_normal': loss_normal.item()}) + loss_dict.update({f'{prefix}/loss_depth': loss_depth.item()}) + loss_dict.update({f'{prefix}/loss_spec_light': loss_spec_light.item()}) + loss_dict.update({f'{prefix}/loss_diff_light': loss_diff_light.item()}) + loss_dict.update({f'{prefix}/loss_spec_light_lpips': loss_spec_light_lpips.item()}) + loss_dict.update({f'{prefix}/loss_diff_light_lpips': loss_diff_light_lpips.item()}) + loss_dict.update({f'{prefix}/loss_reg_sdf': sdf_reg_loss_entropy.item()}) + loss_dict.update({f'{prefix}/loss_reg_surface': flexicubes_surface_reg.item()}) + loss_dict.update({f'{prefix}/loss_reg_weights': flexicubes_weights_reg.item()}) + if self.use_tv_loss: + loss_dict.update({f'{prefix}/loss_tv': tv_loss.item()}) + loss_dict.update({f'{prefix}/loss': loss.item()}) + + return loss, loss_dict + + @torch.no_grad() + def validation_step(self, batch, batch_idx): + lrm_generator_input = self.prepare_validation_batch_data(batch) + + render_out = self.forward(lrm_generator_input) + render_images = rearrange(render_out['pbr_img'], 'b n c h w -> b c h (n w)') + render_albodos = rearrange(render_out['img'], 'b n c h w -> b c h (n w)') + + self.validation_step_outputs.append(render_images) + self.validation_step_outputs.append(render_albodos) + + def on_validation_epoch_end(self): + images = torch.cat(self.validation_step_outputs, dim=0) + + all_images = self.all_gather(images) + all_images = rearrange(all_images, 'r b c h w -> (r b) c h w') + + if self.global_rank == 0: + image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png') + + grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1)) + + save_image(grid, image_path) + print(f"Saved image to {image_path}") + + self.validation_step_outputs.clear() + + def configure_optimizers(self): + lr = self.learning_rate + + optimizer = torch.optim.AdamW( + self.lrm_generator.parameters(), lr=lr, betas=(0.90, 0.95), weight_decay=0.01) + scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 100000, eta_min=0) + + return {'optimizer': optimizer, 'lr_scheduler': scheduler} diff --git a/src/models/__init__.py b/src/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/models/__pycache__/__init__.cpython-310.pyc b/src/models/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..816ae7c7ce15ee939437c86c6eae06a191f5d618 Binary files /dev/null and b/src/models/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/models/__pycache__/lrm_mesh.cpython-310.pyc b/src/models/__pycache__/lrm_mesh.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c113e6c6f379e2a5361317d7f106748b9aeee7e Binary files /dev/null and b/src/models/__pycache__/lrm_mesh.cpython-310.pyc differ diff --git a/src/models/decoder/__init__.py b/src/models/decoder/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/models/decoder/__pycache__/__init__.cpython-310.pyc b/src/models/decoder/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..71c961aea189da8c1d9fc9f9fce800684f66144e Binary files /dev/null and b/src/models/decoder/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/models/decoder/__pycache__/transformer.cpython-310.pyc b/src/models/decoder/__pycache__/transformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d52e899288e940b57e12ae32da02de69df2cbc96 Binary files /dev/null and b/src/models/decoder/__pycache__/transformer.cpython-310.pyc differ diff --git a/src/models/decoder/transformer.py b/src/models/decoder/transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..d8e628c0bf589ee827908c894b93cc107f1c58b9 --- /dev/null +++ b/src/models/decoder/transformer.py @@ -0,0 +1,123 @@ +# Copyright (c) 2023, Zexin He +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import torch +import torch.nn as nn + + +class BasicTransformerBlock(nn.Module): + """ + Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks. + """ + # use attention from torch.nn.MultiHeadAttention + # Block contains a cross-attention layer, a self-attention layer, and a MLP + def __init__( + self, + inner_dim: int, + cond_dim: int, + num_heads: int, + eps: float, + attn_drop: float = 0., + attn_bias: bool = False, + mlp_ratio: float = 4., + mlp_drop: float = 0., + ): + super().__init__() + + self.norm1 = nn.LayerNorm(inner_dim) + self.cross_attn = nn.MultiheadAttention( + embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim, + dropout=attn_drop, bias=attn_bias, batch_first=True) + self.norm2 = nn.LayerNorm(inner_dim) + self.self_attn = nn.MultiheadAttention( + embed_dim=inner_dim, num_heads=num_heads, + dropout=attn_drop, bias=attn_bias, batch_first=True) + self.norm3 = nn.LayerNorm(inner_dim) + self.mlp = nn.Sequential( + nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), + nn.GELU(), + nn.Dropout(mlp_drop), + nn.Linear(int(inner_dim * mlp_ratio), inner_dim), + nn.Dropout(mlp_drop), + ) + + def forward(self, x, cond): + # x: [N, L, D] + # cond: [N, L_cond, D_cond] + x = x + self.cross_attn(self.norm1(x), cond, cond)[0] + before_sa = self.norm2(x) + x = x + self.self_attn(before_sa, before_sa, before_sa)[0] + x = x + self.mlp(self.norm3(x)) + return x + + +class TriplaneTransformer(nn.Module): + """ + Transformer with condition that generates a triplane representation. + + Reference: + Timm: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L486 + """ + def __init__( + self, + inner_dim: int, + image_feat_dim: int, + triplane_low_res: int, + triplane_high_res: int, + triplane_dim: int, + num_layers: int, + num_heads: int, + eps: float = 1e-6, + ): + super().__init__() + + # attributes + self.triplane_low_res = triplane_low_res + self.triplane_high_res = triplane_high_res + self.triplane_dim = triplane_dim + + # modules + # initialize pos_embed with 1/sqrt(dim) * N(0, 1) + self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, inner_dim) * (1. / inner_dim) ** 0.5) + self.layers = nn.ModuleList([ + BasicTransformerBlock( + inner_dim=inner_dim, cond_dim=image_feat_dim, num_heads=num_heads, eps=eps) + for _ in range(num_layers) + ]) + self.norm = nn.LayerNorm(inner_dim, eps=eps) + self.deconv = nn.ConvTranspose2d(inner_dim, triplane_dim, kernel_size=2, stride=2, padding=0) + + def forward(self, image_feats): + # image_feats: [N, L_cond, D_cond] + + N = image_feats.shape[0] + H = W = self.triplane_low_res + L = 3 * H * W + + x = self.pos_embed.repeat(N, 1, 1) # [N, L, D] + for layer in self.layers: + x = layer(x, image_feats) + x = self.norm(x) + + # separate each plane and apply deconv + x = x.view(N, 3, H, W, -1) + x = torch.einsum('nihwd->indhw', x) # [3, N, D, H, W] + x = x.contiguous().view(3*N, -1, H, W) # [3*N, D, H, W] + x = self.deconv(x) # [3*N, D', H', W'] + x = x.view(3, N, *x.shape[-3:]) # [3, N, D', H', W'] + x = torch.einsum('indhw->nidhw', x) # [N, 3, D', H', W'] + x = x.contiguous() + + return x diff --git a/src/models/encoder/__init__.py b/src/models/encoder/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/models/encoder/__pycache__/__init__.cpython-310.pyc b/src/models/encoder/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a8f06d6527cb1353dcdc53af85419dc5750d3e7b Binary files /dev/null and b/src/models/encoder/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/models/encoder/__pycache__/dino.cpython-310.pyc b/src/models/encoder/__pycache__/dino.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9f108fa5abe782f18d92677fb8b3c9746def8de6 Binary files /dev/null and b/src/models/encoder/__pycache__/dino.cpython-310.pyc differ diff --git a/src/models/encoder/__pycache__/dino_wrapper.cpython-310.pyc b/src/models/encoder/__pycache__/dino_wrapper.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..22db4d04912ef60a438ef43dccc16c58425ceeb2 Binary files /dev/null and b/src/models/encoder/__pycache__/dino_wrapper.cpython-310.pyc differ diff --git a/src/models/encoder/dino.py b/src/models/encoder/dino.py new file mode 100644 index 0000000000000000000000000000000000000000..684444cab2a13979bcd5688069e9f7729d4ca784 --- /dev/null +++ b/src/models/encoder/dino.py @@ -0,0 +1,550 @@ +# coding=utf-8 +# Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch ViT model.""" + + +import collections.abc +import math +from typing import Dict, List, Optional, Set, Tuple, Union + +import torch +from torch import nn + +from transformers.activations import ACT2FN +from transformers.modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, +) +from transformers import PreTrainedModel, ViTConfig +from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer + + +class ViTEmbeddings(nn.Module): + """ + Construct the CLS token, position and patch embeddings. Optionally, also the mask token. + """ + + def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None: + super().__init__() + + self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) + self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None + self.patch_embeddings = ViTPatchEmbeddings(config) + num_patches = self.patch_embeddings.num_patches + self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.config = config + + def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: + """ + This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher + resolution images. + + Source: + https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 + """ + + num_patches = embeddings.shape[1] - 1 + num_positions = self.position_embeddings.shape[1] - 1 + if num_patches == num_positions and height == width: + return self.position_embeddings + class_pos_embed = self.position_embeddings[:, 0] + patch_pos_embed = self.position_embeddings[:, 1:] + dim = embeddings.shape[-1] + h0 = height // self.config.patch_size + w0 = width // self.config.patch_size + # we add a small number to avoid floating point error in the interpolation + # see discussion at https://github.com/facebookresearch/dino/issues/8 + h0, w0 = h0 + 0.1, w0 + 0.1 + patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) + patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) + patch_pos_embed = nn.functional.interpolate( + patch_pos_embed, + scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), + mode="bicubic", + align_corners=False, + ) + assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1] + patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) + return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) + + def forward( + self, + pixel_values: torch.Tensor, + bool_masked_pos: Optional[torch.BoolTensor] = None, + interpolate_pos_encoding: bool = False, + ) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) + + if bool_masked_pos is not None: + seq_length = embeddings.shape[1] + mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) + # replace the masked visual tokens by mask_tokens + mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) + embeddings = embeddings * (1.0 - mask) + mask_tokens * mask + + # add the [CLS] token to the embedded patch tokens + cls_tokens = self.cls_token.expand(batch_size, -1, -1) + embeddings = torch.cat((cls_tokens, embeddings), dim=1) + + # add positional encoding to each token + if interpolate_pos_encoding: + embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) + else: + embeddings = embeddings + self.position_embeddings + + embeddings = self.dropout(embeddings) + + return embeddings + + +class ViTPatchEmbeddings(nn.Module): + """ + This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial + `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a + Transformer. + """ + + def __init__(self, config): + super().__init__() + image_size, patch_size = config.image_size, config.patch_size + num_channels, hidden_size = config.num_channels, config.hidden_size + + image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) + patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) + num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) + self.image_size = image_size + self.patch_size = patch_size + self.num_channels = num_channels + self.num_patches = num_patches + + self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) + + def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: + batch_size, num_channels, height, width = pixel_values.shape + if num_channels != self.num_channels: + raise ValueError( + "Make sure that the channel dimension of the pixel values match with the one set in the configuration." + f" Expected {self.num_channels} but got {num_channels}." + ) + if not interpolate_pos_encoding: + if height != self.image_size[0] or width != self.image_size[1]: + raise ValueError( + f"Input image size ({height}*{width}) doesn't match model" + f" ({self.image_size[0]}*{self.image_size[1]})." + ) + embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) + return embeddings + + +class ViTSelfAttention(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}." + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + mixed_query_layer = self.query(hidden_states) + + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + query_layer = self.transpose_for_scores(mixed_query_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + return outputs + + +class ViTSelfOutput(nn.Module): + """ + The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the + layernorm applied before each block. + """ + + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + return hidden_states + + +class ViTAttention(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.attention = ViTSelfAttention(config) + self.output = ViTSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads: Set[int]) -> None: + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.attention.query = prune_linear_layer(self.attention.query, index) + self.attention.key = prune_linear_layer(self.attention.key, index) + self.attention.value = prune_linear_layer(self.attention.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) + self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + self_outputs = self.attention(hidden_states, head_mask, output_attentions) + + attention_output = self.output(self_outputs[0], hidden_states) + + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +class ViTIntermediate(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + +class ViTOutput(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + + hidden_states = hidden_states + input_tensor + + return hidden_states + + +def modulate(x, shift, scale): + return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) + + +class ViTLayer(nn.Module): + """This corresponds to the Block class in the timm implementation.""" + + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = ViTAttention(config) + self.intermediate = ViTIntermediate(config) + self.output = ViTOutput(config) + self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + self.adaLN_modulation = nn.Sequential( + nn.SiLU(), + nn.Linear(config.hidden_size, 4 * config.hidden_size, bias=True) + ) + nn.init.constant_(self.adaLN_modulation[-1].weight, 0) + nn.init.constant_(self.adaLN_modulation[-1].bias, 0) + + def forward( + self, + hidden_states: torch.Tensor, + adaln_input: torch.Tensor = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: + shift_msa, scale_msa, shift_mlp, scale_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1) + + self_attention_outputs = self.attention( + modulate(self.layernorm_before(hidden_states), shift_msa, scale_msa), # in ViT, layernorm is applied before self-attention + head_mask, + output_attentions=output_attentions, + ) + attention_output = self_attention_outputs[0] + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + # first residual connection + hidden_states = attention_output + hidden_states + + # in ViT, layernorm is also applied after self-attention + layer_output = modulate(self.layernorm_after(hidden_states), shift_mlp, scale_mlp) + layer_output = self.intermediate(layer_output) + + # second residual connection is done here + layer_output = self.output(layer_output, hidden_states) + + outputs = (layer_output,) + outputs + + return outputs + + +class ViTEncoder(nn.Module): + def __init__(self, config: ViTConfig) -> None: + super().__init__() + self.config = config + self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + adaln_input: torch.Tensor = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ) -> Union[tuple, BaseModelOutput]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + adaln_input, + layer_head_mask, + output_attentions, + ) + else: + layer_outputs = layer_module(hidden_states, adaln_input, layer_head_mask, output_attentions) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +class ViTPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = ViTConfig + base_model_prefix = "vit" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + _no_split_modules = ["ViTEmbeddings", "ViTLayer"] + + def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: + """Initialize the weights""" + if isinstance(module, (nn.Linear, nn.Conv2d)): + # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid + # `trunc_normal_cpu` not implemented in `half` issues + module.weight.data = nn.init.trunc_normal_( + module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range + ).to(module.weight.dtype) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, ViTEmbeddings): + module.position_embeddings.data = nn.init.trunc_normal_( + module.position_embeddings.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.position_embeddings.dtype) + + module.cls_token.data = nn.init.trunc_normal_( + module.cls_token.data.to(torch.float32), + mean=0.0, + std=self.config.initializer_range, + ).to(module.cls_token.dtype) + + +class ViTModel(ViTPreTrainedModel): + def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False): + super().__init__(config) + self.config = config + + self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token) + self.encoder = ViTEncoder(config) + + self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.pooler = ViTPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self) -> ViTPatchEmbeddings: + return self.embeddings.patch_embeddings + + def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + def forward( + self, + pixel_values: Optional[torch.Tensor] = None, + adaln_input: Optional[torch.Tensor] = None, + bool_masked_pos: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + interpolate_pos_encoding: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): + Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if pixel_values is None: + raise ValueError("You have to specify pixel_values") + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) + expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype + if pixel_values.dtype != expected_dtype: + pixel_values = pixel_values.to(expected_dtype) + + embedding_output = self.embeddings( + pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding + ) + + encoder_outputs = self.encoder( + embedding_output, + adaln_input=adaln_input, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + sequence_output = self.layernorm(sequence_output) + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) + return head_outputs + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +class ViTPooler(nn.Module): + def __init__(self, config: ViTConfig): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states): + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output \ No newline at end of file diff --git a/src/models/encoder/dino_wrapper.py b/src/models/encoder/dino_wrapper.py new file mode 100644 index 0000000000000000000000000000000000000000..e84fd51e7dfcfd1a969b763f5a49aeb7f608e6f9 --- /dev/null +++ b/src/models/encoder/dino_wrapper.py @@ -0,0 +1,80 @@ +# Copyright (c) 2023, Zexin He +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import torch.nn as nn +from transformers import ViTImageProcessor +from einops import rearrange, repeat +from .dino import ViTModel + + +class DinoWrapper(nn.Module): + """ + Dino v1 wrapper using huggingface transformer implementation. + """ + def __init__(self, model_name: str, freeze: bool = True): + super().__init__() + self.model, self.processor = self._build_dino(model_name) + self.camera_embedder = nn.Sequential( + nn.Linear(16, self.model.config.hidden_size, bias=True), + nn.SiLU(), + nn.Linear(self.model.config.hidden_size, self.model.config.hidden_size, bias=True) + ) + if freeze: + self._freeze() + + def forward(self, image, camera): + # image: [B, N, C, H, W] + # camera: [B, N, D] + # RGB image with [0,1] scale and properly sized + if image.ndim == 5: + image = rearrange(image, 'b n c h w -> (b n) c h w') + dtype = image.dtype + inputs = self.processor( + images=image.float(), + return_tensors="pt", + do_rescale=False, + do_resize=False, + ).to(self.model.device).to(dtype) + # embed camera + N = camera.shape[1] + camera_embeddings = self.camera_embedder(camera) + camera_embeddings = rearrange(camera_embeddings, 'b n d -> (b n) d') + embeddings = camera_embeddings + # This resampling of positional embedding uses bicubic interpolation + outputs = self.model(**inputs, adaln_input=embeddings, interpolate_pos_encoding=True) + last_hidden_states = outputs.last_hidden_state + return last_hidden_states + + def _freeze(self): + print(f"======== Freezing DinoWrapper ========") + self.model.eval() + for name, param in self.model.named_parameters(): + param.requires_grad = False + + @staticmethod + def _build_dino(model_name: str, proxy_error_retries: int = 3, proxy_error_cooldown: int = 5): + import requests + try: + model = ViTModel.from_pretrained(model_name, add_pooling_layer=False) + processor = ViTImageProcessor.from_pretrained(model_name) + return model, processor + except requests.exceptions.ProxyError as err: + if proxy_error_retries > 0: + print(f"Huggingface ProxyError: Retrying in {proxy_error_cooldown} seconds...") + import time + time.sleep(proxy_error_cooldown) + return DinoWrapper._build_dino(model_name, proxy_error_retries - 1, proxy_error_cooldown) + else: + raise err diff --git a/src/models/geometry/__init__.py b/src/models/geometry/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..89e9a6c2fffe82a55693885dae78c1a630924389 --- /dev/null +++ b/src/models/geometry/__init__.py @@ -0,0 +1,7 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. diff --git a/src/models/geometry/__pycache__/__init__.cpython-310.pyc b/src/models/geometry/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..80ab2502c0f74df0ae53291fc63a21788a02546d Binary files /dev/null and b/src/models/geometry/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/models/geometry/camera/__init__.py b/src/models/geometry/camera/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c5c7082e47c65a08e25489b3c3fd010d07ad9758 --- /dev/null +++ b/src/models/geometry/camera/__init__.py @@ -0,0 +1,16 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +from torch import nn + + +class Camera(nn.Module): + def __init__(self): + super(Camera, self).__init__() + pass diff --git a/src/models/geometry/camera/__pycache__/__init__.cpython-310.pyc b/src/models/geometry/camera/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..da118d9bb2114b1d5e0f2ff6ff4094fc75ec49a9 Binary files /dev/null and b/src/models/geometry/camera/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/models/geometry/camera/__pycache__/perspective_camera.cpython-310.pyc b/src/models/geometry/camera/__pycache__/perspective_camera.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6b5a3f527567bfc9de02c058798d7695a73c7b2b Binary files /dev/null and b/src/models/geometry/camera/__pycache__/perspective_camera.cpython-310.pyc differ diff --git a/src/models/geometry/camera/perspective_camera.py b/src/models/geometry/camera/perspective_camera.py new file mode 100644 index 0000000000000000000000000000000000000000..7dcab0d2a321a77a5d3c2d4c3f40ba2cc32f6dfa --- /dev/null +++ b/src/models/geometry/camera/perspective_camera.py @@ -0,0 +1,35 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +from . import Camera +import numpy as np + + +def projection(x=0.1, n=1.0, f=50.0, near_plane=None): + if near_plane is None: + near_plane = n + return np.array( + [[n / x, 0, 0, 0], + [0, n / -x, 0, 0], + [0, 0, -(f + near_plane) / (f - near_plane), -(2 * f * near_plane) / (f - near_plane)], + [0, 0, -1, 0]]).astype(np.float32) + + +class PerspectiveCamera(Camera): + def __init__(self, fovy=49.0, device='cuda'): + super(PerspectiveCamera, self).__init__() + self.device = device + focal = np.tan(fovy / 180.0 * np.pi * 0.5) + self.proj_mtx = torch.from_numpy(projection(x=focal, f=1000.0, n=1.0, near_plane=0.1)).to(self.device).unsqueeze(dim=0) + + def project(self, points_bxnx4): + out = torch.matmul( + points_bxnx4, + torch.transpose(self.proj_mtx, 1, 2)) + return out diff --git a/src/models/geometry/render/__init__.py b/src/models/geometry/render/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..483cfabbf395853f1ca3e67b856d5f17b9889d1b --- /dev/null +++ b/src/models/geometry/render/__init__.py @@ -0,0 +1,8 @@ +import torch + +class Renderer(): + def __init__(self): + pass + + def forward(self): + pass \ No newline at end of file diff --git a/src/models/geometry/render/__pycache__/__init__.cpython-310.pyc b/src/models/geometry/render/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..69da903a937ab293fda6ce4a99db0e5508860bfb Binary files /dev/null and b/src/models/geometry/render/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/models/geometry/render/__pycache__/neural_render.cpython-310.pyc b/src/models/geometry/render/__pycache__/neural_render.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18292c6da8b022f615b078737662a97209451e50 Binary files /dev/null and b/src/models/geometry/render/__pycache__/neural_render.cpython-310.pyc differ diff --git a/src/models/geometry/render/__pycache__/util.cpython-310.pyc b/src/models/geometry/render/__pycache__/util.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cf1b4272cf5b926eb1563a19e14b4694a7836a91 Binary files /dev/null and b/src/models/geometry/render/__pycache__/util.cpython-310.pyc differ diff --git a/src/models/geometry/render/neural_render.py b/src/models/geometry/render/neural_render.py new file mode 100644 index 0000000000000000000000000000000000000000..5d86fcc3f752fa4fcc7e7088438e0f980d6cf64a --- /dev/null +++ b/src/models/geometry/render/neural_render.py @@ -0,0 +1,293 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +import torch.nn.functional as F +import nvdiffrast.torch as dr +from . import Renderer +from . import util +from . import renderutils as ru +_FG_LUT = None + + +def interpolate(attr, rast, attr_idx, rast_db=None): + return dr.interpolate( + attr.contiguous(), rast, attr_idx, rast_db=rast_db, + diff_attrs=None if rast_db is None else 'all') + + +def xfm_points(points, matrix, use_python=True): + '''Transform points. + Args: + points: Tensor containing 3D points with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3] + matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4] + use_python: Use PyTorch's torch.matmul (for validation) + Returns: + Transformed points in homogeneous 4D with shape [minibatch_size, num_vertices, 4]. + ''' + out = torch.matmul(torch.nn.functional.pad(points, pad=(0, 1), mode='constant', value=1.0), torch.transpose(matrix, 1, 2)) + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of xfm_points contains inf or NaN" + return out + + +def dot(x, y): + return torch.sum(x * y, -1, keepdim=True) + + +def compute_vertex_normal(v_pos, t_pos_idx): + i0 = t_pos_idx[:, 0] + i1 = t_pos_idx[:, 1] + i2 = t_pos_idx[:, 2] + + v0 = v_pos[i0, :] + v1 = v_pos[i1, :] + v2 = v_pos[i2, :] + + face_normals = torch.cross(v1 - v0, v2 - v0) + + # Splat face normals to vertices + v_nrm = torch.zeros_like(v_pos) + v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals) + v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals) + v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals) + + # Normalize, replace zero (degenerated) normals with some default value + v_nrm = torch.where( + dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm) + ) + v_nrm = F.normalize(v_nrm, dim=1) + assert torch.all(torch.isfinite(v_nrm)) + + return v_nrm + + +class NeuralRender(Renderer): + def __init__(self, device='cuda', camera_model=None): + super(NeuralRender, self).__init__() + self.device = device + self.ctx = dr.RasterizeCudaContext(device=device) + self.projection_mtx = None + self.camera = camera_model + + # ============================================================================================== + # pixel shader + # ============================================================================================== + # def shade( + # self, + # gb_pos, + # gb_geometric_normal, + # gb_normal, + # gb_tangent, + # gb_texc, + # gb_texc_deriv, + # view_pos, + # ): + + # ################################################################################ + # # Texture lookups + # ################################################################################ + # breakpoint() + # # Separate kd into alpha and color, default alpha = 1 + # alpha = kd[..., 3:4] if kd.shape[-1] == 4 else torch.ones_like(kd[..., 0:1]) + # kd = kd[..., 0:3] + + # ################################################################################ + # # Normal perturbation & normal bend + # ################################################################################ + + # perturbed_nrm = None + + # gb_normal = ru.prepare_shading_normal(gb_pos, view_pos, perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=True, opengl=True) + + # ################################################################################ + # # Evaluate BSDF + # ################################################################################ + + # assert 'bsdf' in material or bsdf is not None, "Material must specify a BSDF type" + # bsdf = material['bsdf'] if bsdf is None else bsdf + # if bsdf == 'pbr': + # if isinstance(lgt, light.EnvironmentLight): + # shaded_col = lgt.shade(gb_pos, gb_normal, kd, ks, view_pos, specular=True) + # else: + # assert False, "Invalid light type" + # elif bsdf == 'diffuse': + # if isinstance(lgt, light.EnvironmentLight): + # shaded_col = lgt.shade(gb_pos, gb_normal, kd, ks, view_pos, specular=False) + # else: + # assert False, "Invalid light type" + # elif bsdf == 'normal': + # shaded_col = (gb_normal + 1.0)*0.5 + # elif bsdf == 'tangent': + # shaded_col = (gb_tangent + 1.0)*0.5 + # elif bsdf == 'kd': + # shaded_col = kd + # elif bsdf == 'ks': + # shaded_col = ks + # else: + # assert False, "Invalid BSDF '%s'" % bsdf + + # # Return multiple buffers + # buffers = { + # 'shaded' : torch.cat((shaded_col, alpha), dim=-1), + # 'kd_grad' : torch.cat((kd_grad, alpha), dim=-1), + # 'occlusion' : torch.cat((ks[..., :1], alpha), dim=-1) + # } + # return buffers + + # ============================================================================================== + # Render a depth slice of the mesh (scene), some limitations: + # - Single mesh + # - Single light + # - Single material + # ============================================================================================== + def render_layer( + self, + rast, + rast_deriv, + mesh, + view_pos, + resolution, + spp, + msaa + ): + + # Scale down to shading resolution when MSAA is enabled, otherwise shade at full resolution + rast_out_s = rast + rast_out_deriv_s = rast_deriv + + ################################################################################ + # Interpolate attributes + ################################################################################ + + # Interpolate world space position + gb_pos, _ = interpolate(mesh.v_pos[None, ...], rast_out_s, mesh.t_pos_idx.int()) + + # Compute geometric normals. We need those because of bent normals trick (for bump mapping) + v0 = mesh.v_pos[mesh.t_pos_idx[:, 0], :] + v1 = mesh.v_pos[mesh.t_pos_idx[:, 1], :] + v2 = mesh.v_pos[mesh.t_pos_idx[:, 2], :] + face_normals = util.safe_normalize(torch.cross(v1 - v0, v2 - v0)) + face_normal_indices = (torch.arange(0, face_normals.shape[0], dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3) + gb_geometric_normal, _ = interpolate(face_normals[None, ...], rast_out_s, face_normal_indices.int()) + + # Compute tangent space + assert mesh.v_nrm is not None and mesh.v_tng is not None + gb_normal, _ = interpolate(mesh.v_nrm[None, ...], rast_out_s, mesh.t_nrm_idx.int()) + gb_tangent, _ = interpolate(mesh.v_tng[None, ...], rast_out_s, mesh.t_tng_idx.int()) # Interpolate tangents + + # Texture coordinate + # assert mesh.v_tex is not None + # gb_texc, gb_texc_deriv = interpolate(mesh.v_tex[None, ...], rast_out_s, mesh.t_tex_idx.int(), rast_db=rast_out_deriv_s) + perturbed_nrm = None + gb_normal = ru.prepare_shading_normal(gb_pos, view_pos[:,None,None,:], perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=True, opengl=True) + + return gb_pos, gb_normal + + def render_mesh( + self, + mesh_v_pos_bxnx3, + mesh_t_pos_idx_fx3, + mesh, + camera_mv_bx4x4, + camera_pos, + mesh_v_feat_bxnxd, + resolution=256, + spp=1, + device='cuda', + hierarchical_mask=False + ): + assert not hierarchical_mask + + mtx_in = torch.tensor(camera_mv_bx4x4, dtype=torch.float32, device=device) if not torch.is_tensor(camera_mv_bx4x4) else camera_mv_bx4x4 + v_pos = xfm_points(mesh_v_pos_bxnx3, mtx_in) # Rotate it to camera coordinates + v_pos_clip = self.camera.project(v_pos) # Projection in the camera + + # view_pos = torch.linalg.inv(mtx_in)[:, :3, 3] + view_pos = camera_pos + v_nrm = mesh.v_nrm #compute_vertex_normal(mesh_v_pos_bxnx3[0], mesh_t_pos_idx_fx3.long()) # vertex normals in world coordinates + + # Render the image, + # Here we only return the feature (3D location) at each pixel, which will be used as the input for neural render + num_layers = 1 + mask_pyramid = None + assert mesh_t_pos_idx_fx3.shape[0] > 0 # Make sure we have shapes + + mesh_v_feat_bxnxd = torch.cat([mesh_v_feat_bxnxd.repeat(v_pos.shape[0], 1, 1), v_pos], dim=-1) # Concatenate the pos [org_pos, clip space pose for rasterization] + + layers = [] + with dr.DepthPeeler(self.ctx, v_pos_clip, mesh.t_pos_idx.int(), [resolution * spp, resolution * spp]) as peeler: + for _ in range(num_layers): + rast, db = peeler.rasterize_next_layer() + gb_pos, gb_normal = self.render_layer(rast, db, mesh, view_pos, resolution, spp, msaa=False) + + with dr.DepthPeeler(self.ctx, v_pos_clip, mesh_t_pos_idx_fx3, [resolution * spp, resolution * spp]) as peeler: + for _ in range(num_layers): + rast, db = peeler.rasterize_next_layer() + gb_feat, _ = interpolate(mesh_v_feat_bxnxd, rast, mesh_t_pos_idx_fx3) + + hard_mask = torch.clamp(rast[..., -1:], 0, 1) + antialias_mask = dr.antialias( + hard_mask.clone().contiguous(), rast, v_pos_clip, + mesh_t_pos_idx_fx3) + + depth = gb_feat[..., -2:-1] + ori_mesh_feature = gb_feat[..., :-4] + + normal, _ = interpolate(v_nrm[None, ...], rast, mesh_t_pos_idx_fx3) + normal = dr.antialias(normal.clone().contiguous(), rast, v_pos_clip, mesh_t_pos_idx_fx3) + # normal = F.normalize(normal, dim=-1) + # normal = torch.lerp(torch.zeros_like(normal), (normal + 1.0) / 2.0, hard_mask.float()) # black background + return ori_mesh_feature, antialias_mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal, gb_normal + + def render_mesh_light( + self, + mesh_v_pos_bxnx3, + mesh_t_pos_idx_fx3, + mesh, + camera_mv_bx4x4, + mesh_v_feat_bxnxd, + resolution=256, + spp=1, + device='cuda', + hierarchical_mask=False + ): + assert not hierarchical_mask + + mtx_in = torch.tensor(camera_mv_bx4x4, dtype=torch.float32, device=device) if not torch.is_tensor(camera_mv_bx4x4) else camera_mv_bx4x4 + v_pos = xfm_points(mesh_v_pos_bxnx3, mtx_in) # Rotate it to camera coordinates + v_pos_clip = self.camera.project(v_pos) # Projection in the camera + + v_nrm = compute_vertex_normal(mesh_v_pos_bxnx3[0], mesh_t_pos_idx_fx3.long()) # vertex normals in world coordinates + + # Render the image, + # Here we only return the feature (3D location) at each pixel, which will be used as the input for neural render + num_layers = 1 + mask_pyramid = None + assert mesh_t_pos_idx_fx3.shape[0] > 0 # Make sure we have shapes + mesh_v_feat_bxnxd = torch.cat([mesh_v_feat_bxnxd.repeat(v_pos.shape[0], 1, 1), v_pos], dim=-1) # Concatenate the pos + + with dr.DepthPeeler(self.ctx, v_pos_clip, mesh_t_pos_idx_fx3, [resolution * spp, resolution * spp]) as peeler: + for _ in range(num_layers): + rast, db = peeler.rasterize_next_layer() + gb_feat, _ = interpolate(mesh_v_feat_bxnxd, rast, mesh_t_pos_idx_fx3) + + hard_mask = torch.clamp(rast[..., -1:], 0, 1) + antialias_mask = dr.antialias( + hard_mask.clone().contiguous(), rast, v_pos_clip, + mesh_t_pos_idx_fx3) + + depth = gb_feat[..., -2:-1] + ori_mesh_feature = gb_feat[..., :-4] + + normal, _ = interpolate(v_nrm[None, ...], rast, mesh_t_pos_idx_fx3) + normal = dr.antialias(normal.clone().contiguous(), rast, v_pos_clip, mesh_t_pos_idx_fx3) + normal = F.normalize(normal, dim=-1) + normal = torch.lerp(torch.zeros_like(normal), (normal + 1.0) / 2.0, hard_mask.float()) # black background + + return ori_mesh_feature, antialias_mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal diff --git a/src/models/geometry/render/renderutils/__init__.py b/src/models/geometry/render/renderutils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f29739f961e48de71c58b4bbc45801654df49a70 --- /dev/null +++ b/src/models/geometry/render/renderutils/__init__.py @@ -0,0 +1,11 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +from .ops import xfm_points, xfm_vectors, image_loss, diffuse_cubemap, specular_cubemap, prepare_shading_normal, lambert, frostbite_diffuse, pbr_specular, pbr_bsdf, _fresnel_shlick, _ndf_ggx, _lambda_ggx, _masking_smith +__all__ = ["xfm_vectors", "xfm_points", "image_loss", "diffuse_cubemap","specular_cubemap", "prepare_shading_normal", "lambert", "frostbite_diffuse", "pbr_specular", "pbr_bsdf", "_fresnel_shlick", "_ndf_ggx", "_lambda_ggx", "_masking_smith", ] diff --git a/src/models/geometry/render/renderutils/__pycache__/__init__.cpython-310.pyc b/src/models/geometry/render/renderutils/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a7001cdb47b635c9a0828d21fede75a1157f696d Binary files /dev/null and b/src/models/geometry/render/renderutils/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/models/geometry/render/renderutils/__pycache__/bsdf.cpython-310.pyc b/src/models/geometry/render/renderutils/__pycache__/bsdf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e9bd9acd4b8cd652c027ad1726fd4bc9ae454e9a Binary files /dev/null and b/src/models/geometry/render/renderutils/__pycache__/bsdf.cpython-310.pyc differ diff --git a/src/models/geometry/render/renderutils/__pycache__/loss.cpython-310.pyc b/src/models/geometry/render/renderutils/__pycache__/loss.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..19d7c4d404c6793ae829508dea6862ad4bf8330c Binary files /dev/null and b/src/models/geometry/render/renderutils/__pycache__/loss.cpython-310.pyc differ diff --git a/src/models/geometry/render/renderutils/__pycache__/ops.cpython-310.pyc b/src/models/geometry/render/renderutils/__pycache__/ops.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b9ba4e6447f658c218cff1d733a3ec684c015973 Binary files /dev/null and b/src/models/geometry/render/renderutils/__pycache__/ops.cpython-310.pyc differ diff --git a/src/models/geometry/render/renderutils/bsdf.py b/src/models/geometry/render/renderutils/bsdf.py new file mode 100644 index 0000000000000000000000000000000000000000..38457ed58ee447cdf74bb780eb7457d4db1f7f92 --- /dev/null +++ b/src/models/geometry/render/renderutils/bsdf.py @@ -0,0 +1,151 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import math +import torch + +NORMAL_THRESHOLD = 0.1 + +################################################################################ +# Vector utility functions +################################################################################ + +def _dot(x, y): + return torch.sum(x*y, -1, keepdim=True) + +def _reflect(x, n): + return 2*_dot(x, n)*n - x + +def _safe_normalize(x): + return torch.nn.functional.normalize(x, dim = -1) + +def _bend_normal(view_vec, smooth_nrm, geom_nrm, two_sided_shading): + # Swap normal direction for backfacing surfaces + if two_sided_shading: + smooth_nrm = torch.where(_dot(geom_nrm, view_vec) > 0, smooth_nrm, -smooth_nrm) + geom_nrm = torch.where(_dot(geom_nrm, view_vec) > 0, geom_nrm, -geom_nrm) + + t = torch.clamp(_dot(view_vec, smooth_nrm) / NORMAL_THRESHOLD, min=0, max=1) + return torch.lerp(geom_nrm, smooth_nrm, t) + + +def _perturb_normal(perturbed_nrm, smooth_nrm, smooth_tng, opengl): + smooth_bitang = _safe_normalize(torch.cross(smooth_tng, smooth_nrm)) + if opengl: + shading_nrm = smooth_tng * perturbed_nrm[..., 0:1] - smooth_bitang * perturbed_nrm[..., 1:2] + smooth_nrm * torch.clamp(perturbed_nrm[..., 2:3], min=0.0) + else: + shading_nrm = smooth_tng * perturbed_nrm[..., 0:1] + smooth_bitang * perturbed_nrm[..., 1:2] + smooth_nrm * torch.clamp(perturbed_nrm[..., 2:3], min=0.0) + return _safe_normalize(shading_nrm) + +def bsdf_prepare_shading_normal(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl): + smooth_nrm = _safe_normalize(smooth_nrm) + smooth_tng = _safe_normalize(smooth_tng) + view_vec = _safe_normalize(view_pos - pos) + shading_nrm = _perturb_normal(perturbed_nrm, smooth_nrm, smooth_tng, opengl) + return _bend_normal(view_vec, shading_nrm, geom_nrm, two_sided_shading) + +################################################################################ +# Simple lambertian diffuse BSDF +################################################################################ + +def bsdf_lambert(nrm, wi): + return torch.clamp(_dot(nrm, wi), min=0.0) / math.pi + +################################################################################ +# Frostbite diffuse +################################################################################ + +def bsdf_frostbite(nrm, wi, wo, linearRoughness): + wiDotN = _dot(wi, nrm) + woDotN = _dot(wo, nrm) + + h = _safe_normalize(wo + wi) + wiDotH = _dot(wi, h) + + energyBias = 0.5 * linearRoughness + energyFactor = 1.0 - (0.51 / 1.51) * linearRoughness + f90 = energyBias + 2.0 * wiDotH * wiDotH * linearRoughness + f0 = 1.0 + + wiScatter = bsdf_fresnel_shlick(f0, f90, wiDotN) + woScatter = bsdf_fresnel_shlick(f0, f90, woDotN) + res = wiScatter * woScatter * energyFactor + return torch.where((wiDotN > 0.0) & (woDotN > 0.0), res, torch.zeros_like(res)) + +################################################################################ +# Phong specular, loosely based on mitsuba implementation +################################################################################ + +def bsdf_phong(nrm, wo, wi, N): + dp_r = torch.clamp(_dot(_reflect(wo, nrm), wi), min=0.0, max=1.0) + dp_l = torch.clamp(_dot(nrm, wi), min=0.0, max=1.0) + return (dp_r ** N) * dp_l * (N + 2) / (2 * math.pi) + +################################################################################ +# PBR's implementation of GGX specular +################################################################################ + +specular_epsilon = 1e-4 + +def bsdf_fresnel_shlick(f0, f90, cosTheta): + _cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon) + return f0 + (f90 - f0) * (1.0 - _cosTheta) ** 5.0 + +def bsdf_ndf_ggx(alphaSqr, cosTheta): + _cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon) + d = (_cosTheta * alphaSqr - _cosTheta) * _cosTheta + 1 + return alphaSqr / (d * d * math.pi) + +def bsdf_lambda_ggx(alphaSqr, cosTheta): + _cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon) + cosThetaSqr = _cosTheta * _cosTheta + tanThetaSqr = (1.0 - cosThetaSqr) / cosThetaSqr + res = 0.5 * (torch.sqrt(1 + alphaSqr * tanThetaSqr) - 1.0) + return res + +def bsdf_masking_smith_ggx_correlated(alphaSqr, cosThetaI, cosThetaO): + lambdaI = bsdf_lambda_ggx(alphaSqr, cosThetaI) + lambdaO = bsdf_lambda_ggx(alphaSqr, cosThetaO) + return 1 / (1 + lambdaI + lambdaO) + +def bsdf_pbr_specular(col, nrm, wo, wi, alpha, min_roughness=0.08): + _alpha = torch.clamp(alpha, min=min_roughness*min_roughness, max=1.0) + alphaSqr = _alpha * _alpha + + h = _safe_normalize(wo + wi) + woDotN = _dot(wo, nrm) + wiDotN = _dot(wi, nrm) + woDotH = _dot(wo, h) + nDotH = _dot(nrm, h) + + D = bsdf_ndf_ggx(alphaSqr, nDotH) + G = bsdf_masking_smith_ggx_correlated(alphaSqr, woDotN, wiDotN) + F = bsdf_fresnel_shlick(col, 1, woDotH) + + w = F * D * G * 0.25 / torch.clamp(woDotN, min=specular_epsilon) + + frontfacing = (woDotN > specular_epsilon) & (wiDotN > specular_epsilon) + return torch.where(frontfacing, w, torch.zeros_like(w)) + +def bsdf_pbr(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF): + wo = _safe_normalize(view_pos - pos) + wi = _safe_normalize(light_pos - pos) + + spec_str = arm[..., 0:1] # x component + roughness = arm[..., 1:2] # y component + metallic = arm[..., 2:3] # z component + ks = (0.04 * (1.0 - metallic) + kd * metallic) * (1 - spec_str) + kd = kd * (1.0 - metallic) + + if BSDF == 0: + diffuse = kd * bsdf_lambert(nrm, wi) + else: + diffuse = kd * bsdf_frostbite(nrm, wi, wo, roughness) + specular = bsdf_pbr_specular(ks, nrm, wo, wi, roughness*roughness, min_roughness=min_roughness) + return diffuse + specular diff --git a/src/models/geometry/render/renderutils/c_src/bsdf.cu b/src/models/geometry/render/renderutils/c_src/bsdf.cu new file mode 100644 index 0000000000000000000000000000000000000000..c167214f9a4cb42b8d640202969e3950be8b806d --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/bsdf.cu @@ -0,0 +1,710 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#include "common.h" +#include "bsdf.h" + +#define SPECULAR_EPSILON 1e-4f + +//------------------------------------------------------------------------ +// Lambert functions + +__device__ inline float fwdLambert(const vec3f nrm, const vec3f wi) +{ + return max(dot(nrm, wi) / M_PI, 0.0f); +} + +__device__ inline void bwdLambert(const vec3f nrm, const vec3f wi, vec3f& d_nrm, vec3f& d_wi, const float d_out) +{ + if (dot(nrm, wi) > 0.0f) + bwdDot(nrm, wi, d_nrm, d_wi, d_out / M_PI); +} + +//------------------------------------------------------------------------ +// Fresnel Schlick + +__device__ inline float fwdFresnelSchlick(const float f0, const float f90, const float cosTheta) +{ + float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON); + float scale = powf(1.0f - _cosTheta, 5.0f); + return f0 * (1.0f - scale) + f90 * scale; +} + +__device__ inline void bwdFresnelSchlick(const float f0, const float f90, const float cosTheta, float& d_f0, float& d_f90, float& d_cosTheta, const float d_out) +{ + float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON); + float scale = pow(max(1.0f - _cosTheta, 0.0f), 5.0f); + d_f0 += d_out * (1.0 - scale); + d_f90 += d_out * scale; + if (cosTheta >= SPECULAR_EPSILON && cosTheta < 1.0f - SPECULAR_EPSILON) + { + d_cosTheta += d_out * (f90 - f0) * -5.0f * powf(1.0f - cosTheta, 4.0f); + } +} + +__device__ inline vec3f fwdFresnelSchlick(const vec3f f0, const vec3f f90, const float cosTheta) +{ + float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON); + float scale = powf(1.0f - _cosTheta, 5.0f); + return f0 * (1.0f - scale) + f90 * scale; +} + +__device__ inline void bwdFresnelSchlick(const vec3f f0, const vec3f f90, const float cosTheta, vec3f& d_f0, vec3f& d_f90, float& d_cosTheta, const vec3f d_out) +{ + float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON); + float scale = pow(max(1.0f - _cosTheta, 0.0f), 5.0f); + d_f0 += d_out * (1.0 - scale); + d_f90 += d_out * scale; + if (cosTheta >= SPECULAR_EPSILON && cosTheta < 1.0f - SPECULAR_EPSILON) + { + d_cosTheta += sum(d_out * (f90 - f0) * -5.0f * powf(1.0f - cosTheta, 4.0f)); + } +} + +//------------------------------------------------------------------------ +// Frostbite diffuse + +__device__ inline float fwdFrostbiteDiffuse(const vec3f nrm, const vec3f wi, const vec3f wo, float linearRoughness) +{ + float wiDotN = dot(wi, nrm); + float woDotN = dot(wo, nrm); + if (wiDotN > 0.0f && woDotN > 0.0f) + { + vec3f h = safeNormalize(wo + wi); + float wiDotH = dot(wi, h); + + float energyBias = 0.5f * linearRoughness; + float energyFactor = 1.0f - (0.51f / 1.51f) * linearRoughness; + float f90 = energyBias + 2.f * wiDotH * wiDotH * linearRoughness; + float f0 = 1.f; + + float wiScatter = fwdFresnelSchlick(f0, f90, wiDotN); + float woScatter = fwdFresnelSchlick(f0, f90, woDotN); + + return wiScatter * woScatter * energyFactor; + } + else return 0.0f; +} + +__device__ inline void bwdFrostbiteDiffuse(const vec3f nrm, const vec3f wi, const vec3f wo, float linearRoughness, vec3f& d_nrm, vec3f& d_wi, vec3f& d_wo, float &d_linearRoughness, const float d_out) +{ + float wiDotN = dot(wi, nrm); + float woDotN = dot(wo, nrm); + + if (wiDotN > 0.0f && woDotN > 0.0f) + { + vec3f h = safeNormalize(wo + wi); + float wiDotH = dot(wi, h); + + float energyBias = 0.5f * linearRoughness; + float energyFactor = 1.0f - (0.51f / 1.51f) * linearRoughness; + float f90 = energyBias + 2.f * wiDotH * wiDotH * linearRoughness; + float f0 = 1.f; + + float wiScatter = fwdFresnelSchlick(f0, f90, wiDotN); + float woScatter = fwdFresnelSchlick(f0, f90, woDotN); + + // -------------- BWD -------------- + // Backprop: return wiScatter * woScatter * energyFactor; + float d_wiScatter = d_out * woScatter * energyFactor; + float d_woScatter = d_out * wiScatter * energyFactor; + float d_energyFactor = d_out * wiScatter * woScatter; + + // Backprop: float woScatter = fwdFresnelSchlick(f0, f90, woDotN); + float d_woDotN = 0.0f, d_f0 = 0.0, d_f90 = 0.0f; + bwdFresnelSchlick(f0, f90, woDotN, d_f0, d_f90, d_woDotN, d_woScatter); + + // Backprop: float wiScatter = fwdFresnelSchlick(fd0, fd90, wiDotN); + float d_wiDotN = 0.0f; + bwdFresnelSchlick(f0, f90, wiDotN, d_f0, d_f90, d_wiDotN, d_wiScatter); + + // Backprop: float f90 = energyBias + 2.f * wiDotH * wiDotH * linearRoughness; + float d_energyBias = d_f90; + float d_wiDotH = d_f90 * 4 * wiDotH * linearRoughness; + d_linearRoughness += d_f90 * 2 * wiDotH * wiDotH; + + // Backprop: float energyFactor = 1.0f - (0.51f / 1.51f) * linearRoughness; + d_linearRoughness -= (0.51f / 1.51f) * d_energyFactor; + + // Backprop: float energyBias = 0.5f * linearRoughness; + d_linearRoughness += 0.5 * d_energyBias; + + // Backprop: float wiDotH = dot(wi, h); + vec3f d_h(0); + bwdDot(wi, h, d_wi, d_h, d_wiDotH); + + // Backprop: vec3f h = safeNormalize(wo + wi); + vec3f d_wo_wi(0); + bwdSafeNormalize(wo + wi, d_wo_wi, d_h); + d_wi += d_wo_wi; d_wo += d_wo_wi; + + bwdDot(wo, nrm, d_wo, d_nrm, d_woDotN); + bwdDot(wi, nrm, d_wi, d_nrm, d_wiDotN); + } +} + +//------------------------------------------------------------------------ +// Ndf GGX + +__device__ inline float fwdNdfGGX(const float alphaSqr, const float cosTheta) +{ + float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON); + float d = (_cosTheta * alphaSqr - _cosTheta) * _cosTheta + 1.0f; + return alphaSqr / (d * d * M_PI); +} + +__device__ inline void bwdNdfGGX(const float alphaSqr, const float cosTheta, float& d_alphaSqr, float& d_cosTheta, const float d_out) +{ + // Torch only back propagates if clamp doesn't trigger + float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON); + float cosThetaSqr = _cosTheta * _cosTheta; + d_alphaSqr += d_out * (1.0f - (alphaSqr + 1.0f) * cosThetaSqr) / (M_PI * powf((alphaSqr - 1.0) * cosThetaSqr + 1.0f, 3.0f)); + if (cosTheta > SPECULAR_EPSILON && cosTheta < 1.0f - SPECULAR_EPSILON) + { + d_cosTheta += d_out * -(4.0f * (alphaSqr - 1.0f) * alphaSqr * cosTheta) / (M_PI * powf((alphaSqr - 1.0) * cosThetaSqr + 1.0f, 3.0f)); + } +} + +//------------------------------------------------------------------------ +// Lambda GGX + +__device__ inline float fwdLambdaGGX(const float alphaSqr, const float cosTheta) +{ + float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON); + float cosThetaSqr = _cosTheta * _cosTheta; + float tanThetaSqr = (1.0 - cosThetaSqr) / cosThetaSqr; + float res = 0.5f * (sqrtf(1.0f + alphaSqr * tanThetaSqr) - 1.0f); + return res; +} + +__device__ inline void bwdLambdaGGX(const float alphaSqr, const float cosTheta, float& d_alphaSqr, float& d_cosTheta, const float d_out) +{ + float _cosTheta = clamp(cosTheta, SPECULAR_EPSILON, 1.0f - SPECULAR_EPSILON); + float cosThetaSqr = _cosTheta * _cosTheta; + float tanThetaSqr = (1.0 - cosThetaSqr) / cosThetaSqr; + float res = 0.5f * (sqrtf(1.0f + alphaSqr * tanThetaSqr) - 1.0f); + + d_alphaSqr += d_out * (0.25 * tanThetaSqr) / sqrtf(alphaSqr * tanThetaSqr + 1.0f); + if (cosTheta > SPECULAR_EPSILON && cosTheta < 1.0f - SPECULAR_EPSILON) + d_cosTheta += d_out * -(0.5 * alphaSqr) / (powf(_cosTheta, 3.0f) * sqrtf(alphaSqr / cosThetaSqr - alphaSqr + 1.0f)); +} + +//------------------------------------------------------------------------ +// Masking GGX + +__device__ inline float fwdMaskingSmithGGXCorrelated(const float alphaSqr, const float cosThetaI, const float cosThetaO) +{ + float lambdaI = fwdLambdaGGX(alphaSqr, cosThetaI); + float lambdaO = fwdLambdaGGX(alphaSqr, cosThetaO); + return 1.0f / (1.0f + lambdaI + lambdaO); +} + +__device__ inline void bwdMaskingSmithGGXCorrelated(const float alphaSqr, const float cosThetaI, const float cosThetaO, float& d_alphaSqr, float& d_cosThetaI, float& d_cosThetaO, const float d_out) +{ + // FWD eval + float lambdaI = fwdLambdaGGX(alphaSqr, cosThetaI); + float lambdaO = fwdLambdaGGX(alphaSqr, cosThetaO); + + // BWD eval + float d_lambdaIO = -d_out / powf(1.0f + lambdaI + lambdaO, 2.0f); + bwdLambdaGGX(alphaSqr, cosThetaI, d_alphaSqr, d_cosThetaI, d_lambdaIO); + bwdLambdaGGX(alphaSqr, cosThetaO, d_alphaSqr, d_cosThetaO, d_lambdaIO); +} + +//------------------------------------------------------------------------ +// GGX specular + +__device__ vec3f fwdPbrSpecular(const vec3f col, const vec3f nrm, const vec3f wo, const vec3f wi, const float alpha, const float min_roughness) +{ + float _alpha = clamp(alpha, min_roughness * min_roughness, 1.0f); + float alphaSqr = _alpha * _alpha; + + vec3f h = safeNormalize(wo + wi); + float woDotN = dot(wo, nrm); + float wiDotN = dot(wi, nrm); + float woDotH = dot(wo, h); + float nDotH = dot(nrm, h); + + float D = fwdNdfGGX(alphaSqr, nDotH); + float G = fwdMaskingSmithGGXCorrelated(alphaSqr, woDotN, wiDotN); + vec3f F = fwdFresnelSchlick(col, 1.0f, woDotH); + vec3f w = F * D * G * 0.25 / woDotN; + + bool frontfacing = (woDotN > SPECULAR_EPSILON) & (wiDotN > SPECULAR_EPSILON); + return frontfacing ? w : 0.0f; +} + +__device__ void bwdPbrSpecular( + const vec3f col, const vec3f nrm, const vec3f wo, const vec3f wi, const float alpha, const float min_roughness, + vec3f& d_col, vec3f& d_nrm, vec3f& d_wo, vec3f& d_wi, float& d_alpha, const vec3f d_out) +{ + /////////////////////////////////////////////////////////////////////// + // FWD eval + + float _alpha = clamp(alpha, min_roughness * min_roughness, 1.0f); + float alphaSqr = _alpha * _alpha; + + vec3f h = safeNormalize(wo + wi); + float woDotN = dot(wo, nrm); + float wiDotN = dot(wi, nrm); + float woDotH = dot(wo, h); + float nDotH = dot(nrm, h); + + float D = fwdNdfGGX(alphaSqr, nDotH); + float G = fwdMaskingSmithGGXCorrelated(alphaSqr, woDotN, wiDotN); + vec3f F = fwdFresnelSchlick(col, 1.0f, woDotH); + vec3f w = F * D * G * 0.25 / woDotN; + bool frontfacing = (woDotN > SPECULAR_EPSILON) & (wiDotN > SPECULAR_EPSILON); + + if (frontfacing) + { + /////////////////////////////////////////////////////////////////////// + // BWD eval + + vec3f d_F = d_out * D * G * 0.25f / woDotN; + float d_D = sum(d_out * F * G * 0.25f / woDotN); + float d_G = sum(d_out * F * D * 0.25f / woDotN); + + float d_woDotN = -sum(d_out * F * D * G * 0.25f / (woDotN * woDotN)); + + vec3f d_f90(0); + float d_woDotH(0), d_wiDotN(0), d_nDotH(0), d_alphaSqr(0); + bwdFresnelSchlick(col, 1.0f, woDotH, d_col, d_f90, d_woDotH, d_F); + bwdMaskingSmithGGXCorrelated(alphaSqr, woDotN, wiDotN, d_alphaSqr, d_woDotN, d_wiDotN, d_G); + bwdNdfGGX(alphaSqr, nDotH, d_alphaSqr, d_nDotH, d_D); + + vec3f d_h(0); + bwdDot(nrm, h, d_nrm, d_h, d_nDotH); + bwdDot(wo, h, d_wo, d_h, d_woDotH); + bwdDot(wi, nrm, d_wi, d_nrm, d_wiDotN); + bwdDot(wo, nrm, d_wo, d_nrm, d_woDotN); + + vec3f d_h_unnorm(0); + bwdSafeNormalize(wo + wi, d_h_unnorm, d_h); + d_wo += d_h_unnorm; + d_wi += d_h_unnorm; + + if (alpha > min_roughness * min_roughness) + d_alpha += d_alphaSqr * 2 * alpha; + } +} + +//------------------------------------------------------------------------ +// Full PBR BSDF + +__device__ vec3f fwdPbrBSDF(const vec3f kd, const vec3f arm, const vec3f pos, const vec3f nrm, const vec3f view_pos, const vec3f light_pos, const float min_roughness, int BSDF) +{ + vec3f wo = safeNormalize(view_pos - pos); + vec3f wi = safeNormalize(light_pos - pos); + + float alpha = arm.y * arm.y; + vec3f spec_col = (0.04f * (1.0f - arm.z) + kd * arm.z) * (1.0 - arm.x); + vec3f diff_col = kd * (1.0f - arm.z); + + float diff = 0.0f; + if (BSDF == 0) + diff = fwdLambert(nrm, wi); + else + diff = fwdFrostbiteDiffuse(nrm, wi, wo, arm.y); + vec3f diffuse = diff_col * diff; + vec3f specular = fwdPbrSpecular(spec_col, nrm, wo, wi, alpha, min_roughness); + + return diffuse + specular; +} + +__device__ void bwdPbrBSDF( + const vec3f kd, const vec3f arm, const vec3f pos, const vec3f nrm, const vec3f view_pos, const vec3f light_pos, const float min_roughness, int BSDF, + vec3f& d_kd, vec3f& d_arm, vec3f& d_pos, vec3f& d_nrm, vec3f& d_view_pos, vec3f& d_light_pos, const vec3f d_out) +{ + //////////////////////////////////////////////////////////////////////// + // FWD + vec3f _wi = light_pos - pos; + vec3f _wo = view_pos - pos; + vec3f wi = safeNormalize(_wi); + vec3f wo = safeNormalize(_wo); + + float alpha = arm.y * arm.y; + vec3f spec_col = (0.04f * (1.0f - arm.z) + kd * arm.z) * (1.0 - arm.x); + vec3f diff_col = kd * (1.0f - arm.z); + float diff = 0.0f; + if (BSDF == 0) + diff = fwdLambert(nrm, wi); + else + diff = fwdFrostbiteDiffuse(nrm, wi, wo, arm.y); + + //////////////////////////////////////////////////////////////////////// + // BWD + + float d_alpha(0); + vec3f d_spec_col(0), d_wi(0), d_wo(0); + bwdPbrSpecular(spec_col, nrm, wo, wi, alpha, min_roughness, d_spec_col, d_nrm, d_wo, d_wi, d_alpha, d_out); + + float d_diff = sum(diff_col * d_out); + if (BSDF == 0) + bwdLambert(nrm, wi, d_nrm, d_wi, d_diff); + else + bwdFrostbiteDiffuse(nrm, wi, wo, arm.y, d_nrm, d_wi, d_wo, d_arm.y, d_diff); + + // Backprop: diff_col = kd * (1.0f - arm.z) + vec3f d_diff_col = d_out * diff; + d_kd += d_diff_col * (1.0f - arm.z); + d_arm.z -= sum(d_diff_col * kd); + + // Backprop: spec_col = (0.04f * (1.0f - arm.z) + kd * arm.z) * (1.0 - arm.x) + d_kd -= d_spec_col * (arm.x - 1.0f) * arm.z; + d_arm.x += sum(d_spec_col * (arm.z * (0.04f - kd) - 0.04f)); + d_arm.z -= sum(d_spec_col * (kd - 0.04f) * (arm.x - 1.0f)); + + // Backprop: alpha = arm.y * arm.y + d_arm.y += d_alpha * 2 * arm.y; + + // Backprop: vec3f wi = safeNormalize(light_pos - pos); + vec3f d__wi(0); + bwdSafeNormalize(_wi, d__wi, d_wi); + d_light_pos += d__wi; + d_pos -= d__wi; + + // Backprop: vec3f wo = safeNormalize(view_pos - pos); + vec3f d__wo(0); + bwdSafeNormalize(_wo, d__wo, d_wo); + d_view_pos += d__wo; + d_pos -= d__wo; +} + +//------------------------------------------------------------------------ +// Kernels + +__global__ void LambertFwdKernel(LambertKernelParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + vec3f nrm = p.nrm.fetch3(px, py, pz); + vec3f wi = p.wi.fetch3(px, py, pz); + + float res = fwdLambert(nrm, wi); + + p.out.store(px, py, pz, res); +} + +__global__ void LambertBwdKernel(LambertKernelParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + vec3f nrm = p.nrm.fetch3(px, py, pz); + vec3f wi = p.wi.fetch3(px, py, pz); + float d_out = p.out.fetch1(px, py, pz); + + vec3f d_nrm(0), d_wi(0); + bwdLambert(nrm, wi, d_nrm, d_wi, d_out); + + p.nrm.store_grad(px, py, pz, d_nrm); + p.wi.store_grad(px, py, pz, d_wi); +} + +__global__ void FrostbiteDiffuseFwdKernel(FrostbiteDiffuseKernelParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + vec3f nrm = p.nrm.fetch3(px, py, pz); + vec3f wi = p.wi.fetch3(px, py, pz); + vec3f wo = p.wo.fetch3(px, py, pz); + float linearRoughness = p.linearRoughness.fetch1(px, py, pz); + + float res = fwdFrostbiteDiffuse(nrm, wi, wo, linearRoughness); + + p.out.store(px, py, pz, res); +} + +__global__ void FrostbiteDiffuseBwdKernel(FrostbiteDiffuseKernelParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + vec3f nrm = p.nrm.fetch3(px, py, pz); + vec3f wi = p.wi.fetch3(px, py, pz); + vec3f wo = p.wo.fetch3(px, py, pz); + float linearRoughness = p.linearRoughness.fetch1(px, py, pz); + float d_out = p.out.fetch1(px, py, pz); + + float d_linearRoughness = 0.0f; + vec3f d_nrm(0), d_wi(0), d_wo(0); + bwdFrostbiteDiffuse(nrm, wi, wo, linearRoughness, d_nrm, d_wi, d_wo, d_linearRoughness, d_out); + + p.nrm.store_grad(px, py, pz, d_nrm); + p.wi.store_grad(px, py, pz, d_wi); + p.wo.store_grad(px, py, pz, d_wo); + p.linearRoughness.store_grad(px, py, pz, d_linearRoughness); +} + +__global__ void FresnelShlickFwdKernel(FresnelShlickKernelParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + vec3f f0 = p.f0.fetch3(px, py, pz); + vec3f f90 = p.f90.fetch3(px, py, pz); + float cosTheta = p.cosTheta.fetch1(px, py, pz); + + vec3f res = fwdFresnelSchlick(f0, f90, cosTheta); + p.out.store(px, py, pz, res); +} + +__global__ void FresnelShlickBwdKernel(FresnelShlickKernelParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + vec3f f0 = p.f0.fetch3(px, py, pz); + vec3f f90 = p.f90.fetch3(px, py, pz); + float cosTheta = p.cosTheta.fetch1(px, py, pz); + vec3f d_out = p.out.fetch3(px, py, pz); + + vec3f d_f0(0), d_f90(0); + float d_cosTheta(0); + bwdFresnelSchlick(f0, f90, cosTheta, d_f0, d_f90, d_cosTheta, d_out); + + p.f0.store_grad(px, py, pz, d_f0); + p.f90.store_grad(px, py, pz, d_f90); + p.cosTheta.store_grad(px, py, pz, d_cosTheta); +} + +__global__ void ndfGGXFwdKernel(NdfGGXParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + float alphaSqr = p.alphaSqr.fetch1(px, py, pz); + float cosTheta = p.cosTheta.fetch1(px, py, pz); + float res = fwdNdfGGX(alphaSqr, cosTheta); + + p.out.store(px, py, pz, res); +} + +__global__ void ndfGGXBwdKernel(NdfGGXParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + float alphaSqr = p.alphaSqr.fetch1(px, py, pz); + float cosTheta = p.cosTheta.fetch1(px, py, pz); + float d_out = p.out.fetch1(px, py, pz); + + float d_alphaSqr(0), d_cosTheta(0); + bwdNdfGGX(alphaSqr, cosTheta, d_alphaSqr, d_cosTheta, d_out); + + p.alphaSqr.store_grad(px, py, pz, d_alphaSqr); + p.cosTheta.store_grad(px, py, pz, d_cosTheta); +} + +__global__ void lambdaGGXFwdKernel(NdfGGXParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + float alphaSqr = p.alphaSqr.fetch1(px, py, pz); + float cosTheta = p.cosTheta.fetch1(px, py, pz); + float res = fwdLambdaGGX(alphaSqr, cosTheta); + + p.out.store(px, py, pz, res); +} + +__global__ void lambdaGGXBwdKernel(NdfGGXParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + float alphaSqr = p.alphaSqr.fetch1(px, py, pz); + float cosTheta = p.cosTheta.fetch1(px, py, pz); + float d_out = p.out.fetch1(px, py, pz); + + float d_alphaSqr(0), d_cosTheta(0); + bwdLambdaGGX(alphaSqr, cosTheta, d_alphaSqr, d_cosTheta, d_out); + + p.alphaSqr.store_grad(px, py, pz, d_alphaSqr); + p.cosTheta.store_grad(px, py, pz, d_cosTheta); +} + +__global__ void maskingSmithFwdKernel(MaskingSmithParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + float alphaSqr = p.alphaSqr.fetch1(px, py, pz); + float cosThetaI = p.cosThetaI.fetch1(px, py, pz); + float cosThetaO = p.cosThetaO.fetch1(px, py, pz); + float res = fwdMaskingSmithGGXCorrelated(alphaSqr, cosThetaI, cosThetaO); + + p.out.store(px, py, pz, res); +} + +__global__ void maskingSmithBwdKernel(MaskingSmithParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + float alphaSqr = p.alphaSqr.fetch1(px, py, pz); + float cosThetaI = p.cosThetaI.fetch1(px, py, pz); + float cosThetaO = p.cosThetaO.fetch1(px, py, pz); + float d_out = p.out.fetch1(px, py, pz); + + float d_alphaSqr(0), d_cosThetaI(0), d_cosThetaO(0); + bwdMaskingSmithGGXCorrelated(alphaSqr, cosThetaI, cosThetaO, d_alphaSqr, d_cosThetaI, d_cosThetaO, d_out); + + p.alphaSqr.store_grad(px, py, pz, d_alphaSqr); + p.cosThetaI.store_grad(px, py, pz, d_cosThetaI); + p.cosThetaO.store_grad(px, py, pz, d_cosThetaO); +} + +__global__ void pbrSpecularFwdKernel(PbrSpecular p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + vec3f col = p.col.fetch3(px, py, pz); + vec3f nrm = p.nrm.fetch3(px, py, pz); + vec3f wo = p.wo.fetch3(px, py, pz); + vec3f wi = p.wi.fetch3(px, py, pz); + float alpha = p.alpha.fetch1(px, py, pz); + + vec3f res = fwdPbrSpecular(col, nrm, wo, wi, alpha, p.min_roughness); + + p.out.store(px, py, pz, res); +} + +__global__ void pbrSpecularBwdKernel(PbrSpecular p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + vec3f col = p.col.fetch3(px, py, pz); + vec3f nrm = p.nrm.fetch3(px, py, pz); + vec3f wo = p.wo.fetch3(px, py, pz); + vec3f wi = p.wi.fetch3(px, py, pz); + float alpha = p.alpha.fetch1(px, py, pz); + vec3f d_out = p.out.fetch3(px, py, pz); + + float d_alpha(0); + vec3f d_col(0), d_nrm(0), d_wo(0), d_wi(0); + bwdPbrSpecular(col, nrm, wo, wi, alpha, p.min_roughness, d_col, d_nrm, d_wo, d_wi, d_alpha, d_out); + + p.col.store_grad(px, py, pz, d_col); + p.nrm.store_grad(px, py, pz, d_nrm); + p.wo.store_grad(px, py, pz, d_wo); + p.wi.store_grad(px, py, pz, d_wi); + p.alpha.store_grad(px, py, pz, d_alpha); +} + +__global__ void pbrBSDFFwdKernel(PbrBSDF p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + vec3f kd = p.kd.fetch3(px, py, pz); + vec3f arm = p.arm.fetch3(px, py, pz); + vec3f pos = p.pos.fetch3(px, py, pz); + vec3f nrm = p.nrm.fetch3(px, py, pz); + vec3f view_pos = p.view_pos.fetch3(px, py, pz); + vec3f light_pos = p.light_pos.fetch3(px, py, pz); + + vec3f res = fwdPbrBSDF(kd, arm, pos, nrm, view_pos, light_pos, p.min_roughness, p.BSDF); + + p.out.store(px, py, pz, res); +} +__global__ void pbrBSDFBwdKernel(PbrBSDF p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + vec3f kd = p.kd.fetch3(px, py, pz); + vec3f arm = p.arm.fetch3(px, py, pz); + vec3f pos = p.pos.fetch3(px, py, pz); + vec3f nrm = p.nrm.fetch3(px, py, pz); + vec3f view_pos = p.view_pos.fetch3(px, py, pz); + vec3f light_pos = p.light_pos.fetch3(px, py, pz); + vec3f d_out = p.out.fetch3(px, py, pz); + + vec3f d_kd(0), d_arm(0), d_pos(0), d_nrm(0), d_view_pos(0), d_light_pos(0); + bwdPbrBSDF(kd, arm, pos, nrm, view_pos, light_pos, p.min_roughness, p.BSDF, d_kd, d_arm, d_pos, d_nrm, d_view_pos, d_light_pos, d_out); + + p.kd.store_grad(px, py, pz, d_kd); + p.arm.store_grad(px, py, pz, d_arm); + p.pos.store_grad(px, py, pz, d_pos); + p.nrm.store_grad(px, py, pz, d_nrm); + p.view_pos.store_grad(px, py, pz, d_view_pos); + p.light_pos.store_grad(px, py, pz, d_light_pos); +} diff --git a/src/models/geometry/render/renderutils/c_src/bsdf.h b/src/models/geometry/render/renderutils/c_src/bsdf.h new file mode 100644 index 0000000000000000000000000000000000000000..59adbf097490c5a643ebdcff9c3784173522e070 --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/bsdf.h @@ -0,0 +1,84 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#pragma once + +#include "common.h" + +struct LambertKernelParams +{ + Tensor nrm; + Tensor wi; + Tensor out; + dim3 gridSize; +}; + +struct FrostbiteDiffuseKernelParams +{ + Tensor nrm; + Tensor wi; + Tensor wo; + Tensor linearRoughness; + Tensor out; + dim3 gridSize; +}; + +struct FresnelShlickKernelParams +{ + Tensor f0; + Tensor f90; + Tensor cosTheta; + Tensor out; + dim3 gridSize; +}; + +struct NdfGGXParams +{ + Tensor alphaSqr; + Tensor cosTheta; + Tensor out; + dim3 gridSize; +}; + +struct MaskingSmithParams +{ + Tensor alphaSqr; + Tensor cosThetaI; + Tensor cosThetaO; + Tensor out; + dim3 gridSize; +}; + +struct PbrSpecular +{ + Tensor col; + Tensor nrm; + Tensor wo; + Tensor wi; + Tensor alpha; + Tensor out; + dim3 gridSize; + float min_roughness; +}; + +struct PbrBSDF +{ + Tensor kd; + Tensor arm; + Tensor pos; + Tensor nrm; + Tensor view_pos; + Tensor light_pos; + Tensor out; + dim3 gridSize; + float min_roughness; + int BSDF; +}; diff --git a/src/models/geometry/render/renderutils/c_src/common.cpp b/src/models/geometry/render/renderutils/c_src/common.cpp new file mode 100644 index 0000000000000000000000000000000000000000..445895e57f7d0bcd6a2812f5ba97d7be2ddfbe28 --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/common.cpp @@ -0,0 +1,74 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#include +#include + +//------------------------------------------------------------------------ +// Block and grid size calculators for kernel launches. + +dim3 getLaunchBlockSize(int maxWidth, int maxHeight, dim3 dims) +{ + int maxThreads = maxWidth * maxHeight; + if (maxThreads <= 1 || (dims.x * dims.y) <= 1) + return dim3(1, 1, 1); // Degenerate. + + // Start from max size. + int bw = maxWidth; + int bh = maxHeight; + + // Optimizations for weirdly sized buffers. + if (dims.x < bw) + { + // Decrease block width to smallest power of two that covers the buffer width. + while ((bw >> 1) >= dims.x) + bw >>= 1; + + // Maximize height. + bh = maxThreads / bw; + if (bh > dims.y) + bh = dims.y; + } + else if (dims.y < bh) + { + // Halve height and double width until fits completely inside buffer vertically. + while (bh > dims.y) + { + bh >>= 1; + if (bw < dims.x) + bw <<= 1; + } + } + + // Done. + return dim3(bw, bh, 1); +} + +// returns the size of a block that can be reduced using horizontal SIMD operations (e.g. __shfl_xor_sync) +dim3 getWarpSize(dim3 blockSize) +{ + return dim3( + std::min(blockSize.x, 32u), + std::min(std::max(32u / blockSize.x, 1u), std::min(32u, blockSize.y)), + std::min(std::max(32u / (blockSize.x * blockSize.y), 1u), std::min(32u, blockSize.z)) + ); +} + +dim3 getLaunchGridSize(dim3 blockSize, dim3 dims) +{ + dim3 gridSize; + gridSize.x = (dims.x - 1) / blockSize.x + 1; + gridSize.y = (dims.y - 1) / blockSize.y + 1; + gridSize.z = (dims.z - 1) / blockSize.z + 1; + return gridSize; +} + +//------------------------------------------------------------------------ diff --git a/src/models/geometry/render/renderutils/c_src/common.h b/src/models/geometry/render/renderutils/c_src/common.h new file mode 100644 index 0000000000000000000000000000000000000000..5abaeebdd3f0a0910f7df3e9e0470a9fa682d507 --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/common.h @@ -0,0 +1,41 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#pragma once +#include +#include + +#include "vec3f.h" +#include "vec4f.h" +#include "tensor.h" + +dim3 getLaunchBlockSize(int maxWidth, int maxHeight, dim3 dims); +dim3 getLaunchGridSize(dim3 blockSize, dim3 dims); + +#ifdef __CUDACC__ + +#ifdef _MSC_VER +#define M_PI 3.14159265358979323846f +#endif + +__host__ __device__ static inline dim3 getWarpSize(dim3 blockSize) +{ + return dim3( + min(blockSize.x, 32u), + min(max(32u / blockSize.x, 1u), min(32u, blockSize.y)), + min(max(32u / (blockSize.x * blockSize.y), 1u), min(32u, blockSize.z)) + ); +} + +__device__ static inline float clamp(float val, float mn, float mx) { return min(max(val, mn), mx); } +#else +dim3 getWarpSize(dim3 blockSize); +#endif \ No newline at end of file diff --git a/src/models/geometry/render/renderutils/c_src/cubemap.cu b/src/models/geometry/render/renderutils/c_src/cubemap.cu new file mode 100644 index 0000000000000000000000000000000000000000..2ce21d83b2dd6759da30874cf8e01b7fd88e9217 --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/cubemap.cu @@ -0,0 +1,350 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#include "common.h" +#include "cubemap.h" +#include + +// https://cgvr.cs.uni-bremen.de/teaching/cg_literatur/Spherical,%20Cubic,%20and%20Parabolic%20Environment%20Mappings.pdf +__device__ float pixel_area(int x, int y, int N) +{ + if (N > 1) + { + int H = N / 2; + x = abs(x - H); + y = abs(y - H); + float dx = atan((float)(x + 1) / (float)H) - atan((float)x / (float)H); + float dy = atan((float)(y + 1) / (float)H) - atan((float)y / (float)H); + return dx * dy; + } + else + return 1; +} + +__device__ vec3f cube_to_dir(int x, int y, int side, int N) +{ + float fx = 2.0f * (((float)x + 0.5f) / (float)N) - 1.0f; + float fy = 2.0f * (((float)y + 0.5f) / (float)N) - 1.0f; + switch (side) + { + case 0: return safeNormalize(vec3f(1, -fy, -fx)); + case 1: return safeNormalize(vec3f(-1, -fy, fx)); + case 2: return safeNormalize(vec3f(fx, 1, fy)); + case 3: return safeNormalize(vec3f(fx, -1, -fy)); + case 4: return safeNormalize(vec3f(fx, -fy, 1)); + case 5: return safeNormalize(vec3f(-fx, -fy, -1)); + } + return vec3f(0,0,0); // Unreachable +} + +__device__ vec3f dir_to_side(int side, vec3f v) +{ + switch (side) + { + case 0: return vec3f(-v.z, -v.y, v.x); + case 1: return vec3f( v.z, -v.y, -v.x); + case 2: return vec3f( v.x, v.z, v.y); + case 3: return vec3f( v.x, -v.z, -v.y); + case 4: return vec3f( v.x, -v.y, v.z); + case 5: return vec3f(-v.x, -v.y, -v.z); + } + return vec3f(0,0,0); // Unreachable +} + +__device__ void extents_1d(float x, float z, float theta, float& _min, float& _max) +{ + float l = sqrtf(x * x + z * z); + float pxr = x + z * tan(theta) * l, pzr = z - x * tan(theta) * l; + float pxl = x - z * tan(theta) * l, pzl = z + x * tan(theta) * l; + if (pzl <= 0.00001f) + _min = pxl > 0.0f ? FLT_MAX : -FLT_MAX; + else + _min = pxl / pzl; + if (pzr <= 0.00001f) + _max = pxr > 0.0f ? FLT_MAX : -FLT_MAX; + else + _max = pxr / pzr; +} + +__device__ void dir_extents(int side, int N, vec3f v, float theta, int &_xmin, int& _xmax, int& _ymin, int& _ymax) +{ + vec3f c = dir_to_side(side, v); // remap to (x,y,z) where side is at z = 1 + + if (theta < 0.785398f) // PI/4 + { + float xmin, xmax, ymin, ymax; + extents_1d(c.x, c.z, theta, xmin, xmax); + extents_1d(c.y, c.z, theta, ymin, ymax); + + if (xmin > 1.0f || xmax < -1.0f || ymin > 1.0f || ymax < -1.0f) + { + _xmin = -1; _xmax = -1; _ymin = -1; _ymax = -1; // Bad aabb + } + else + { + _xmin = (int)min(max((xmin + 1.0f) * (0.5f * (float)N), 0.0f), (float)(N - 1)); + _xmax = (int)min(max((xmax + 1.0f) * (0.5f * (float)N), 0.0f), (float)(N - 1)); + _ymin = (int)min(max((ymin + 1.0f) * (0.5f * (float)N), 0.0f), (float)(N - 1)); + _ymax = (int)min(max((ymax + 1.0f) * (0.5f * (float)N), 0.0f), (float)(N - 1)); + } + } + else + { + _xmin = 0.0f; + _xmax = (float)(N-1); + _ymin = 0.0f; + _ymax = (float)(N-1); + } +} + +/////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Diffuse kernel +__global__ void DiffuseCubemapFwdKernel(DiffuseCubemapKernelParams p) +{ + // Calculate pixel position. + int px = blockIdx.x * blockDim.x + threadIdx.x; + int py = blockIdx.y * blockDim.y + threadIdx.y; + int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + int Npx = p.cubemap.dims[1]; + vec3f N = cube_to_dir(px, py, pz, Npx); + + vec3f col(0); + + for (int s = 0; s < p.cubemap.dims[0]; ++s) + { + for (int y = 0; y < Npx; ++y) + { + for (int x = 0; x < Npx; ++x) + { + vec3f L = cube_to_dir(x, y, s, Npx); + float costheta = min(max(dot(N, L), 0.0f), 0.999f); + float w = costheta * pixel_area(x, y, Npx) / 3.141592f; // pi = area of positive hemisphere + col += p.cubemap.fetch3(x, y, s) * w; + } + } + } + + p.out.store(px, py, pz, col); +} + +__global__ void DiffuseCubemapBwdKernel(DiffuseCubemapKernelParams p) +{ + // Calculate pixel position. + int px = blockIdx.x * blockDim.x + threadIdx.x; + int py = blockIdx.y * blockDim.y + threadIdx.y; + int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + int Npx = p.cubemap.dims[1]; + vec3f N = cube_to_dir(px, py, pz, Npx); + vec3f grad = p.out.fetch3(px, py, pz); + + for (int s = 0; s < p.cubemap.dims[0]; ++s) + { + for (int y = 0; y < Npx; ++y) + { + for (int x = 0; x < Npx; ++x) + { + vec3f L = cube_to_dir(x, y, s, Npx); + float costheta = min(max(dot(N, L), 0.0f), 0.999f); + float w = costheta * pixel_area(x, y, Npx) / 3.141592f; // pi = area of positive hemisphere + atomicAdd((float*)p.cubemap.d_val + p.cubemap.nhwcIndexContinuous(s, y, x, 0), grad.x * w); + atomicAdd((float*)p.cubemap.d_val + p.cubemap.nhwcIndexContinuous(s, y, x, 1), grad.y * w); + atomicAdd((float*)p.cubemap.d_val + p.cubemap.nhwcIndexContinuous(s, y, x, 2), grad.z * w); + } + } + } +} + +/////////////////////////////////////////////////////////////////////////////////////////////////////////// +// GGX splitsum kernel + +__device__ inline float ndfGGX(const float alphaSqr, const float cosTheta) +{ + float _cosTheta = clamp(cosTheta, 0.0, 1.0f); + float d = (_cosTheta * alphaSqr - _cosTheta) * _cosTheta + 1.0f; + return alphaSqr / (d * d * M_PI); +} + +__global__ void SpecularBoundsKernel(SpecularBoundsKernelParams p) +{ + int px = blockIdx.x * blockDim.x + threadIdx.x; + int py = blockIdx.y * blockDim.y + threadIdx.y; + int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + int Npx = p.gridSize.x; + vec3f VNR = cube_to_dir(px, py, pz, Npx); + + const int TILE_SIZE = 16; + + // Brute force entire cubemap and compute bounds for the cone + for (int s = 0; s < p.gridSize.z; ++s) + { + // Assume empty BBox + int _min_x = p.gridSize.x - 1, _max_x = 0; + int _min_y = p.gridSize.y - 1, _max_y = 0; + + // For each (8x8) tile + for (int tx = 0; tx < (p.gridSize.x + TILE_SIZE - 1) / TILE_SIZE; tx++) + { + for (int ty = 0; ty < (p.gridSize.y + TILE_SIZE - 1) / TILE_SIZE; ty++) + { + // Compute tile extents + int tsx = tx * TILE_SIZE, tsy = ty * TILE_SIZE; + int tex = min((tx + 1) * TILE_SIZE, p.gridSize.x), tey = min((ty + 1) * TILE_SIZE, p.gridSize.y); + + // Use some blunt interval arithmetics to cull tiles + vec3f L0 = cube_to_dir(tsx, tsy, s, Npx), L1 = cube_to_dir(tex, tsy, s, Npx); + vec3f L2 = cube_to_dir(tsx, tey, s, Npx), L3 = cube_to_dir(tex, tey, s, Npx); + + float minx = min(min(L0.x, L1.x), min(L2.x, L3.x)), maxx = max(max(L0.x, L1.x), max(L2.x, L3.x)); + float miny = min(min(L0.y, L1.y), min(L2.y, L3.y)), maxy = max(max(L0.y, L1.y), max(L2.y, L3.y)); + float minz = min(min(L0.z, L1.z), min(L2.z, L3.z)), maxz = max(max(L0.z, L1.z), max(L2.z, L3.z)); + + float maxdp = max(minx * VNR.x, maxx * VNR.x) + max(miny * VNR.y, maxy * VNR.y) + max(minz * VNR.z, maxz * VNR.z); + if (maxdp >= p.costheta_cutoff) + { + // Test all pixels in tile. + for (int y = tsy; y < tey; ++y) + { + for (int x = tsx; x < tex; ++x) + { + vec3f L = cube_to_dir(x, y, s, Npx); + if (dot(L, VNR) >= p.costheta_cutoff) + { + _min_x = min(_min_x, x); + _max_x = max(_max_x, x); + _min_y = min(_min_y, y); + _max_y = max(_max_y, y); + } + } + } + } + } + } + p.out.store(p.out._nhwcIndex(pz, py, px, s * 4 + 0), _min_x); + p.out.store(p.out._nhwcIndex(pz, py, px, s * 4 + 1), _max_x); + p.out.store(p.out._nhwcIndex(pz, py, px, s * 4 + 2), _min_y); + p.out.store(p.out._nhwcIndex(pz, py, px, s * 4 + 3), _max_y); + } +} + +__global__ void SpecularCubemapFwdKernel(SpecularCubemapKernelParams p) +{ + // Calculate pixel position. + int px = blockIdx.x * blockDim.x + threadIdx.x; + int py = blockIdx.y * blockDim.y + threadIdx.y; + int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + int Npx = p.cubemap.dims[1]; + vec3f VNR = cube_to_dir(px, py, pz, Npx); + + float alpha = p.roughness * p.roughness; + float alphaSqr = alpha * alpha; + + float wsum = 0.0f; + vec3f col(0); + for (int s = 0; s < p.cubemap.dims[0]; ++s) + { + int xmin, xmax, ymin, ymax; + xmin = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 0)); + xmax = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 1)); + ymin = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 2)); + ymax = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 3)); + + if (xmin <= xmax) + { + for (int y = ymin; y <= ymax; ++y) + { + for (int x = xmin; x <= xmax; ++x) + { + vec3f L = cube_to_dir(x, y, s, Npx); + if (dot(L, VNR) >= p.costheta_cutoff) + { + vec3f H = safeNormalize(L + VNR); + + float wiDotN = max(dot(L, VNR), 0.0f); + float VNRDotH = max(dot(VNR, H), 0.0f); + + float w = wiDotN * ndfGGX(alphaSqr, VNRDotH) * pixel_area(x, y, Npx) / 4.0f; + col += p.cubemap.fetch3(x, y, s) * w; + wsum += w; + } + } + } + } + } + + p.out.store(p.out._nhwcIndex(pz, py, px, 0), col.x); + p.out.store(p.out._nhwcIndex(pz, py, px, 1), col.y); + p.out.store(p.out._nhwcIndex(pz, py, px, 2), col.z); + p.out.store(p.out._nhwcIndex(pz, py, px, 3), wsum); +} + +__global__ void SpecularCubemapBwdKernel(SpecularCubemapKernelParams p) +{ + // Calculate pixel position. + int px = blockIdx.x * blockDim.x + threadIdx.x; + int py = blockIdx.y * blockDim.y + threadIdx.y; + int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + int Npx = p.cubemap.dims[1]; + vec3f VNR = cube_to_dir(px, py, pz, Npx); + + vec3f grad = p.out.fetch3(px, py, pz); + + float alpha = p.roughness * p.roughness; + float alphaSqr = alpha * alpha; + + vec3f col(0); + for (int s = 0; s < p.cubemap.dims[0]; ++s) + { + int xmin, xmax, ymin, ymax; + xmin = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 0)); + xmax = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 1)); + ymin = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 2)); + ymax = (int)p.bounds.fetch(p.bounds._nhwcIndex(pz, py, px, s * 4 + 3)); + + if (xmin <= xmax) + { + for (int y = ymin; y <= ymax; ++y) + { + for (int x = xmin; x <= xmax; ++x) + { + vec3f L = cube_to_dir(x, y, s, Npx); + if (dot(L, VNR) >= p.costheta_cutoff) + { + vec3f H = safeNormalize(L + VNR); + + float wiDotN = max(dot(L, VNR), 0.0f); + float VNRDotH = max(dot(VNR, H), 0.0f); + + float w = wiDotN * ndfGGX(alphaSqr, VNRDotH) * pixel_area(x, y, Npx) / 4.0f; + + atomicAdd((float*)p.cubemap.d_val + p.cubemap.nhwcIndexContinuous(s, y, x, 0), grad.x * w); + atomicAdd((float*)p.cubemap.d_val + p.cubemap.nhwcIndexContinuous(s, y, x, 1), grad.y * w); + atomicAdd((float*)p.cubemap.d_val + p.cubemap.nhwcIndexContinuous(s, y, x, 2), grad.z * w); + } + } + } + } + } +} diff --git a/src/models/geometry/render/renderutils/c_src/cubemap.h b/src/models/geometry/render/renderutils/c_src/cubemap.h new file mode 100644 index 0000000000000000000000000000000000000000..f395cc237d4a46c660bcde18609068a21f3c3fea --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/cubemap.h @@ -0,0 +1,38 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#pragma once + +#include "common.h" + +struct DiffuseCubemapKernelParams +{ + Tensor cubemap; + Tensor out; + dim3 gridSize; +}; + +struct SpecularCubemapKernelParams +{ + Tensor cubemap; + Tensor bounds; + Tensor out; + dim3 gridSize; + float costheta_cutoff; + float roughness; +}; + +struct SpecularBoundsKernelParams +{ + float costheta_cutoff; + Tensor out; + dim3 gridSize; +}; diff --git a/src/models/geometry/render/renderutils/c_src/loss.cu b/src/models/geometry/render/renderutils/c_src/loss.cu new file mode 100644 index 0000000000000000000000000000000000000000..aae5272de3c5364c22ee0bd5fde023d908e9153d --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/loss.cu @@ -0,0 +1,210 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#include + +#include "common.h" +#include "loss.h" + +//------------------------------------------------------------------------ +// Utils + +__device__ inline float bwdAbs(float x) { return x == 0.0f ? 0.0f : x < 0.0f ? -1.0f : 1.0f; } + +__device__ float warpSum(float val) { + for (int i = 1; i < 32; i *= 2) + val += __shfl_xor_sync(0xFFFFFFFF, val, i); + return val; +} + +//------------------------------------------------------------------------ +// Tonemapping + +__device__ inline float fwdSRGB(float x) +{ + return x > 0.0031308f ? powf(max(x, 0.0031308f), 1.0f / 2.4f) * 1.055f - 0.055f : 12.92f * max(x, 0.0f); +} + +__device__ inline void bwdSRGB(float x, float &d_x, float d_out) +{ + if (x > 0.0031308f) + d_x += d_out * 0.439583f / powf(x, 0.583333f); + else if (x > 0.0f) + d_x += d_out * 12.92f; +} + +__device__ inline vec3f fwdTonemapLogSRGB(vec3f x) +{ + return vec3f(fwdSRGB(logf(x.x + 1.0f)), fwdSRGB(logf(x.y + 1.0f)), fwdSRGB(logf(x.z + 1.0f))); +} + +__device__ inline void bwdTonemapLogSRGB(vec3f x, vec3f& d_x, vec3f d_out) +{ + if (x.x > 0.0f && x.x < 65535.0f) + { + bwdSRGB(logf(x.x + 1.0f), d_x.x, d_out.x); + d_x.x *= 1 / (x.x + 1.0f); + } + if (x.y > 0.0f && x.y < 65535.0f) + { + bwdSRGB(logf(x.y + 1.0f), d_x.y, d_out.y); + d_x.y *= 1 / (x.y + 1.0f); + } + if (x.z > 0.0f && x.z < 65535.0f) + { + bwdSRGB(logf(x.z + 1.0f), d_x.z, d_out.z); + d_x.z *= 1 / (x.z + 1.0f); + } +} + +__device__ inline float fwdRELMSE(float img, float target, float eps = 0.1f) +{ + return (img - target) * (img - target) / (img * img + target * target + eps); +} + +__device__ inline void bwdRELMSE(float img, float target, float &d_img, float &d_target, float d_out, float eps = 0.1f) +{ + float denom = (target * target + img * img + eps); + d_img += d_out * 2 * (img - target) * (target * (target + img) + eps) / (denom * denom); + d_target -= d_out * 2 * (img - target) * (img * (target + img) + eps) / (denom * denom); +} + +__device__ inline float fwdSMAPE(float img, float target, float eps=0.01f) +{ + return abs(img - target) / (img + target + eps); +} + +__device__ inline void bwdSMAPE(float img, float target, float& d_img, float& d_target, float d_out, float eps = 0.01f) +{ + float denom = (target + img + eps); + d_img += d_out * bwdAbs(img - target) * (2 * target + eps) / (denom * denom); + d_target -= d_out * bwdAbs(img - target) * (2 * img + eps) / (denom * denom); +} + +//------------------------------------------------------------------------ +// Kernels + +__global__ void imgLossFwdKernel(LossKernelParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + + float floss = 0.0f; + if (px < p.gridSize.x && py < p.gridSize.y && pz < p.gridSize.z) + { + vec3f img = p.img.fetch3(px, py, pz); + vec3f target = p.target.fetch3(px, py, pz); + + img = vec3f(clamp(img.x, 0.0f, 65535.0f), clamp(img.y, 0.0f, 65535.0f), clamp(img.z, 0.0f, 65535.0f)); + target = vec3f(clamp(target.x, 0.0f, 65535.0f), clamp(target.y, 0.0f, 65535.0f), clamp(target.z, 0.0f, 65535.0f)); + + if (p.tonemapper == TONEMAPPER_LOG_SRGB) + { + img = fwdTonemapLogSRGB(img); + target = fwdTonemapLogSRGB(target); + } + + vec3f vloss(0); + if (p.loss == LOSS_MSE) + vloss = (img - target) * (img - target); + else if (p.loss == LOSS_RELMSE) + vloss = vec3f(fwdRELMSE(img.x, target.x), fwdRELMSE(img.y, target.y), fwdRELMSE(img.z, target.z)); + else if (p.loss == LOSS_SMAPE) + vloss = vec3f(fwdSMAPE(img.x, target.x), fwdSMAPE(img.y, target.y), fwdSMAPE(img.z, target.z)); + else + vloss = vec3f(abs(img.x - target.x), abs(img.y - target.y), abs(img.z - target.z)); + + floss = sum(vloss) / 3.0f; + } + + floss = warpSum(floss); + + dim3 warpSize = getWarpSize(blockDim); + if (px < p.gridSize.x && py < p.gridSize.y && pz < p.gridSize.z && threadIdx.x % warpSize.x == 0 && threadIdx.y % warpSize.y == 0 && threadIdx.z % warpSize.z == 0) + p.out.store(px / warpSize.x, py / warpSize.y, pz / warpSize.z, floss); +} + +__global__ void imgLossBwdKernel(LossKernelParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + dim3 warpSize = getWarpSize(blockDim); + + vec3f _img = p.img.fetch3(px, py, pz); + vec3f _target = p.target.fetch3(px, py, pz); + float d_out = p.out.fetch1(px / warpSize.x, py / warpSize.y, pz / warpSize.z); + + ///////////////////////////////////////////////////////////////////// + // FWD + + vec3f img = _img, target = _target; + if (p.tonemapper == TONEMAPPER_LOG_SRGB) + { + img = fwdTonemapLogSRGB(img); + target = fwdTonemapLogSRGB(target); + } + + ///////////////////////////////////////////////////////////////////// + // BWD + + vec3f d_vloss = vec3f(d_out, d_out, d_out) / 3.0f; + + vec3f d_img(0), d_target(0); + if (p.loss == LOSS_MSE) + { + d_img = vec3f(d_vloss.x * 2 * (img.x - target.x), d_vloss.y * 2 * (img.y - target.y), d_vloss.x * 2 * (img.z - target.z)); + d_target = -d_img; + } + else if (p.loss == LOSS_RELMSE) + { + bwdRELMSE(img.x, target.x, d_img.x, d_target.x, d_vloss.x); + bwdRELMSE(img.y, target.y, d_img.y, d_target.y, d_vloss.y); + bwdRELMSE(img.z, target.z, d_img.z, d_target.z, d_vloss.z); + } + else if (p.loss == LOSS_SMAPE) + { + bwdSMAPE(img.x, target.x, d_img.x, d_target.x, d_vloss.x); + bwdSMAPE(img.y, target.y, d_img.y, d_target.y, d_vloss.y); + bwdSMAPE(img.z, target.z, d_img.z, d_target.z, d_vloss.z); + } + else + { + d_img = d_vloss * vec3f(bwdAbs(img.x - target.x), bwdAbs(img.y - target.y), bwdAbs(img.z - target.z)); + d_target = -d_img; + } + + + if (p.tonemapper == TONEMAPPER_LOG_SRGB) + { + vec3f d__img(0), d__target(0); + bwdTonemapLogSRGB(_img, d__img, d_img); + bwdTonemapLogSRGB(_target, d__target, d_target); + d_img = d__img; d_target = d__target; + } + + if (_img.x <= 0.0f || _img.x >= 65535.0f) d_img.x = 0; + if (_img.y <= 0.0f || _img.y >= 65535.0f) d_img.y = 0; + if (_img.z <= 0.0f || _img.z >= 65535.0f) d_img.z = 0; + if (_target.x <= 0.0f || _target.x >= 65535.0f) d_target.x = 0; + if (_target.y <= 0.0f || _target.y >= 65535.0f) d_target.y = 0; + if (_target.z <= 0.0f || _target.z >= 65535.0f) d_target.z = 0; + + p.img.store_grad(px, py, pz, d_img); + p.target.store_grad(px, py, pz, d_target); +} \ No newline at end of file diff --git a/src/models/geometry/render/renderutils/c_src/loss.h b/src/models/geometry/render/renderutils/c_src/loss.h new file mode 100644 index 0000000000000000000000000000000000000000..26790bf02de2afd9d27e541edf23d1b064f6f9a9 --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/loss.h @@ -0,0 +1,38 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#pragma once + +#include "common.h" + +enum TonemapperType +{ + TONEMAPPER_NONE = 0, + TONEMAPPER_LOG_SRGB = 1 +}; + +enum LossType +{ + LOSS_L1 = 0, + LOSS_MSE = 1, + LOSS_RELMSE = 2, + LOSS_SMAPE = 3 +}; + +struct LossKernelParams +{ + Tensor img; + Tensor target; + Tensor out; + dim3 gridSize; + TonemapperType tonemapper; + LossType loss; +}; diff --git a/src/models/geometry/render/renderutils/c_src/mesh.cu b/src/models/geometry/render/renderutils/c_src/mesh.cu new file mode 100644 index 0000000000000000000000000000000000000000..3690ea3621c38beae03ac9ff228cf5605d303663 --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/mesh.cu @@ -0,0 +1,94 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#include +#include + +#include "common.h" +#include "mesh.h" + + +//------------------------------------------------------------------------ +// Kernels + +__global__ void xfmPointsFwdKernel(XfmKernelParams p) +{ + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int pz = blockIdx.z * blockDim.z + threadIdx.z; + + __shared__ float mtx[4][4]; + if (threadIdx.x < 16) + mtx[threadIdx.x % 4][threadIdx.x / 4] = p.matrix.fetch(p.matrix.nhwcIndex(pz, threadIdx.x / 4, threadIdx.x % 4, 0)); + __syncthreads(); + + if (px >= p.gridSize.x) + return; + + vec3f pos( + p.points.fetch(p.points.nhwcIndex(pz, px, 0, 0)), + p.points.fetch(p.points.nhwcIndex(pz, px, 1, 0)), + p.points.fetch(p.points.nhwcIndex(pz, px, 2, 0)) + ); + + if (p.isPoints) + { + p.out.store(p.out.nhwcIndex(pz, px, 0, 0), pos.x * mtx[0][0] + pos.y * mtx[1][0] + pos.z * mtx[2][0] + mtx[3][0]); + p.out.store(p.out.nhwcIndex(pz, px, 1, 0), pos.x * mtx[0][1] + pos.y * mtx[1][1] + pos.z * mtx[2][1] + mtx[3][1]); + p.out.store(p.out.nhwcIndex(pz, px, 2, 0), pos.x * mtx[0][2] + pos.y * mtx[1][2] + pos.z * mtx[2][2] + mtx[3][2]); + p.out.store(p.out.nhwcIndex(pz, px, 3, 0), pos.x * mtx[0][3] + pos.y * mtx[1][3] + pos.z * mtx[2][3] + mtx[3][3]); + } + else + { + p.out.store(p.out.nhwcIndex(pz, px, 0, 0), pos.x * mtx[0][0] + pos.y * mtx[1][0] + pos.z * mtx[2][0]); + p.out.store(p.out.nhwcIndex(pz, px, 1, 0), pos.x * mtx[0][1] + pos.y * mtx[1][1] + pos.z * mtx[2][1]); + p.out.store(p.out.nhwcIndex(pz, px, 2, 0), pos.x * mtx[0][2] + pos.y * mtx[1][2] + pos.z * mtx[2][2]); + } +} + +__global__ void xfmPointsBwdKernel(XfmKernelParams p) +{ + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int pz = blockIdx.z * blockDim.z + threadIdx.z; + + __shared__ float mtx[4][4]; + if (threadIdx.x < 16) + mtx[threadIdx.x % 4][threadIdx.x / 4] = p.matrix.fetch(p.matrix.nhwcIndex(pz, threadIdx.x / 4, threadIdx.x % 4, 0)); + __syncthreads(); + + if (px >= p.gridSize.x) + return; + + vec3f pos( + p.points.fetch(p.points.nhwcIndex(pz, px, 0, 0)), + p.points.fetch(p.points.nhwcIndex(pz, px, 1, 0)), + p.points.fetch(p.points.nhwcIndex(pz, px, 2, 0)) + ); + + vec4f d_out( + p.out.fetch(p.out.nhwcIndex(pz, px, 0, 0)), + p.out.fetch(p.out.nhwcIndex(pz, px, 1, 0)), + p.out.fetch(p.out.nhwcIndex(pz, px, 2, 0)), + p.out.fetch(p.out.nhwcIndex(pz, px, 3, 0)) + ); + + if (p.isPoints) + { + p.points.store_grad(p.points.nhwcIndexContinuous(pz, px, 0, 0), d_out.x * mtx[0][0] + d_out.y * mtx[0][1] + d_out.z * mtx[0][2] + d_out.w * mtx[0][3]); + p.points.store_grad(p.points.nhwcIndexContinuous(pz, px, 1, 0), d_out.x * mtx[1][0] + d_out.y * mtx[1][1] + d_out.z * mtx[1][2] + d_out.w * mtx[1][3]); + p.points.store_grad(p.points.nhwcIndexContinuous(pz, px, 2, 0), d_out.x * mtx[2][0] + d_out.y * mtx[2][1] + d_out.z * mtx[2][2] + d_out.w * mtx[2][3]); + } + else + { + p.points.store_grad(p.points.nhwcIndexContinuous(pz, px, 0, 0), d_out.x * mtx[0][0] + d_out.y * mtx[0][1] + d_out.z * mtx[0][2]); + p.points.store_grad(p.points.nhwcIndexContinuous(pz, px, 1, 0), d_out.x * mtx[1][0] + d_out.y * mtx[1][1] + d_out.z * mtx[1][2]); + p.points.store_grad(p.points.nhwcIndexContinuous(pz, px, 2, 0), d_out.x * mtx[2][0] + d_out.y * mtx[2][1] + d_out.z * mtx[2][2]); + } +} \ No newline at end of file diff --git a/src/models/geometry/render/renderutils/c_src/mesh.h b/src/models/geometry/render/renderutils/c_src/mesh.h new file mode 100644 index 0000000000000000000000000000000000000000..16e2166cc55f41c4482b2c5010529e9c75182d7b --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/mesh.h @@ -0,0 +1,23 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#pragma once + +#include "common.h" + +struct XfmKernelParams +{ + bool isPoints; + Tensor points; + Tensor matrix; + Tensor out; + dim3 gridSize; +}; diff --git a/src/models/geometry/render/renderutils/c_src/normal.cu b/src/models/geometry/render/renderutils/c_src/normal.cu new file mode 100644 index 0000000000000000000000000000000000000000..a50e49e6b5b4061a60ec4d5d8edca2fb0833570e --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/normal.cu @@ -0,0 +1,182 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#include "common.h" +#include "normal.h" + +#define NORMAL_THRESHOLD 0.1f + +//------------------------------------------------------------------------ +// Perturb shading normal by tangent frame + +__device__ vec3f fwdPerturbNormal(const vec3f perturbed_nrm, const vec3f smooth_nrm, const vec3f smooth_tng, bool opengl) +{ + vec3f _smooth_bitng = cross(smooth_tng, smooth_nrm); + vec3f smooth_bitng = safeNormalize(_smooth_bitng); + vec3f _shading_nrm = smooth_tng * perturbed_nrm.x + (opengl ? -1 : 1) * smooth_bitng * perturbed_nrm.y + smooth_nrm * max(perturbed_nrm.z, 0.0f); + return safeNormalize(_shading_nrm); +} + +__device__ void bwdPerturbNormal(const vec3f perturbed_nrm, const vec3f smooth_nrm, const vec3f smooth_tng, vec3f &d_perturbed_nrm, vec3f &d_smooth_nrm, vec3f &d_smooth_tng, const vec3f d_out, bool opengl) +{ + //////////////////////////////////////////////////////////////////////// + // FWD + vec3f _smooth_bitng = cross(smooth_tng, smooth_nrm); + vec3f smooth_bitng = safeNormalize(_smooth_bitng); + vec3f _shading_nrm = smooth_tng * perturbed_nrm.x + (opengl ? -1 : 1) * smooth_bitng * perturbed_nrm.y + smooth_nrm * max(perturbed_nrm.z, 0.0f); + + //////////////////////////////////////////////////////////////////////// + // BWD + vec3f d_shading_nrm(0); + bwdSafeNormalize(_shading_nrm, d_shading_nrm, d_out); + + vec3f d_smooth_bitng(0); + + if (perturbed_nrm.z > 0.0f) + { + d_smooth_nrm += d_shading_nrm * perturbed_nrm.z; + d_perturbed_nrm.z += sum(d_shading_nrm * smooth_nrm); + } + + d_smooth_bitng += (opengl ? -1 : 1) * d_shading_nrm * perturbed_nrm.y; + d_perturbed_nrm.y += (opengl ? -1 : 1) * sum(d_shading_nrm * smooth_bitng); + + d_smooth_tng += d_shading_nrm * perturbed_nrm.x; + d_perturbed_nrm.x += sum(d_shading_nrm * smooth_tng); + + vec3f d__smooth_bitng(0); + bwdSafeNormalize(_smooth_bitng, d__smooth_bitng, d_smooth_bitng); + + bwdCross(smooth_tng, smooth_nrm, d_smooth_tng, d_smooth_nrm, d__smooth_bitng); +} + +//------------------------------------------------------------------------ +#define bent_nrm_eps 0.001f + +__device__ vec3f fwdBendNormal(const vec3f view_vec, const vec3f smooth_nrm, const vec3f geom_nrm) +{ + float dp = dot(view_vec, smooth_nrm); + float t = clamp(dp / NORMAL_THRESHOLD, 0.0f, 1.0f); + return geom_nrm * (1.0f - t) + smooth_nrm * t; +} + +__device__ void bwdBendNormal(const vec3f view_vec, const vec3f smooth_nrm, const vec3f geom_nrm, vec3f& d_view_vec, vec3f& d_smooth_nrm, vec3f& d_geom_nrm, const vec3f d_out) +{ + //////////////////////////////////////////////////////////////////////// + // FWD + float dp = dot(view_vec, smooth_nrm); + float t = clamp(dp / NORMAL_THRESHOLD, 0.0f, 1.0f); + + //////////////////////////////////////////////////////////////////////// + // BWD + if (dp > NORMAL_THRESHOLD) + d_smooth_nrm += d_out; + else + { + // geom_nrm * (1.0f - t) + smooth_nrm * t; + d_geom_nrm += d_out * (1.0f - t); + d_smooth_nrm += d_out * t; + float d_t = sum(d_out * (smooth_nrm - geom_nrm)); + + float d_dp = dp < 0.0f || dp > NORMAL_THRESHOLD ? 0.0f : d_t / NORMAL_THRESHOLD; + + bwdDot(view_vec, smooth_nrm, d_view_vec, d_smooth_nrm, d_dp); + } +} + +//------------------------------------------------------------------------ +// Kernels + +__global__ void PrepareShadingNormalFwdKernel(PrepareShadingNormalKernelParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + vec3f pos = p.pos.fetch3(px, py, pz); + vec3f view_pos = p.view_pos.fetch3(px, py, pz); + vec3f perturbed_nrm = p.perturbed_nrm.fetch3(px, py, pz); + vec3f _smooth_nrm = p.smooth_nrm.fetch3(px, py, pz); + vec3f _smooth_tng = p.smooth_tng.fetch3(px, py, pz); + vec3f geom_nrm = p.geom_nrm.fetch3(px, py, pz); + + vec3f smooth_nrm = safeNormalize(_smooth_nrm); + vec3f smooth_tng = safeNormalize(_smooth_tng); + vec3f view_vec = safeNormalize(view_pos - pos); + vec3f shading_nrm = fwdPerturbNormal(perturbed_nrm, smooth_nrm, smooth_tng, p.opengl); + + vec3f res; + if (p.two_sided_shading && dot(view_vec, geom_nrm) < 0.0f) + res = fwdBendNormal(view_vec, -shading_nrm, -geom_nrm); + else + res = fwdBendNormal(view_vec, shading_nrm, geom_nrm); + + p.out.store(px, py, pz, res); +} + +__global__ void PrepareShadingNormalBwdKernel(PrepareShadingNormalKernelParams p) +{ + // Calculate pixel position. + unsigned int px = blockIdx.x * blockDim.x + threadIdx.x; + unsigned int py = blockIdx.y * blockDim.y + threadIdx.y; + unsigned int pz = blockIdx.z; + if (px >= p.gridSize.x || py >= p.gridSize.y || pz >= p.gridSize.z) + return; + + vec3f pos = p.pos.fetch3(px, py, pz); + vec3f view_pos = p.view_pos.fetch3(px, py, pz); + vec3f perturbed_nrm = p.perturbed_nrm.fetch3(px, py, pz); + vec3f _smooth_nrm = p.smooth_nrm.fetch3(px, py, pz); + vec3f _smooth_tng = p.smooth_tng.fetch3(px, py, pz); + vec3f geom_nrm = p.geom_nrm.fetch3(px, py, pz); + vec3f d_out = p.out.fetch3(px, py, pz); + + /////////////////////////////////////////////////////////////////////////////////////////////////// + // FWD + + vec3f smooth_nrm = safeNormalize(_smooth_nrm); + vec3f smooth_tng = safeNormalize(_smooth_tng); + vec3f _view_vec = view_pos - pos; + vec3f view_vec = safeNormalize(view_pos - pos); + + vec3f shading_nrm = fwdPerturbNormal(perturbed_nrm, smooth_nrm, smooth_tng, p.opengl); + + /////////////////////////////////////////////////////////////////////////////////////////////////// + // BWD + + vec3f d_view_vec(0), d_shading_nrm(0), d_geom_nrm(0); + if (p.two_sided_shading && dot(view_vec, geom_nrm) < 0.0f) + { + bwdBendNormal(view_vec, -shading_nrm, -geom_nrm, d_view_vec, d_shading_nrm, d_geom_nrm, d_out); + d_shading_nrm = -d_shading_nrm; + d_geom_nrm = -d_geom_nrm; + } + else + bwdBendNormal(view_vec, shading_nrm, geom_nrm, d_view_vec, d_shading_nrm, d_geom_nrm, d_out); + + vec3f d_perturbed_nrm(0), d_smooth_nrm(0), d_smooth_tng(0); + bwdPerturbNormal(perturbed_nrm, smooth_nrm, smooth_tng, d_perturbed_nrm, d_smooth_nrm, d_smooth_tng, d_shading_nrm, p.opengl); + + vec3f d__view_vec(0), d__smooth_nrm(0), d__smooth_tng(0); + bwdSafeNormalize(_view_vec, d__view_vec, d_view_vec); + bwdSafeNormalize(_smooth_nrm, d__smooth_nrm, d_smooth_nrm); + bwdSafeNormalize(_smooth_tng, d__smooth_tng, d_smooth_tng); + + p.pos.store_grad(px, py, pz, -d__view_vec); + p.view_pos.store_grad(px, py, pz, d__view_vec); + p.perturbed_nrm.store_grad(px, py, pz, d_perturbed_nrm); + p.smooth_nrm.store_grad(px, py, pz, d__smooth_nrm); + p.smooth_tng.store_grad(px, py, pz, d__smooth_tng); + p.geom_nrm.store_grad(px, py, pz, d_geom_nrm); +} \ No newline at end of file diff --git a/src/models/geometry/render/renderutils/c_src/normal.h b/src/models/geometry/render/renderutils/c_src/normal.h new file mode 100644 index 0000000000000000000000000000000000000000..8882c225cfba5e747462c056d6fcf0b04dd48751 --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/normal.h @@ -0,0 +1,27 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#pragma once + +#include "common.h" + +struct PrepareShadingNormalKernelParams +{ + Tensor pos; + Tensor view_pos; + Tensor perturbed_nrm; + Tensor smooth_nrm; + Tensor smooth_tng; + Tensor geom_nrm; + Tensor out; + dim3 gridSize; + bool two_sided_shading, opengl; +}; diff --git a/src/models/geometry/render/renderutils/c_src/tensor.h b/src/models/geometry/render/renderutils/c_src/tensor.h new file mode 100644 index 0000000000000000000000000000000000000000..1dfb4e85c46f0394821f2533dc98468e5b7248af --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/tensor.h @@ -0,0 +1,92 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#pragma once +#if defined(__CUDACC__) && defined(BFLOAT16) +#include // bfloat16 is float32 compatible with less mantissa bits +#endif + +//--------------------------------------------------------------------------------- +// CUDA-side Tensor class for in/out parameter parsing. Can be float32 or bfloat16 + +struct Tensor +{ + void* val; + void* d_val; + int dims[4], _dims[4]; + int strides[4]; + bool fp16; + +#if defined(__CUDA__) && !defined(__CUDA_ARCH__) + Tensor() : val(nullptr), d_val(nullptr), fp16(true), dims{ 0, 0, 0, 0 }, _dims{ 0, 0, 0, 0 }, strides{ 0, 0, 0, 0 } {} +#endif + +#ifdef __CUDACC__ + // Helpers to index and read/write a single element + __device__ inline int _nhwcIndex(int n, int h, int w, int c) const { return n * strides[0] + h * strides[1] + w * strides[2] + c * strides[3]; } + __device__ inline int nhwcIndex(int n, int h, int w, int c) const { return (dims[0] == 1 ? 0 : n * strides[0]) + (dims[1] == 1 ? 0 : h * strides[1]) + (dims[2] == 1 ? 0 : w * strides[2]) + (dims[3] == 1 ? 0 : c * strides[3]); } + __device__ inline int nhwcIndexContinuous(int n, int h, int w, int c) const { return ((n * _dims[1] + h) * _dims[2] + w) * _dims[3] + c; } +#ifdef BFLOAT16 + __device__ inline float fetch(unsigned int idx) const { return fp16 ? __bfloat162float(((__nv_bfloat16*)val)[idx]) : ((float*)val)[idx]; } + __device__ inline void store(unsigned int idx, float _val) { if (fp16) ((__nv_bfloat16*)val)[idx] = __float2bfloat16(_val); else ((float*)val)[idx] = _val; } + __device__ inline void store_grad(unsigned int idx, float _val) { if (fp16) ((__nv_bfloat16*)d_val)[idx] = __float2bfloat16(_val); else ((float*)d_val)[idx] = _val; } +#else + __device__ inline float fetch(unsigned int idx) const { return ((float*)val)[idx]; } + __device__ inline void store(unsigned int idx, float _val) { ((float*)val)[idx] = _val; } + __device__ inline void store_grad(unsigned int idx, float _val) { ((float*)d_val)[idx] = _val; } +#endif + + ////////////////////////////////////////////////////////////////////////////////////////// + // Fetch, use broadcasting for tensor dimensions of size 1 + __device__ inline float fetch1(unsigned int x, unsigned int y, unsigned int z) const + { + return fetch(nhwcIndex(z, y, x, 0)); + } + + __device__ inline vec3f fetch3(unsigned int x, unsigned int y, unsigned int z) const + { + return vec3f( + fetch(nhwcIndex(z, y, x, 0)), + fetch(nhwcIndex(z, y, x, 1)), + fetch(nhwcIndex(z, y, x, 2)) + ); + } + + ///////////////////////////////////////////////////////////////////////////////////////////////////////////// + // Store, no broadcasting here. Assume we output full res gradient and then reduce using torch.sum outside + __device__ inline void store(unsigned int x, unsigned int y, unsigned int z, float _val) + { + store(_nhwcIndex(z, y, x, 0), _val); + } + + __device__ inline void store(unsigned int x, unsigned int y, unsigned int z, vec3f _val) + { + store(_nhwcIndex(z, y, x, 0), _val.x); + store(_nhwcIndex(z, y, x, 1), _val.y); + store(_nhwcIndex(z, y, x, 2), _val.z); + } + + ///////////////////////////////////////////////////////////////////////////////////////////////////////////// + // Store gradient , no broadcasting here. Assume we output full res gradient and then reduce using torch.sum outside + __device__ inline void store_grad(unsigned int x, unsigned int y, unsigned int z, float _val) + { + store_grad(nhwcIndexContinuous(z, y, x, 0), _val); + } + + __device__ inline void store_grad(unsigned int x, unsigned int y, unsigned int z, vec3f _val) + { + store_grad(nhwcIndexContinuous(z, y, x, 0), _val.x); + store_grad(nhwcIndexContinuous(z, y, x, 1), _val.y); + store_grad(nhwcIndexContinuous(z, y, x, 2), _val.z); + } +#endif + +}; diff --git a/src/models/geometry/render/renderutils/c_src/torch_bindings.cpp b/src/models/geometry/render/renderutils/c_src/torch_bindings.cpp new file mode 100644 index 0000000000000000000000000000000000000000..64c9e70f79507944490cb978233c34ac9e3e97a6 --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/torch_bindings.cpp @@ -0,0 +1,1062 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#ifdef _MSC_VER +#pragma warning(push, 0) +#include +#pragma warning(pop) +#else +#include +#endif + +#include +#include +#include +#include + +#define NVDR_CHECK_CUDA_ERROR(CUDA_CALL) { cudaError_t err = CUDA_CALL; AT_CUDA_CHECK(cudaGetLastError()); } +#define NVDR_CHECK_GL_ERROR(GL_CALL) { GL_CALL; GLenum err = glGetError(); TORCH_CHECK(err == GL_NO_ERROR, "OpenGL error: ", getGLErrorString(err), "[", #GL_CALL, ";]"); } +#define CHECK_TENSOR(X, DIMS, CHANNELS) \ + TORCH_CHECK(X.is_cuda(), #X " must be a cuda tensor") \ + TORCH_CHECK(X.scalar_type() == torch::kFloat || X.scalar_type() == torch::kBFloat16, #X " must be fp32 or bf16") \ + TORCH_CHECK(X.dim() == DIMS, #X " must have " #DIMS " dimensions") \ + TORCH_CHECK(X.size(DIMS - 1) == CHANNELS, #X " must have " #CHANNELS " channels") + +#include "common.h" +#include "loss.h" +#include "normal.h" +#include "cubemap.h" +#include "bsdf.h" +#include "mesh.h" + +#define BLOCK_X 8 +#define BLOCK_Y 8 + +//------------------------------------------------------------------------ +// mesh.cu + +void xfmPointsFwdKernel(XfmKernelParams p); +void xfmPointsBwdKernel(XfmKernelParams p); + +//------------------------------------------------------------------------ +// loss.cu + +void imgLossFwdKernel(LossKernelParams p); +void imgLossBwdKernel(LossKernelParams p); + +//------------------------------------------------------------------------ +// normal.cu + +void PrepareShadingNormalFwdKernel(PrepareShadingNormalKernelParams p); +void PrepareShadingNormalBwdKernel(PrepareShadingNormalKernelParams p); + +//------------------------------------------------------------------------ +// cubemap.cu + +void DiffuseCubemapFwdKernel(DiffuseCubemapKernelParams p); +void DiffuseCubemapBwdKernel(DiffuseCubemapKernelParams p); +void SpecularBoundsKernel(SpecularBoundsKernelParams p); +void SpecularCubemapFwdKernel(SpecularCubemapKernelParams p); +void SpecularCubemapBwdKernel(SpecularCubemapKernelParams p); + +//------------------------------------------------------------------------ +// bsdf.cu + +void LambertFwdKernel(LambertKernelParams p); +void LambertBwdKernel(LambertKernelParams p); + +void FrostbiteDiffuseFwdKernel(FrostbiteDiffuseKernelParams p); +void FrostbiteDiffuseBwdKernel(FrostbiteDiffuseKernelParams p); + +void FresnelShlickFwdKernel(FresnelShlickKernelParams p); +void FresnelShlickBwdKernel(FresnelShlickKernelParams p); + +void ndfGGXFwdKernel(NdfGGXParams p); +void ndfGGXBwdKernel(NdfGGXParams p); + +void lambdaGGXFwdKernel(NdfGGXParams p); +void lambdaGGXBwdKernel(NdfGGXParams p); + +void maskingSmithFwdKernel(MaskingSmithParams p); +void maskingSmithBwdKernel(MaskingSmithParams p); + +void pbrSpecularFwdKernel(PbrSpecular p); +void pbrSpecularBwdKernel(PbrSpecular p); + +void pbrBSDFFwdKernel(PbrBSDF p); +void pbrBSDFBwdKernel(PbrBSDF p); + +//------------------------------------------------------------------------ +// Tensor helpers + +void update_grid(dim3 &gridSize, torch::Tensor x) +{ + gridSize.x = std::max(gridSize.x, (uint32_t)x.size(2)); + gridSize.y = std::max(gridSize.y, (uint32_t)x.size(1)); + gridSize.z = std::max(gridSize.z, (uint32_t)x.size(0)); +} + +template +void update_grid(dim3& gridSize, torch::Tensor x, Ts&&... vs) +{ + gridSize.x = std::max(gridSize.x, (uint32_t)x.size(2)); + gridSize.y = std::max(gridSize.y, (uint32_t)x.size(1)); + gridSize.z = std::max(gridSize.z, (uint32_t)x.size(0)); + update_grid(gridSize, std::forward(vs)...); +} + +Tensor make_cuda_tensor(torch::Tensor val) +{ + Tensor res; + for (int i = 0; i < val.dim(); ++i) + { + res.dims[i] = val.size(i); + res.strides[i] = val.stride(i); + } + res.fp16 = val.scalar_type() == torch::kBFloat16; + res.val = res.fp16 ? (void*)val.data_ptr() : (void*)val.data_ptr(); + res.d_val = nullptr; + return res; +} + +Tensor make_cuda_tensor(torch::Tensor val, dim3 outDims, torch::Tensor* grad = nullptr) +{ + Tensor res; + for (int i = 0; i < val.dim(); ++i) + { + res.dims[i] = val.size(i); + res.strides[i] = val.stride(i); + } + if (val.dim() == 4) + res._dims[0] = outDims.z, res._dims[1] = outDims.y, res._dims[2] = outDims.x, res._dims[3] = val.size(3); + else + res._dims[0] = outDims.z, res._dims[1] = outDims.x, res._dims[2] = val.size(2), res._dims[3] = 1; // Add a trailing one for indexing math to work out + + res.fp16 = val.scalar_type() == torch::kBFloat16; + res.val = res.fp16 ? (void*)val.data_ptr() : (void*)val.data_ptr(); + res.d_val = nullptr; + if (grad != nullptr) + { + if (val.dim() == 4) + *grad = torch::empty({ outDims.z, outDims.y, outDims.x, val.size(3) }, torch::TensorOptions().dtype(res.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA)); + else // 3 + *grad = torch::empty({ outDims.z, outDims.x, val.size(2) }, torch::TensorOptions().dtype(res.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA)); + + res.d_val = res.fp16 ? (void*)grad->data_ptr() : (void*)grad->data_ptr(); + } + return res; +} + +//------------------------------------------------------------------------ +// prepare_shading_normal + +torch::Tensor prepare_shading_normal_fwd(torch::Tensor pos, torch::Tensor view_pos, torch::Tensor perturbed_nrm, torch::Tensor smooth_nrm, torch::Tensor smooth_tng, torch::Tensor geom_nrm, bool two_sided_shading, bool opengl, bool fp16) +{ + CHECK_TENSOR(pos, 4, 3); + CHECK_TENSOR(view_pos, 4, 3); + CHECK_TENSOR(perturbed_nrm, 4, 3); + CHECK_TENSOR(smooth_nrm, 4, 3); + CHECK_TENSOR(smooth_tng, 4, 3); + CHECK_TENSOR(geom_nrm, 4, 3); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + PrepareShadingNormalKernelParams p; + p.two_sided_shading = two_sided_shading; + p.opengl = opengl; + p.out.fp16 = fp16; + update_grid(p.gridSize, pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + // Setup tensors + p.pos = make_cuda_tensor(pos, p.gridSize); + p.view_pos = make_cuda_tensor(view_pos, p.gridSize); + p.perturbed_nrm = make_cuda_tensor(perturbed_nrm, p.gridSize); + p.smooth_nrm = make_cuda_tensor(smooth_nrm, p.gridSize); + p.smooth_tng = make_cuda_tensor(smooth_tng, p.gridSize); + p.geom_nrm = make_cuda_tensor(geom_nrm, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)PrepareShadingNormalFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +std::tuple prepare_shading_normal_bwd(torch::Tensor pos, torch::Tensor view_pos, torch::Tensor perturbed_nrm, torch::Tensor smooth_nrm, torch::Tensor smooth_tng, torch::Tensor geom_nrm, torch::Tensor grad, bool two_sided_shading, bool opengl) +{ + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + PrepareShadingNormalKernelParams p; + p.two_sided_shading = two_sided_shading; + p.opengl = opengl; + update_grid(p.gridSize, pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + // Setup tensors + torch::Tensor pos_grad, view_pos_grad, perturbed_nrm_grad, smooth_nrm_grad, smooth_tng_grad, geom_nrm_grad; + p.pos = make_cuda_tensor(pos, p.gridSize, &pos_grad); + p.view_pos = make_cuda_tensor(view_pos, p.gridSize, &view_pos_grad); + p.perturbed_nrm = make_cuda_tensor(perturbed_nrm, p.gridSize, &perturbed_nrm_grad); + p.smooth_nrm = make_cuda_tensor(smooth_nrm, p.gridSize, &smooth_nrm_grad); + p.smooth_tng = make_cuda_tensor(smooth_tng, p.gridSize, &smooth_tng_grad); + p.geom_nrm = make_cuda_tensor(geom_nrm, p.gridSize, &geom_nrm_grad); + p.out = make_cuda_tensor(grad, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)PrepareShadingNormalBwdKernel, gridSize, blockSize, args, 0, stream)); + + return std::tuple(pos_grad, view_pos_grad, perturbed_nrm_grad, smooth_nrm_grad, smooth_tng_grad, geom_nrm_grad); +} + +//------------------------------------------------------------------------ +// lambert + +torch::Tensor lambert_fwd(torch::Tensor nrm, torch::Tensor wi, bool fp16) +{ + CHECK_TENSOR(nrm, 4, 3); + CHECK_TENSOR(wi, 4, 3); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + LambertKernelParams p; + p.out.fp16 = fp16; + update_grid(p.gridSize, nrm, wi); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + p.nrm = make_cuda_tensor(nrm, p.gridSize); + p.wi = make_cuda_tensor(wi, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)LambertFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +std::tuple lambert_bwd(torch::Tensor nrm, torch::Tensor wi, torch::Tensor grad) +{ + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + LambertKernelParams p; + update_grid(p.gridSize, nrm, wi); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + torch::Tensor nrm_grad, wi_grad; + p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad); + p.wi = make_cuda_tensor(wi, p.gridSize, &wi_grad); + p.out = make_cuda_tensor(grad, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)LambertBwdKernel, gridSize, blockSize, args, 0, stream)); + + return std::tuple(nrm_grad, wi_grad); +} + +//------------------------------------------------------------------------ +// frostbite diffuse + +torch::Tensor frostbite_fwd(torch::Tensor nrm, torch::Tensor wi, torch::Tensor wo, torch::Tensor linearRoughness, bool fp16) +{ + CHECK_TENSOR(nrm, 4, 3); + CHECK_TENSOR(wi, 4, 3); + CHECK_TENSOR(wo, 4, 3); + CHECK_TENSOR(linearRoughness, 4, 1); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + FrostbiteDiffuseKernelParams p; + p.out.fp16 = fp16; + update_grid(p.gridSize, nrm, wi, wo, linearRoughness); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + p.nrm = make_cuda_tensor(nrm, p.gridSize); + p.wi = make_cuda_tensor(wi, p.gridSize); + p.wo = make_cuda_tensor(wo, p.gridSize); + p.linearRoughness = make_cuda_tensor(linearRoughness, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)FrostbiteDiffuseFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +std::tuple frostbite_bwd(torch::Tensor nrm, torch::Tensor wi, torch::Tensor wo, torch::Tensor linearRoughness, torch::Tensor grad) +{ + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + FrostbiteDiffuseKernelParams p; + update_grid(p.gridSize, nrm, wi, wo, linearRoughness); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + torch::Tensor nrm_grad, wi_grad, wo_grad, linearRoughness_grad; + p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad); + p.wi = make_cuda_tensor(wi, p.gridSize, &wi_grad); + p.wo = make_cuda_tensor(wo, p.gridSize, &wo_grad); + p.linearRoughness = make_cuda_tensor(linearRoughness, p.gridSize, &linearRoughness_grad); + p.out = make_cuda_tensor(grad, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)FrostbiteDiffuseBwdKernel, gridSize, blockSize, args, 0, stream)); + + return std::tuple(nrm_grad, wi_grad, wo_grad, linearRoughness_grad); +} + +//------------------------------------------------------------------------ +// fresnel_shlick + +torch::Tensor fresnel_shlick_fwd(torch::Tensor f0, torch::Tensor f90, torch::Tensor cosTheta, bool fp16) +{ + CHECK_TENSOR(f0, 4, 3); + CHECK_TENSOR(f90, 4, 3); + CHECK_TENSOR(cosTheta, 4, 1); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + FresnelShlickKernelParams p; + p.out.fp16 = fp16; + update_grid(p.gridSize, f0, f90, cosTheta); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + p.f0 = make_cuda_tensor(f0, p.gridSize); + p.f90 = make_cuda_tensor(f90, p.gridSize); + p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)FresnelShlickFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +std::tuple fresnel_shlick_bwd(torch::Tensor f0, torch::Tensor f90, torch::Tensor cosTheta, torch::Tensor grad) +{ + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + FresnelShlickKernelParams p; + update_grid(p.gridSize, f0, f90, cosTheta); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + torch::Tensor f0_grad, f90_grad, cosT_grad; + p.f0 = make_cuda_tensor(f0, p.gridSize, &f0_grad); + p.f90 = make_cuda_tensor(f90, p.gridSize, &f90_grad); + p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize, &cosT_grad); + p.out = make_cuda_tensor(grad, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)FresnelShlickBwdKernel, gridSize, blockSize, args, 0, stream)); + + return std::tuple(f0_grad, f90_grad, cosT_grad); +} + +//------------------------------------------------------------------------ +// ndf_ggd + +torch::Tensor ndf_ggx_fwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, bool fp16) +{ + CHECK_TENSOR(alphaSqr, 4, 1); + CHECK_TENSOR(cosTheta, 4, 1); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + NdfGGXParams p; + p.out.fp16 = fp16; + update_grid(p.gridSize, alphaSqr, cosTheta); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize); + p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)ndfGGXFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +std::tuple ndf_ggx_bwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, torch::Tensor grad) +{ + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + NdfGGXParams p; + update_grid(p.gridSize, alphaSqr, cosTheta); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + torch::Tensor alphaSqr_grad, cosTheta_grad; + p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize, &alphaSqr_grad); + p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize, &cosTheta_grad); + p.out = make_cuda_tensor(grad, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)ndfGGXBwdKernel, gridSize, blockSize, args, 0, stream)); + + return std::tuple(alphaSqr_grad, cosTheta_grad); +} + +//------------------------------------------------------------------------ +// lambda_ggx + +torch::Tensor lambda_ggx_fwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, bool fp16) +{ + CHECK_TENSOR(alphaSqr, 4, 1); + CHECK_TENSOR(cosTheta, 4, 1); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + NdfGGXParams p; + p.out.fp16 = fp16; + update_grid(p.gridSize, alphaSqr, cosTheta); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize); + p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)lambdaGGXFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +std::tuple lambda_ggx_bwd(torch::Tensor alphaSqr, torch::Tensor cosTheta, torch::Tensor grad) +{ + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + NdfGGXParams p; + update_grid(p.gridSize, alphaSqr, cosTheta); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + torch::Tensor alphaSqr_grad, cosTheta_grad; + p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize, &alphaSqr_grad); + p.cosTheta = make_cuda_tensor(cosTheta, p.gridSize, &cosTheta_grad); + p.out = make_cuda_tensor(grad, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)lambdaGGXBwdKernel, gridSize, blockSize, args, 0, stream)); + + return std::tuple(alphaSqr_grad, cosTheta_grad); +} + +//------------------------------------------------------------------------ +// masking_smith + +torch::Tensor masking_smith_fwd(torch::Tensor alphaSqr, torch::Tensor cosThetaI, torch::Tensor cosThetaO, bool fp16) +{ + CHECK_TENSOR(alphaSqr, 4, 1); + CHECK_TENSOR(cosThetaI, 4, 1); + CHECK_TENSOR(cosThetaO, 4, 1); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + MaskingSmithParams p; + p.out.fp16 = fp16; + update_grid(p.gridSize, alphaSqr, cosThetaI, cosThetaO); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 1 }, opts); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize); + p.cosThetaI = make_cuda_tensor(cosThetaI, p.gridSize); + p.cosThetaO = make_cuda_tensor(cosThetaO, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)maskingSmithFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +std::tuple masking_smith_bwd(torch::Tensor alphaSqr, torch::Tensor cosThetaI, torch::Tensor cosThetaO, torch::Tensor grad) +{ + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + MaskingSmithParams p; + update_grid(p.gridSize, alphaSqr, cosThetaI, cosThetaO); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + torch::Tensor alphaSqr_grad, cosThetaI_grad, cosThetaO_grad; + p.alphaSqr = make_cuda_tensor(alphaSqr, p.gridSize, &alphaSqr_grad); + p.cosThetaI = make_cuda_tensor(cosThetaI, p.gridSize, &cosThetaI_grad); + p.cosThetaO = make_cuda_tensor(cosThetaO, p.gridSize, &cosThetaO_grad); + p.out = make_cuda_tensor(grad, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)maskingSmithBwdKernel, gridSize, blockSize, args, 0, stream)); + + return std::tuple(alphaSqr_grad, cosThetaI_grad, cosThetaO_grad); +} + +//------------------------------------------------------------------------ +// pbr_specular + +torch::Tensor pbr_specular_fwd(torch::Tensor col, torch::Tensor nrm, torch::Tensor wo, torch::Tensor wi, torch::Tensor alpha, float min_roughness, bool fp16) +{ + CHECK_TENSOR(col, 4, 3); + CHECK_TENSOR(nrm, 4, 3); + CHECK_TENSOR(wo, 4, 3); + CHECK_TENSOR(wi, 4, 3); + CHECK_TENSOR(alpha, 4, 1); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + PbrSpecular p; + p.out.fp16 = fp16; + p.min_roughness = min_roughness; + update_grid(p.gridSize, col, nrm, wo, wi, alpha); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + p.col = make_cuda_tensor(col, p.gridSize); + p.nrm = make_cuda_tensor(nrm, p.gridSize); + p.wo = make_cuda_tensor(wo, p.gridSize); + p.wi = make_cuda_tensor(wi, p.gridSize); + p.alpha = make_cuda_tensor(alpha, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrSpecularFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +std::tuple pbr_specular_bwd(torch::Tensor col, torch::Tensor nrm, torch::Tensor wo, torch::Tensor wi, torch::Tensor alpha, float min_roughness, torch::Tensor grad) +{ + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + PbrSpecular p; + update_grid(p.gridSize, col, nrm, wo, wi, alpha); + p.min_roughness = min_roughness; + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + torch::Tensor col_grad, nrm_grad, wo_grad, wi_grad, alpha_grad; + p.col = make_cuda_tensor(col, p.gridSize, &col_grad); + p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad); + p.wo = make_cuda_tensor(wo, p.gridSize, &wo_grad); + p.wi = make_cuda_tensor(wi, p.gridSize, &wi_grad); + p.alpha = make_cuda_tensor(alpha, p.gridSize, &alpha_grad); + p.out = make_cuda_tensor(grad, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrSpecularBwdKernel, gridSize, blockSize, args, 0, stream)); + + return std::tuple(col_grad, nrm_grad, wo_grad, wi_grad, alpha_grad); +} + +//------------------------------------------------------------------------ +// pbr_bsdf + +torch::Tensor pbr_bsdf_fwd(torch::Tensor kd, torch::Tensor arm, torch::Tensor pos, torch::Tensor nrm, torch::Tensor view_pos, torch::Tensor light_pos, float min_roughness, int BSDF, bool fp16) +{ + CHECK_TENSOR(kd, 4, 3); + CHECK_TENSOR(arm, 4, 3); + CHECK_TENSOR(pos, 4, 3); + CHECK_TENSOR(nrm, 4, 3); + CHECK_TENSOR(view_pos, 4, 3); + CHECK_TENSOR(light_pos, 4, 3); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + PbrBSDF p; + p.out.fp16 = fp16; + p.min_roughness = min_roughness; + p.BSDF = BSDF; + update_grid(p.gridSize, kd, arm, pos, nrm, view_pos, light_pos); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + p.kd = make_cuda_tensor(kd, p.gridSize); + p.arm = make_cuda_tensor(arm, p.gridSize); + p.pos = make_cuda_tensor(pos, p.gridSize); + p.nrm = make_cuda_tensor(nrm, p.gridSize); + p.view_pos = make_cuda_tensor(view_pos, p.gridSize); + p.light_pos = make_cuda_tensor(light_pos, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrBSDFFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +std::tuple pbr_bsdf_bwd(torch::Tensor kd, torch::Tensor arm, torch::Tensor pos, torch::Tensor nrm, torch::Tensor view_pos, torch::Tensor light_pos, float min_roughness, int BSDF, torch::Tensor grad) +{ + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + PbrBSDF p; + update_grid(p.gridSize, kd, arm, pos, nrm, view_pos, light_pos); + p.min_roughness = min_roughness; + p.BSDF = BSDF; + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + torch::Tensor kd_grad, arm_grad, pos_grad, nrm_grad, view_pos_grad, light_pos_grad; + p.kd = make_cuda_tensor(kd, p.gridSize, &kd_grad); + p.arm = make_cuda_tensor(arm, p.gridSize, &arm_grad); + p.pos = make_cuda_tensor(pos, p.gridSize, &pos_grad); + p.nrm = make_cuda_tensor(nrm, p.gridSize, &nrm_grad); + p.view_pos = make_cuda_tensor(view_pos, p.gridSize, &view_pos_grad); + p.light_pos = make_cuda_tensor(light_pos, p.gridSize, &light_pos_grad); + p.out = make_cuda_tensor(grad, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)pbrBSDFBwdKernel, gridSize, blockSize, args, 0, stream)); + + return std::tuple(kd_grad, arm_grad, pos_grad, nrm_grad, view_pos_grad, light_pos_grad); +} + +//------------------------------------------------------------------------ +// filter_cubemap + +torch::Tensor diffuse_cubemap_fwd(torch::Tensor cubemap) +{ + CHECK_TENSOR(cubemap, 4, 3); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + DiffuseCubemapKernelParams p; + update_grid(p.gridSize, cubemap); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 3 }, opts); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + // Setup tensors + p.cubemap = make_cuda_tensor(cubemap, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)DiffuseCubemapFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +torch::Tensor diffuse_cubemap_bwd(torch::Tensor cubemap, torch::Tensor grad) +{ + CHECK_TENSOR(cubemap, 4, 3); + CHECK_TENSOR(grad, 4, 3); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + DiffuseCubemapKernelParams p; + update_grid(p.gridSize, cubemap); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + // Setup tensors + torch::Tensor cubemap_grad; + p.cubemap = make_cuda_tensor(cubemap, p.gridSize); + p.out = make_cuda_tensor(grad, p.gridSize); + + cubemap_grad = torch::zeros({ p.gridSize.z, p.gridSize.y, p.gridSize.x, cubemap.size(3) }, torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA)); + p.cubemap.d_val = (void*)cubemap_grad.data_ptr(); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)DiffuseCubemapBwdKernel, gridSize, blockSize, args, 0, stream)); + + return cubemap_grad; +} + +torch::Tensor specular_bounds(int resolution, float costheta_cutoff) +{ + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + SpecularBoundsKernelParams p; + p.costheta_cutoff = costheta_cutoff; + p.gridSize = dim3(resolution, resolution, 6); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::zeros({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 6*4 }, opts); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + // Setup tensors + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)SpecularBoundsKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +torch::Tensor specular_cubemap_fwd(torch::Tensor cubemap, torch::Tensor bounds, float roughness, float costheta_cutoff) +{ + CHECK_TENSOR(cubemap, 4, 3); + CHECK_TENSOR(bounds, 4, 6*4); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + SpecularCubemapKernelParams p; + p.roughness = roughness; + p.costheta_cutoff = costheta_cutoff; + update_grid(p.gridSize, cubemap); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::empty({ p.gridSize.z, p.gridSize.y, p.gridSize.x, 4 }, opts); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + // Setup tensors + p.cubemap = make_cuda_tensor(cubemap, p.gridSize); + p.bounds = make_cuda_tensor(bounds, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)SpecularCubemapFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +torch::Tensor specular_cubemap_bwd(torch::Tensor cubemap, torch::Tensor bounds, torch::Tensor grad, float roughness, float costheta_cutoff) +{ + CHECK_TENSOR(cubemap, 4, 3); + CHECK_TENSOR(bounds, 4, 6*4); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + SpecularCubemapKernelParams p; + p.roughness = roughness; + p.costheta_cutoff = costheta_cutoff; + update_grid(p.gridSize, cubemap); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + // Setup tensors + torch::Tensor cubemap_grad; + p.cubemap = make_cuda_tensor(cubemap, p.gridSize); + p.bounds = make_cuda_tensor(bounds, p.gridSize); + p.out = make_cuda_tensor(grad, p.gridSize); + + cubemap_grad = torch::zeros({ p.gridSize.z, p.gridSize.y, p.gridSize.x, cubemap.size(3) }, torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA)); + p.cubemap.d_val = (void*)cubemap_grad.data_ptr(); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)SpecularCubemapBwdKernel, gridSize, blockSize, args, 0, stream)); + + return cubemap_grad; +} + +//------------------------------------------------------------------------ +// loss function + +LossType strToLoss(std::string str) +{ + if (str == "mse") + return LOSS_MSE; + else if (str == "relmse") + return LOSS_RELMSE; + else if (str == "smape") + return LOSS_SMAPE; + else + return LOSS_L1; +} + +torch::Tensor image_loss_fwd(torch::Tensor img, torch::Tensor target, std::string loss, std::string tonemapper, bool fp16) +{ + CHECK_TENSOR(img, 4, 3); + CHECK_TENSOR(target, 4, 3); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + LossKernelParams p; + p.out.fp16 = fp16; + p.loss = strToLoss(loss); + p.tonemapper = tonemapper == "log_srgb" ? TONEMAPPER_LOG_SRGB : TONEMAPPER_NONE; + update_grid(p.gridSize, img, target); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 warpSize = getWarpSize(blockSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = torch::empty({ (p.gridSize.z - 1)/ warpSize.z + 1, (p.gridSize.y - 1) / warpSize.y + 1, (p.gridSize.x - 1) / warpSize.x + 1, 1 }, opts); + + p.img = make_cuda_tensor(img, p.gridSize); + p.target = make_cuda_tensor(target, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)imgLossFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +std::tuple image_loss_bwd(torch::Tensor img, torch::Tensor target, torch::Tensor grad, std::string loss, std::string tonemapper) +{ + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + LossKernelParams p; + p.loss = strToLoss(loss); + p.tonemapper = tonemapper == "log_srgb" ? TONEMAPPER_LOG_SRGB : TONEMAPPER_NONE; + update_grid(p.gridSize, img, target); + + // Choose launch parameters. + dim3 blockSize = getLaunchBlockSize(BLOCK_X, BLOCK_Y, p.gridSize); + dim3 warpSize = getWarpSize(blockSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + torch::Tensor img_grad, target_grad; + p.img = make_cuda_tensor(img, p.gridSize, &img_grad); + p.target = make_cuda_tensor(target, p.gridSize, &target_grad); + p.out = make_cuda_tensor(grad, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)imgLossBwdKernel, gridSize, blockSize, args, 0, stream)); + + return std::tuple(img_grad, target_grad); +} + +//------------------------------------------------------------------------ +// transform function + +torch::Tensor xfm_fwd(torch::Tensor points, torch::Tensor matrix, bool isPoints, bool fp16) +{ + CHECK_TENSOR(points, 3, 3); + CHECK_TENSOR(matrix, 3, 4); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + XfmKernelParams p; + p.out.fp16 = fp16; + p.isPoints = isPoints; + p.gridSize.x = points.size(1); + p.gridSize.y = 1; + p.gridSize.z = std::max(matrix.size(0), points.size(0)); + + // Choose launch parameters. + dim3 blockSize(BLOCK_X * BLOCK_Y, 1, 1); + dim3 warpSize = getWarpSize(blockSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + // Allocate output tensors. + torch::TensorOptions opts = torch::TensorOptions().dtype(p.out.fp16 ? torch::kBFloat16 : torch::kFloat32).device(torch::kCUDA); + torch::Tensor out = isPoints ? torch::empty({ matrix.size(0), points.size(1), 4 }, opts) : torch::empty({ matrix.size(0), points.size(1), 3 }, opts); + + p.points = make_cuda_tensor(points, p.gridSize); + p.matrix = make_cuda_tensor(matrix, p.gridSize); + p.out = make_cuda_tensor(out, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)xfmPointsFwdKernel, gridSize, blockSize, args, 0, stream)); + + return out; +} + +torch::Tensor xfm_bwd(torch::Tensor points, torch::Tensor matrix, torch::Tensor grad, bool isPoints) +{ + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + + // Extract input parameters. + XfmKernelParams p; + p.isPoints = isPoints; + p.gridSize.x = points.size(1); + p.gridSize.y = 1; + p.gridSize.z = std::max(matrix.size(0), points.size(0)); + + // Choose launch parameters. + dim3 blockSize(BLOCK_X * BLOCK_Y, 1, 1); + dim3 warpSize = getWarpSize(blockSize); + dim3 gridSize = getLaunchGridSize(blockSize, p.gridSize); + + torch::Tensor points_grad; + p.points = make_cuda_tensor(points, p.gridSize, &points_grad); + p.matrix = make_cuda_tensor(matrix, p.gridSize); + p.out = make_cuda_tensor(grad, p.gridSize); + + // Launch CUDA kernel. + void* args[] = { &p }; + NVDR_CHECK_CUDA_ERROR(cudaLaunchKernel((const void*)xfmPointsBwdKernel, gridSize, blockSize, args, 0, stream)); + + return points_grad; +} + +PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { + m.def("prepare_shading_normal_fwd", &prepare_shading_normal_fwd, "prepare_shading_normal_fwd"); + m.def("prepare_shading_normal_bwd", &prepare_shading_normal_bwd, "prepare_shading_normal_bwd"); + m.def("lambert_fwd", &lambert_fwd, "lambert_fwd"); + m.def("lambert_bwd", &lambert_bwd, "lambert_bwd"); + m.def("frostbite_fwd", &frostbite_fwd, "frostbite_fwd"); + m.def("frostbite_bwd", &frostbite_bwd, "frostbite_bwd"); + m.def("fresnel_shlick_fwd", &fresnel_shlick_fwd, "fresnel_shlick_fwd"); + m.def("fresnel_shlick_bwd", &fresnel_shlick_bwd, "fresnel_shlick_bwd"); + m.def("ndf_ggx_fwd", &ndf_ggx_fwd, "ndf_ggx_fwd"); + m.def("ndf_ggx_bwd", &ndf_ggx_bwd, "ndf_ggx_bwd"); + m.def("lambda_ggx_fwd", &lambda_ggx_fwd, "lambda_ggx_fwd"); + m.def("lambda_ggx_bwd", &lambda_ggx_bwd, "lambda_ggx_bwd"); + m.def("masking_smith_fwd", &masking_smith_fwd, "masking_smith_fwd"); + m.def("masking_smith_bwd", &masking_smith_bwd, "masking_smith_bwd"); + m.def("pbr_specular_fwd", &pbr_specular_fwd, "pbr_specular_fwd"); + m.def("pbr_specular_bwd", &pbr_specular_bwd, "pbr_specular_bwd"); + m.def("pbr_bsdf_fwd", &pbr_bsdf_fwd, "pbr_bsdf_fwd"); + m.def("pbr_bsdf_bwd", &pbr_bsdf_bwd, "pbr_bsdf_bwd"); + m.def("diffuse_cubemap_fwd", &diffuse_cubemap_fwd, "diffuse_cubemap_fwd"); + m.def("diffuse_cubemap_bwd", &diffuse_cubemap_bwd, "diffuse_cubemap_bwd"); + m.def("specular_bounds", &specular_bounds, "specular_bounds"); + m.def("specular_cubemap_fwd", &specular_cubemap_fwd, "specular_cubemap_fwd"); + m.def("specular_cubemap_bwd", &specular_cubemap_bwd, "specular_cubemap_bwd"); + m.def("image_loss_fwd", &image_loss_fwd, "image_loss_fwd"); + m.def("image_loss_bwd", &image_loss_bwd, "image_loss_bwd"); + m.def("xfm_fwd", &xfm_fwd, "xfm_fwd"); + m.def("xfm_bwd", &xfm_bwd, "xfm_bwd"); +} \ No newline at end of file diff --git a/src/models/geometry/render/renderutils/c_src/vec3f.h b/src/models/geometry/render/renderutils/c_src/vec3f.h new file mode 100644 index 0000000000000000000000000000000000000000..7e6745430f19e9fe1834c8cd3dfeb6e68d730297 --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/vec3f.h @@ -0,0 +1,109 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#pragma once + +struct vec3f +{ + float x, y, z; + +#ifdef __CUDACC__ + __device__ vec3f() { } + __device__ vec3f(float v) { x = v; y = v; z = v; } + __device__ vec3f(float _x, float _y, float _z) { x = _x; y = _y; z = _z; } + __device__ vec3f(float3 v) { x = v.x; y = v.y; z = v.z; } + + __device__ inline vec3f& operator+=(const vec3f& b) { x += b.x; y += b.y; z += b.z; return *this; } + __device__ inline vec3f& operator-=(const vec3f& b) { x -= b.x; y -= b.y; z -= b.z; return *this; } + __device__ inline vec3f& operator*=(const vec3f& b) { x *= b.x; y *= b.y; z *= b.z; return *this; } + __device__ inline vec3f& operator/=(const vec3f& b) { x /= b.x; y /= b.y; z /= b.z; return *this; } +#endif +}; + +#ifdef __CUDACC__ +__device__ static inline vec3f operator+(const vec3f& a, const vec3f& b) { return vec3f(a.x + b.x, a.y + b.y, a.z + b.z); } +__device__ static inline vec3f operator-(const vec3f& a, const vec3f& b) { return vec3f(a.x - b.x, a.y - b.y, a.z - b.z); } +__device__ static inline vec3f operator*(const vec3f& a, const vec3f& b) { return vec3f(a.x * b.x, a.y * b.y, a.z * b.z); } +__device__ static inline vec3f operator/(const vec3f& a, const vec3f& b) { return vec3f(a.x / b.x, a.y / b.y, a.z / b.z); } +__device__ static inline vec3f operator-(const vec3f& a) { return vec3f(-a.x, -a.y, -a.z); } + +__device__ static inline float sum(vec3f a) +{ + return a.x + a.y + a.z; +} + +__device__ static inline vec3f cross(vec3f a, vec3f b) +{ + vec3f out; + out.x = a.y * b.z - a.z * b.y; + out.y = a.z * b.x - a.x * b.z; + out.z = a.x * b.y - a.y * b.x; + return out; +} + +__device__ static inline void bwdCross(vec3f a, vec3f b, vec3f &d_a, vec3f &d_b, vec3f d_out) +{ + d_a.x += d_out.z * b.y - d_out.y * b.z; + d_a.y += d_out.x * b.z - d_out.z * b.x; + d_a.z += d_out.y * b.x - d_out.x * b.y; + + d_b.x += d_out.y * a.z - d_out.z * a.y; + d_b.y += d_out.z * a.x - d_out.x * a.z; + d_b.z += d_out.x * a.y - d_out.y * a.x; +} + +__device__ static inline float dot(vec3f a, vec3f b) +{ + return a.x * b.x + a.y * b.y + a.z * b.z; +} + +__device__ static inline void bwdDot(vec3f a, vec3f b, vec3f& d_a, vec3f& d_b, float d_out) +{ + d_a.x += d_out * b.x; d_a.y += d_out * b.y; d_a.z += d_out * b.z; + d_b.x += d_out * a.x; d_b.y += d_out * a.y; d_b.z += d_out * a.z; +} + +__device__ static inline vec3f reflect(vec3f x, vec3f n) +{ + return n * 2.0f * dot(n, x) - x; +} + +__device__ static inline void bwdReflect(vec3f x, vec3f n, vec3f& d_x, vec3f& d_n, const vec3f d_out) +{ + d_x.x += d_out.x * (2 * n.x * n.x - 1) + d_out.y * (2 * n.x * n.y) + d_out.z * (2 * n.x * n.z); + d_x.y += d_out.x * (2 * n.x * n.y) + d_out.y * (2 * n.y * n.y - 1) + d_out.z * (2 * n.y * n.z); + d_x.z += d_out.x * (2 * n.x * n.z) + d_out.y * (2 * n.y * n.z) + d_out.z * (2 * n.z * n.z - 1); + + d_n.x += d_out.x * (2 * (2 * n.x * x.x + n.y * x.y + n.z * x.z)) + d_out.y * (2 * n.y * x.x) + d_out.z * (2 * n.z * x.x); + d_n.y += d_out.x * (2 * n.x * x.y) + d_out.y * (2 * (n.x * x.x + 2 * n.y * x.y + n.z * x.z)) + d_out.z * (2 * n.z * x.y); + d_n.z += d_out.x * (2 * n.x * x.z) + d_out.y * (2 * n.y * x.z) + d_out.z * (2 * (n.x * x.x + n.y * x.y + 2 * n.z * x.z)); +} + +__device__ static inline vec3f safeNormalize(vec3f v) +{ + float l = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z); + return l > 0.0f ? (v / l) : vec3f(0.0f); +} + +__device__ static inline void bwdSafeNormalize(const vec3f v, vec3f& d_v, const vec3f d_out) +{ + + float l = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z); + if (l > 0.0f) + { + float fac = 1.0 / powf(v.x * v.x + v.y * v.y + v.z * v.z, 1.5f); + d_v.x += (d_out.x * (v.y * v.y + v.z * v.z) - d_out.y * (v.x * v.y) - d_out.z * (v.x * v.z)) * fac; + d_v.y += (d_out.y * (v.x * v.x + v.z * v.z) - d_out.x * (v.y * v.x) - d_out.z * (v.y * v.z)) * fac; + d_v.z += (d_out.z * (v.x * v.x + v.y * v.y) - d_out.x * (v.z * v.x) - d_out.y * (v.z * v.y)) * fac; + } +} + +#endif \ No newline at end of file diff --git a/src/models/geometry/render/renderutils/c_src/vec4f.h b/src/models/geometry/render/renderutils/c_src/vec4f.h new file mode 100644 index 0000000000000000000000000000000000000000..e3f30776af334597475002275b8b40c584a05035 --- /dev/null +++ b/src/models/geometry/render/renderutils/c_src/vec4f.h @@ -0,0 +1,25 @@ +/* + * Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. + * + * NVIDIA CORPORATION, its affiliates and licensors retain all intellectual + * property and proprietary rights in and to this material, related + * documentation and any modifications thereto. Any use, reproduction, + * disclosure or distribution of this material and related documentation + * without an express license agreement from NVIDIA CORPORATION or + * its affiliates is strictly prohibited. + */ + +#pragma once + +struct vec4f +{ + float x, y, z, w; + +#ifdef __CUDACC__ + __device__ vec4f() { } + __device__ vec4f(float v) { x = v; y = v; z = v; w = v; } + __device__ vec4f(float _x, float _y, float _z, float _w) { x = _x; y = _y; z = _z; w = _w; } + __device__ vec4f(float4 v) { x = v.x; y = v.y; z = v.z; w = v.w; } +#endif +}; + diff --git a/src/models/geometry/render/renderutils/loss.py b/src/models/geometry/render/renderutils/loss.py new file mode 100644 index 0000000000000000000000000000000000000000..92a24c02885380937762698eec578eb81bc80f9e --- /dev/null +++ b/src/models/geometry/render/renderutils/loss.py @@ -0,0 +1,41 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import torch + +#---------------------------------------------------------------------------- +# HDR image losses +#---------------------------------------------------------------------------- + +def _tonemap_srgb(f): + return torch.where(f > 0.0031308, torch.pow(torch.clamp(f, min=0.0031308), 1.0/2.4)*1.055 - 0.055, 12.92*f) + +def _SMAPE(img, target, eps=0.01): + nom = torch.abs(img - target) + denom = torch.abs(img) + torch.abs(target) + 0.01 + return torch.mean(nom / denom) + +def _RELMSE(img, target, eps=0.1): + nom = (img - target) * (img - target) + denom = img * img + target * target + 0.1 + return torch.mean(nom / denom) + +def image_loss_fn(img, target, loss, tonemapper): + if tonemapper == 'log_srgb': + img = _tonemap_srgb(torch.log(torch.clamp(img, min=0, max=65535) + 1)) + target = _tonemap_srgb(torch.log(torch.clamp(target, min=0, max=65535) + 1)) + + if loss == 'mse': + return torch.nn.functional.mse_loss(img, target) + elif loss == 'smape': + return _SMAPE(img, target) + elif loss == 'relmse': + return _RELMSE(img, target) + else: + return torch.nn.functional.l1_loss(img, target) diff --git a/src/models/geometry/render/renderutils/ops.py b/src/models/geometry/render/renderutils/ops.py new file mode 100644 index 0000000000000000000000000000000000000000..b23bf5ecb019cf6f4d140687530fceb06d4590b5 --- /dev/null +++ b/src/models/geometry/render/renderutils/ops.py @@ -0,0 +1,554 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import numpy as np +import os +import sys +import torch +import torch.utils.cpp_extension + +from .bsdf import * +from .loss import * + +#---------------------------------------------------------------------------- +# C++/Cuda plugin compiler/loader. + +_cached_plugin = None +def _get_plugin(): + # Return cached plugin if already loaded. + global _cached_plugin + if _cached_plugin is not None: + return _cached_plugin + + # Make sure we can find the necessary compiler and libary binaries. + if os.name == 'nt': + def find_cl_path(): + import glob + for edition in ['Enterprise', 'Professional', 'BuildTools', 'Community']: + paths = sorted(glob.glob(r"C:\Program Files (x86)\Microsoft Visual Studio\*\%s\VC\Tools\MSVC\*\bin\Hostx64\x64" % edition), reverse=True) + if paths: + return paths[0] + + # If cl.exe is not on path, try to find it. + if os.system("where cl.exe >nul 2>nul") != 0: + cl_path = find_cl_path() + if cl_path is None: + raise RuntimeError("Could not locate a supported Microsoft Visual C++ installation") + os.environ['PATH'] += ';' + cl_path + + # Compiler options. + opts = ['-DNVDR_TORCH'] + + # Linker options. + if os.name == 'posix': + ldflags = ['-lcuda', '-lnvrtc'] + elif os.name == 'nt': + ldflags = ['cuda.lib', 'advapi32.lib', 'nvrtc.lib'] + + # List of sources. + source_files = [ + 'c_src/mesh.cu', + 'c_src/loss.cu', + 'c_src/bsdf.cu', + 'c_src/normal.cu', + 'c_src/cubemap.cu', + 'c_src/common.cpp', + 'c_src/torch_bindings.cpp' + ] + + # Some containers set this to contain old architectures that won't compile. We only need the one installed in the machine. + os.environ['TORCH_CUDA_ARCH_LIST'] = '' + + # Try to detect if a stray lock file is left in cache directory and show a warning. This sometimes happens on Windows if the build is interrupted at just the right moment. + try: + lock_fn = os.path.join(torch.utils.cpp_extension._get_build_directory('renderutils_plugin', False), 'lock') + if os.path.exists(lock_fn): + print("Warning: Lock file exists in build directory: '%s'" % lock_fn) + except: + pass + + # Compile and load. + source_paths = [os.path.join(os.path.dirname(__file__), fn) for fn in source_files] + torch.utils.cpp_extension.load(name='renderutils_plugin', sources=source_paths, extra_cflags=opts, + extra_cuda_cflags=opts, extra_ldflags=ldflags, with_cuda=True, verbose=True) + + # Import, cache, and return the compiled module. + import renderutils_plugin + _cached_plugin = renderutils_plugin + return _cached_plugin + +#---------------------------------------------------------------------------- +# Internal kernels, just used for testing functionality + +class _fresnel_shlick_func(torch.autograd.Function): + @staticmethod + def forward(ctx, f0, f90, cosTheta): + out = _get_plugin().fresnel_shlick_fwd(f0, f90, cosTheta, False) + ctx.save_for_backward(f0, f90, cosTheta) + return out + + @staticmethod + def backward(ctx, dout): + f0, f90, cosTheta = ctx.saved_variables + return _get_plugin().fresnel_shlick_bwd(f0, f90, cosTheta, dout) + (None,) + +def _fresnel_shlick(f0, f90, cosTheta, use_python=False): + if use_python: + out = bsdf_fresnel_shlick(f0, f90, cosTheta) + else: + out = _fresnel_shlick_func.apply(f0, f90, cosTheta) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of _fresnel_shlick contains inf or NaN" + return out + + +class _ndf_ggx_func(torch.autograd.Function): + @staticmethod + def forward(ctx, alphaSqr, cosTheta): + out = _get_plugin().ndf_ggx_fwd(alphaSqr, cosTheta, False) + ctx.save_for_backward(alphaSqr, cosTheta) + return out + + @staticmethod + def backward(ctx, dout): + alphaSqr, cosTheta = ctx.saved_variables + return _get_plugin().ndf_ggx_bwd(alphaSqr, cosTheta, dout) + (None,) + +def _ndf_ggx(alphaSqr, cosTheta, use_python=False): + if use_python: + out = bsdf_ndf_ggx(alphaSqr, cosTheta) + else: + out = _ndf_ggx_func.apply(alphaSqr, cosTheta) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of _ndf_ggx contains inf or NaN" + return out + +class _lambda_ggx_func(torch.autograd.Function): + @staticmethod + def forward(ctx, alphaSqr, cosTheta): + out = _get_plugin().lambda_ggx_fwd(alphaSqr, cosTheta, False) + ctx.save_for_backward(alphaSqr, cosTheta) + return out + + @staticmethod + def backward(ctx, dout): + alphaSqr, cosTheta = ctx.saved_variables + return _get_plugin().lambda_ggx_bwd(alphaSqr, cosTheta, dout) + (None,) + +def _lambda_ggx(alphaSqr, cosTheta, use_python=False): + if use_python: + out = bsdf_lambda_ggx(alphaSqr, cosTheta) + else: + out = _lambda_ggx_func.apply(alphaSqr, cosTheta) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of _lambda_ggx contains inf or NaN" + return out + +class _masking_smith_func(torch.autograd.Function): + @staticmethod + def forward(ctx, alphaSqr, cosThetaI, cosThetaO): + ctx.save_for_backward(alphaSqr, cosThetaI, cosThetaO) + out = _get_plugin().masking_smith_fwd(alphaSqr, cosThetaI, cosThetaO, False) + return out + + @staticmethod + def backward(ctx, dout): + alphaSqr, cosThetaI, cosThetaO = ctx.saved_variables + return _get_plugin().masking_smith_bwd(alphaSqr, cosThetaI, cosThetaO, dout) + (None,) + +def _masking_smith(alphaSqr, cosThetaI, cosThetaO, use_python=False): + if use_python: + out = bsdf_masking_smith_ggx_correlated(alphaSqr, cosThetaI, cosThetaO) + else: + out = _masking_smith_func.apply(alphaSqr, cosThetaI, cosThetaO) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of _masking_smith contains inf or NaN" + return out + +#---------------------------------------------------------------------------- +# Shading normal setup (bump mapping + bent normals) + +class _prepare_shading_normal_func(torch.autograd.Function): + @staticmethod + def forward(ctx, pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl): + ctx.two_sided_shading, ctx.opengl = two_sided_shading, opengl + out = _get_plugin().prepare_shading_normal_fwd(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl, False) + ctx.save_for_backward(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm) + return out + + @staticmethod + def backward(ctx, dout): + pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm = ctx.saved_variables + return _get_plugin().prepare_shading_normal_bwd(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, dout, ctx.two_sided_shading, ctx.opengl) + (None, None, None) + +def prepare_shading_normal(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading=True, opengl=True, use_python=False): + '''Takes care of all corner cases and produces a final normal used for shading: + - Constructs tangent space + - Flips normal direction based on geometric normal for two sided Shading + - Perturbs shading normal by normal map + - Bends backfacing normals towards the camera to avoid shading artifacts + + All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent. + + Args: + pos: World space g-buffer position. + view_pos: Camera position in world space (typically using broadcasting). + perturbed_nrm: Trangent-space normal perturbation from normal map lookup. + smooth_nrm: Interpolated vertex normals. + smooth_tng: Interpolated vertex tangents. + geom_nrm: Geometric (face) normals. + two_sided_shading: Use one/two sided shading + opengl: Use OpenGL/DirectX normal map conventions + use_python: Use PyTorch implementation (for validation) + Returns: + Final shading normal + ''' + + if perturbed_nrm is None: + perturbed_nrm = torch.tensor([0, 0, 1], dtype=torch.float32, device='cuda', requires_grad=False)[None, None, None, ...] + + if use_python: + out = bsdf_prepare_shading_normal(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl) + else: + out = _prepare_shading_normal_func.apply(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of prepare_shading_normal contains inf or NaN" + return out + +#---------------------------------------------------------------------------- +# BSDF functions + +class _lambert_func(torch.autograd.Function): + @staticmethod + def forward(ctx, nrm, wi): + out = _get_plugin().lambert_fwd(nrm, wi, False) + ctx.save_for_backward(nrm, wi) + return out + + @staticmethod + def backward(ctx, dout): + nrm, wi = ctx.saved_variables + return _get_plugin().lambert_bwd(nrm, wi, dout) + (None,) + +def lambert(nrm, wi, use_python=False): + '''Lambertian bsdf. + All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent. + + Args: + nrm: World space shading normal. + wi: World space light vector. + use_python: Use PyTorch implementation (for validation) + + Returns: + Shaded diffuse value with shape [minibatch_size, height, width, 1] + ''' + + if use_python: + out = bsdf_lambert(nrm, wi) + else: + out = _lambert_func.apply(nrm, wi) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of lambert contains inf or NaN" + return out + +class _frostbite_diffuse_func(torch.autograd.Function): + @staticmethod + def forward(ctx, nrm, wi, wo, linearRoughness): + out = _get_plugin().frostbite_fwd(nrm, wi, wo, linearRoughness, False) + ctx.save_for_backward(nrm, wi, wo, linearRoughness) + return out + + @staticmethod + def backward(ctx, dout): + nrm, wi, wo, linearRoughness = ctx.saved_variables + return _get_plugin().frostbite_bwd(nrm, wi, wo, linearRoughness, dout) + (None,) + +def frostbite_diffuse(nrm, wi, wo, linearRoughness, use_python=False): + '''Frostbite, normalized Disney Diffuse bsdf. + All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent. + + Args: + nrm: World space shading normal. + wi: World space light vector. + wo: World space camera vector. + linearRoughness: Material roughness + use_python: Use PyTorch implementation (for validation) + + Returns: + Shaded diffuse value with shape [minibatch_size, height, width, 1] + ''' + + if use_python: + out = bsdf_frostbite(nrm, wi, wo, linearRoughness) + else: + out = _frostbite_diffuse_func.apply(nrm, wi, wo, linearRoughness) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of lambert contains inf or NaN" + return out + +class _pbr_specular_func(torch.autograd.Function): + @staticmethod + def forward(ctx, col, nrm, wo, wi, alpha, min_roughness): + ctx.save_for_backward(col, nrm, wo, wi, alpha) + ctx.min_roughness = min_roughness + out = _get_plugin().pbr_specular_fwd(col, nrm, wo, wi, alpha, min_roughness, False) + return out + + @staticmethod + def backward(ctx, dout): + col, nrm, wo, wi, alpha = ctx.saved_variables + return _get_plugin().pbr_specular_bwd(col, nrm, wo, wi, alpha, ctx.min_roughness, dout) + (None, None) + +def pbr_specular(col, nrm, wo, wi, alpha, min_roughness=0.08, use_python=False): + '''Physically-based specular bsdf. + All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent unless otherwise noted. + + Args: + col: Specular lobe color + nrm: World space shading normal. + wo: World space camera vector. + wi: World space light vector + alpha: Specular roughness parameter with shape [minibatch_size, height, width, 1] + min_roughness: Scalar roughness clamping threshold + + use_python: Use PyTorch implementation (for validation) + Returns: + Shaded specular color + ''' + + if use_python: + out = bsdf_pbr_specular(col, nrm, wo, wi, alpha, min_roughness=min_roughness) + else: + out = _pbr_specular_func.apply(col, nrm, wo, wi, alpha, min_roughness) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of pbr_specular contains inf or NaN" + return out + +class _pbr_bsdf_func(torch.autograd.Function): + @staticmethod + def forward(ctx, kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF): + ctx.save_for_backward(kd, arm, pos, nrm, view_pos, light_pos) + ctx.min_roughness = min_roughness + ctx.BSDF = BSDF + out = _get_plugin().pbr_bsdf_fwd(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF, False) + return out + + @staticmethod + def backward(ctx, dout): + kd, arm, pos, nrm, view_pos, light_pos = ctx.saved_variables + return _get_plugin().pbr_bsdf_bwd(kd, arm, pos, nrm, view_pos, light_pos, ctx.min_roughness, ctx.BSDF, dout) + (None, None, None) + +def pbr_bsdf(kd, arm, pos, nrm, view_pos, light_pos, min_roughness=0.08, bsdf="lambert", use_python=False): + '''Physically-based bsdf, both diffuse & specular lobes + All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent unless otherwise noted. + + Args: + kd: Diffuse albedo. + arm: Specular parameters (attenuation, linear roughness, metalness). + pos: World space position. + nrm: World space shading normal. + view_pos: Camera position in world space, typically using broadcasting. + light_pos: Light position in world space, typically using broadcasting. + min_roughness: Scalar roughness clamping threshold + bsdf: Controls diffuse BSDF, can be either 'lambert' or 'frostbite' + + use_python: Use PyTorch implementation (for validation) + + Returns: + Shaded color. + ''' + + BSDF = 0 + if bsdf == 'frostbite': + BSDF = 1 + + if use_python: + out = bsdf_pbr(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF) + else: + out = _pbr_bsdf_func.apply(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of pbr_bsdf contains inf or NaN" + return out + +#---------------------------------------------------------------------------- +# cubemap filter with filtering across edges + +class _diffuse_cubemap_func(torch.autograd.Function): + @staticmethod + def forward(ctx, cubemap): + out = _get_plugin().diffuse_cubemap_fwd(cubemap) + ctx.save_for_backward(cubemap) + return out + + @staticmethod + def backward(ctx, dout): + cubemap, = ctx.saved_variables + cubemap_grad = _get_plugin().diffuse_cubemap_bwd(cubemap, dout) + return cubemap_grad, None + +def diffuse_cubemap(cubemap, use_python=False): + if use_python: + assert False + else: + out = _diffuse_cubemap_func.apply(cubemap) + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of diffuse_cubemap contains inf or NaN" + return out + +class _specular_cubemap(torch.autograd.Function): + @staticmethod + def forward(ctx, cubemap, roughness, costheta_cutoff, bounds): + out = _get_plugin().specular_cubemap_fwd(cubemap, bounds, roughness, costheta_cutoff) + ctx.save_for_backward(cubemap, bounds) + ctx.roughness, ctx.theta_cutoff = roughness, costheta_cutoff + return out + + @staticmethod + def backward(ctx, dout): + cubemap, bounds = ctx.saved_variables + cubemap_grad = _get_plugin().specular_cubemap_bwd(cubemap, bounds, dout, ctx.roughness, ctx.theta_cutoff) + return cubemap_grad, None, None, None + +# Compute the bounds of the GGX NDF lobe to retain "cutoff" percent of the energy +def __ndfBounds(res, roughness, cutoff): + def ndfGGX(alphaSqr, costheta): + costheta = np.clip(costheta, 0.0, 1.0) + d = (costheta * alphaSqr - costheta) * costheta + 1.0 + return alphaSqr / (d * d * np.pi) + + # Sample out cutoff angle + nSamples = 1000000 + costheta = np.cos(np.linspace(0, np.pi/2.0, nSamples)) + D = np.cumsum(ndfGGX(roughness**4, costheta)) + idx = np.argmax(D >= D[..., -1] * cutoff) + + # Brute force compute lookup table with bounds + bounds = _get_plugin().specular_bounds(res, costheta[idx]) + + return costheta[idx], bounds +__ndfBoundsDict = {} + +def specular_cubemap(cubemap, roughness, cutoff=0.99, use_python=False): + assert cubemap.shape[0] == 6 and cubemap.shape[1] == cubemap.shape[2], "Bad shape for cubemap tensor: %s" % str(cubemap.shape) + + if use_python: + assert False + else: + key = (cubemap.shape[1], roughness, cutoff) + if key not in __ndfBoundsDict: + __ndfBoundsDict[key] = __ndfBounds(*key) + out = _specular_cubemap.apply(cubemap, roughness, *__ndfBoundsDict[key]) + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of specular_cubemap contains inf or NaN" + return out[..., 0:3] / out[..., 3:] + +#---------------------------------------------------------------------------- +# Fast image loss function + +class _image_loss_func(torch.autograd.Function): + @staticmethod + def forward(ctx, img, target, loss, tonemapper): + ctx.loss, ctx.tonemapper = loss, tonemapper + ctx.save_for_backward(img, target) + out = _get_plugin().image_loss_fwd(img, target, loss, tonemapper, False) + return out + + @staticmethod + def backward(ctx, dout): + img, target = ctx.saved_variables + return _get_plugin().image_loss_bwd(img, target, dout, ctx.loss, ctx.tonemapper) + (None, None, None) + +def image_loss(img, target, loss='l1', tonemapper='none', use_python=False): + '''Compute HDR image loss. Combines tonemapping and loss into a single kernel for better perf. + All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent unless otherwise noted. + + Args: + img: Input image. + target: Target (reference) image. + loss: Type of loss. Valid options are ['l1', 'mse', 'smape', 'relmse'] + tonemapper: Tonemapping operations. Valid options are ['none', 'log_srgb'] + use_python: Use PyTorch implementation (for validation) + + Returns: + Image space loss (scalar value). + ''' + if use_python: + out = image_loss_fn(img, target, loss, tonemapper) + else: + out = _image_loss_func.apply(img, target, loss, tonemapper) + out = torch.sum(out) / (img.shape[0]*img.shape[1]*img.shape[2]) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of image_loss contains inf or NaN" + return out + +#---------------------------------------------------------------------------- +# Transform points function + +class _xfm_func(torch.autograd.Function): + @staticmethod + def forward(ctx, points, matrix, isPoints): + ctx.save_for_backward(points, matrix) + ctx.isPoints = isPoints + return _get_plugin().xfm_fwd(points, matrix, isPoints, False) + + @staticmethod + def backward(ctx, dout): + points, matrix = ctx.saved_variables + return (_get_plugin().xfm_bwd(points, matrix, dout, ctx.isPoints),) + (None, None, None) + +def xfm_points(points, matrix, use_python=False): + '''Transform points. + Args: + points: Tensor containing 3D points with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3] + matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4] + use_python: Use PyTorch's torch.matmul (for validation) + Returns: + Transformed points in homogeneous 4D with shape [minibatch_size, num_vertices, 4]. + ''' + if use_python: + out = torch.matmul(torch.nn.functional.pad(points, pad=(0,1), mode='constant', value=1.0), torch.transpose(matrix, 1, 2)) + else: + out = _xfm_func.apply(points, matrix, True) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of xfm_points contains inf or NaN" + return out + +def xfm_vectors(vectors, matrix, use_python=False): + '''Transform vectors. + Args: + vectors: Tensor containing 3D vectors with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3] + matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4] + use_python: Use PyTorch's torch.matmul (for validation) + + Returns: + Transformed vectors in homogeneous 4D with shape [minibatch_size, num_vertices, 4]. + ''' + + if use_python: + out = torch.matmul(torch.nn.functional.pad(vectors, pad=(0,1), mode='constant', value=0.0), torch.transpose(matrix, 1, 2))[..., 0:3].contiguous() + else: + out = _xfm_func.apply(vectors, matrix, False) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(out)), "Output of xfm_vectors contains inf or NaN" + return out + + + diff --git a/src/models/geometry/render/renderutils/tests/test_bsdf.py b/src/models/geometry/render/renderutils/tests/test_bsdf.py new file mode 100644 index 0000000000000000000000000000000000000000..b0b60c350455717826c0f3edb01289b29baac27a --- /dev/null +++ b/src/models/geometry/render/renderutils/tests/test_bsdf.py @@ -0,0 +1,296 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import torch + +import os +import sys +sys.path.insert(0, os.path.join(sys.path[0], '../..')) +import renderutils as ru + +RES = 4 +DTYPE = torch.float32 + +def relative_loss(name, ref, cuda): + ref = ref.float() + cuda = cuda.float() + print(name, torch.max(torch.abs(ref - cuda) / torch.abs(ref + 1e-7)).item()) + +def test_normal(): + pos_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + pos_ref = pos_cuda.clone().detach().requires_grad_(True) + view_pos_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + view_pos_ref = view_pos_cuda.clone().detach().requires_grad_(True) + perturbed_nrm_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + perturbed_nrm_ref = perturbed_nrm_cuda.clone().detach().requires_grad_(True) + smooth_nrm_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + smooth_nrm_ref = smooth_nrm_cuda.clone().detach().requires_grad_(True) + smooth_tng_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + smooth_tng_ref = smooth_tng_cuda.clone().detach().requires_grad_(True) + geom_nrm_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + geom_nrm_ref = geom_nrm_cuda.clone().detach().requires_grad_(True) + target = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda') + + ref = ru.prepare_shading_normal(pos_ref, view_pos_ref, perturbed_nrm_ref, smooth_nrm_ref, smooth_tng_ref, geom_nrm_ref, True, use_python=True) + ref_loss = torch.nn.MSELoss()(ref, target) + ref_loss.backward() + + cuda = ru.prepare_shading_normal(pos_cuda, view_pos_cuda, perturbed_nrm_cuda, smooth_nrm_cuda, smooth_tng_cuda, geom_nrm_cuda, True) + cuda_loss = torch.nn.MSELoss()(cuda, target) + cuda_loss.backward() + + print("-------------------------------------------------------------") + print(" bent normal") + print("-------------------------------------------------------------") + relative_loss("res:", ref, cuda) + relative_loss("pos:", pos_ref.grad, pos_cuda.grad) + relative_loss("view_pos:", view_pos_ref.grad, view_pos_cuda.grad) + relative_loss("perturbed_nrm:", perturbed_nrm_ref.grad, perturbed_nrm_cuda.grad) + relative_loss("smooth_nrm:", smooth_nrm_ref.grad, smooth_nrm_cuda.grad) + relative_loss("smooth_tng:", smooth_tng_ref.grad, smooth_tng_cuda.grad) + relative_loss("geom_nrm:", geom_nrm_ref.grad, geom_nrm_cuda.grad) + +def test_schlick(): + f0_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + f0_ref = f0_cuda.clone().detach().requires_grad_(True) + f90_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + f90_ref = f90_cuda.clone().detach().requires_grad_(True) + cosT_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) * 2.0 + cosT_cuda = cosT_cuda.clone().detach().requires_grad_(True) + cosT_ref = cosT_cuda.clone().detach().requires_grad_(True) + target = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda') + + ref = ru._fresnel_shlick(f0_ref, f90_ref, cosT_ref, use_python=True) + ref_loss = torch.nn.MSELoss()(ref, target) + ref_loss.backward() + + cuda = ru._fresnel_shlick(f0_cuda, f90_cuda, cosT_cuda) + cuda_loss = torch.nn.MSELoss()(cuda, target) + cuda_loss.backward() + + print("-------------------------------------------------------------") + print(" Fresnel shlick") + print("-------------------------------------------------------------") + relative_loss("res:", ref, cuda) + relative_loss("f0:", f0_ref.grad, f0_cuda.grad) + relative_loss("f90:", f90_ref.grad, f90_cuda.grad) + relative_loss("cosT:", cosT_ref.grad, cosT_cuda.grad) + +def test_ndf_ggx(): + alphaSqr_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) + alphaSqr_cuda = alphaSqr_cuda.clone().detach().requires_grad_(True) + alphaSqr_ref = alphaSqr_cuda.clone().detach().requires_grad_(True) + cosT_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) * 3.0 - 1 + cosT_cuda = cosT_cuda.clone().detach().requires_grad_(True) + cosT_ref = cosT_cuda.clone().detach().requires_grad_(True) + target = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda') + + ref = ru._ndf_ggx(alphaSqr_ref, cosT_ref, use_python=True) + ref_loss = torch.nn.MSELoss()(ref, target) + ref_loss.backward() + + cuda = ru._ndf_ggx(alphaSqr_cuda, cosT_cuda) + cuda_loss = torch.nn.MSELoss()(cuda, target) + cuda_loss.backward() + + print("-------------------------------------------------------------") + print(" Ndf GGX") + print("-------------------------------------------------------------") + relative_loss("res:", ref, cuda) + relative_loss("alpha:", alphaSqr_ref.grad, alphaSqr_cuda.grad) + relative_loss("cosT:", cosT_ref.grad, cosT_cuda.grad) + +def test_lambda_ggx(): + alphaSqr_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) + alphaSqr_ref = alphaSqr_cuda.clone().detach().requires_grad_(True) + cosT_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) * 3.0 - 1 + cosT_cuda = cosT_cuda.clone().detach().requires_grad_(True) + cosT_ref = cosT_cuda.clone().detach().requires_grad_(True) + target = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda') + + ref = ru._lambda_ggx(alphaSqr_ref, cosT_ref, use_python=True) + ref_loss = torch.nn.MSELoss()(ref, target) + ref_loss.backward() + + cuda = ru._lambda_ggx(alphaSqr_cuda, cosT_cuda) + cuda_loss = torch.nn.MSELoss()(cuda, target) + cuda_loss.backward() + + print("-------------------------------------------------------------") + print(" Lambda GGX") + print("-------------------------------------------------------------") + relative_loss("res:", ref, cuda) + relative_loss("alpha:", alphaSqr_ref.grad, alphaSqr_cuda.grad) + relative_loss("cosT:", cosT_ref.grad, cosT_cuda.grad) + +def test_masking_smith(): + alphaSqr_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) + alphaSqr_ref = alphaSqr_cuda.clone().detach().requires_grad_(True) + cosThetaI_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) + cosThetaI_ref = cosThetaI_cuda.clone().detach().requires_grad_(True) + cosThetaO_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) + cosThetaO_ref = cosThetaO_cuda.clone().detach().requires_grad_(True) + target = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda') + + ref = ru._masking_smith(alphaSqr_ref, cosThetaI_ref, cosThetaO_ref, use_python=True) + ref_loss = torch.nn.MSELoss()(ref, target) + ref_loss.backward() + + cuda = ru._masking_smith(alphaSqr_cuda, cosThetaI_cuda, cosThetaO_cuda) + cuda_loss = torch.nn.MSELoss()(cuda, target) + cuda_loss.backward() + + print("-------------------------------------------------------------") + print(" Smith masking term") + print("-------------------------------------------------------------") + relative_loss("res:", ref, cuda) + relative_loss("alpha:", alphaSqr_ref.grad, alphaSqr_cuda.grad) + relative_loss("cosThetaI:", cosThetaI_ref.grad, cosThetaI_cuda.grad) + relative_loss("cosThetaO:", cosThetaO_ref.grad, cosThetaO_cuda.grad) + +def test_lambert(): + normals_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + normals_ref = normals_cuda.clone().detach().requires_grad_(True) + wi_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + wi_ref = wi_cuda.clone().detach().requires_grad_(True) + target = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda') + + ref = ru.lambert(normals_ref, wi_ref, use_python=True) + ref_loss = torch.nn.MSELoss()(ref, target) + ref_loss.backward() + + cuda = ru.lambert(normals_cuda, wi_cuda) + cuda_loss = torch.nn.MSELoss()(cuda, target) + cuda_loss.backward() + + print("-------------------------------------------------------------") + print(" Lambert") + print("-------------------------------------------------------------") + relative_loss("res:", ref, cuda) + relative_loss("nrm:", normals_ref.grad, normals_cuda.grad) + relative_loss("wi:", wi_ref.grad, wi_cuda.grad) + +def test_frostbite(): + normals_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + normals_ref = normals_cuda.clone().detach().requires_grad_(True) + wi_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + wi_ref = wi_cuda.clone().detach().requires_grad_(True) + wo_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + wo_ref = wo_cuda.clone().detach().requires_grad_(True) + rough_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) + rough_ref = rough_cuda.clone().detach().requires_grad_(True) + target = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda') + + ref = ru.frostbite_diffuse(normals_ref, wi_ref, wo_ref, rough_ref, use_python=True) + ref_loss = torch.nn.MSELoss()(ref, target) + ref_loss.backward() + + cuda = ru.frostbite_diffuse(normals_cuda, wi_cuda, wo_cuda, rough_cuda) + cuda_loss = torch.nn.MSELoss()(cuda, target) + cuda_loss.backward() + + print("-------------------------------------------------------------") + print(" Frostbite") + print("-------------------------------------------------------------") + relative_loss("res:", ref, cuda) + relative_loss("nrm:", normals_ref.grad, normals_cuda.grad) + relative_loss("wo:", wo_ref.grad, wo_cuda.grad) + relative_loss("wi:", wi_ref.grad, wi_cuda.grad) + relative_loss("rough:", rough_ref.grad, rough_cuda.grad) + +def test_pbr_specular(): + col_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + col_ref = col_cuda.clone().detach().requires_grad_(True) + nrm_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + nrm_ref = nrm_cuda.clone().detach().requires_grad_(True) + wi_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + wi_ref = wi_cuda.clone().detach().requires_grad_(True) + wo_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + wo_ref = wo_cuda.clone().detach().requires_grad_(True) + alpha_cuda = torch.rand(1, RES, RES, 1, dtype=DTYPE, device='cuda', requires_grad=True) + alpha_ref = alpha_cuda.clone().detach().requires_grad_(True) + target = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda') + + ref = ru.pbr_specular(col_ref, nrm_ref, wo_ref, wi_ref, alpha_ref, use_python=True) + ref_loss = torch.nn.MSELoss()(ref, target) + ref_loss.backward() + + cuda = ru.pbr_specular(col_cuda, nrm_cuda, wo_cuda, wi_cuda, alpha_cuda) + cuda_loss = torch.nn.MSELoss()(cuda, target) + cuda_loss.backward() + + print("-------------------------------------------------------------") + print(" Pbr specular") + print("-------------------------------------------------------------") + + relative_loss("res:", ref, cuda) + if col_ref.grad is not None: + relative_loss("col:", col_ref.grad, col_cuda.grad) + if nrm_ref.grad is not None: + relative_loss("nrm:", nrm_ref.grad, nrm_cuda.grad) + if wi_ref.grad is not None: + relative_loss("wi:", wi_ref.grad, wi_cuda.grad) + if wo_ref.grad is not None: + relative_loss("wo:", wo_ref.grad, wo_cuda.grad) + if alpha_ref.grad is not None: + relative_loss("alpha:", alpha_ref.grad, alpha_cuda.grad) + +def test_pbr_bsdf(bsdf): + kd_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + kd_ref = kd_cuda.clone().detach().requires_grad_(True) + arm_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + arm_ref = arm_cuda.clone().detach().requires_grad_(True) + pos_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + pos_ref = pos_cuda.clone().detach().requires_grad_(True) + nrm_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + nrm_ref = nrm_cuda.clone().detach().requires_grad_(True) + view_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + view_ref = view_cuda.clone().detach().requires_grad_(True) + light_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + light_ref = light_cuda.clone().detach().requires_grad_(True) + target = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda') + + ref = ru.pbr_bsdf(kd_ref, arm_ref, pos_ref, nrm_ref, view_ref, light_ref, use_python=True, bsdf=bsdf) + ref_loss = torch.nn.MSELoss()(ref, target) + ref_loss.backward() + + cuda = ru.pbr_bsdf(kd_cuda, arm_cuda, pos_cuda, nrm_cuda, view_cuda, light_cuda, bsdf=bsdf) + cuda_loss = torch.nn.MSELoss()(cuda, target) + cuda_loss.backward() + + print("-------------------------------------------------------------") + print(" Pbr BSDF") + print("-------------------------------------------------------------") + + relative_loss("res:", ref, cuda) + if kd_ref.grad is not None: + relative_loss("kd:", kd_ref.grad, kd_cuda.grad) + if arm_ref.grad is not None: + relative_loss("arm:", arm_ref.grad, arm_cuda.grad) + if pos_ref.grad is not None: + relative_loss("pos:", pos_ref.grad, pos_cuda.grad) + if nrm_ref.grad is not None: + relative_loss("nrm:", nrm_ref.grad, nrm_cuda.grad) + if view_ref.grad is not None: + relative_loss("view:", view_ref.grad, view_cuda.grad) + if light_ref.grad is not None: + relative_loss("light:", light_ref.grad, light_cuda.grad) + +test_normal() + +test_schlick() +test_ndf_ggx() +test_lambda_ggx() +test_masking_smith() + +test_lambert() +test_frostbite() +test_pbr_specular() +test_pbr_bsdf('lambert') +test_pbr_bsdf('frostbite') diff --git a/src/models/geometry/render/renderutils/tests/test_loss.py b/src/models/geometry/render/renderutils/tests/test_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..7a68f3fc4528431fe405d1d6077af0cb31687d31 --- /dev/null +++ b/src/models/geometry/render/renderutils/tests/test_loss.py @@ -0,0 +1,61 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import torch + +import os +import sys +sys.path.insert(0, os.path.join(sys.path[0], '../..')) +import renderutils as ru + +RES = 8 +DTYPE = torch.float32 + +def tonemap_srgb(f): + return torch.where(f > 0.0031308, torch.pow(torch.clamp(f, min=0.0031308), 1.0/2.4)*1.055 - 0.055, 12.92*f) + +def l1(output, target): + x = torch.clamp(output, min=0, max=65535) + r = torch.clamp(target, min=0, max=65535) + x = tonemap_srgb(torch.log(x + 1)) + r = tonemap_srgb(torch.log(r + 1)) + return torch.nn.functional.l1_loss(x,r) + +def relative_loss(name, ref, cuda): + ref = ref.float() + cuda = cuda.float() + print(name, torch.max(torch.abs(ref - cuda) / torch.abs(ref + 1e-7)).item()) + +def test_loss(loss, tonemapper): + img_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + img_ref = img_cuda.clone().detach().requires_grad_(True) + target_cuda = torch.rand(1, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + target_ref = target_cuda.clone().detach().requires_grad_(True) + + ref_loss = ru.image_loss(img_ref, target_ref, loss=loss, tonemapper=tonemapper, use_python=True) + ref_loss.backward() + + cuda_loss = ru.image_loss(img_cuda, target_cuda, loss=loss, tonemapper=tonemapper) + cuda_loss.backward() + + print("-------------------------------------------------------------") + print(" Loss: %s, %s" % (loss, tonemapper)) + print("-------------------------------------------------------------") + + relative_loss("res:", ref_loss, cuda_loss) + relative_loss("img:", img_ref.grad, img_cuda.grad) + relative_loss("target:", target_ref.grad, target_cuda.grad) + + +test_loss('l1', 'none') +test_loss('l1', 'log_srgb') +test_loss('mse', 'log_srgb') +test_loss('smape', 'none') +test_loss('relmse', 'none') +test_loss('mse', 'none') \ No newline at end of file diff --git a/src/models/geometry/render/renderutils/tests/test_mesh.py b/src/models/geometry/render/renderutils/tests/test_mesh.py new file mode 100644 index 0000000000000000000000000000000000000000..4856c5ce07e2d6cd5f1fd463c1d3628791eafccc --- /dev/null +++ b/src/models/geometry/render/renderutils/tests/test_mesh.py @@ -0,0 +1,90 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import torch + +import os +import sys +sys.path.insert(0, os.path.join(sys.path[0], '../..')) +import renderutils as ru + +BATCH = 8 +RES = 1024 +DTYPE = torch.float32 + +torch.manual_seed(0) + +def tonemap_srgb(f): + return torch.where(f > 0.0031308, torch.pow(torch.clamp(f, min=0.0031308), 1.0/2.4)*1.055 - 0.055, 12.92*f) + +def l1(output, target): + x = torch.clamp(output, min=0, max=65535) + r = torch.clamp(target, min=0, max=65535) + x = tonemap_srgb(torch.log(x + 1)) + r = tonemap_srgb(torch.log(r + 1)) + return torch.nn.functional.l1_loss(x,r) + +def relative_loss(name, ref, cuda): + ref = ref.float() + cuda = cuda.float() + print(name, torch.max(torch.abs(ref - cuda) / torch.abs(ref)).item()) + +def test_xfm_points(): + points_cuda = torch.rand(1, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + points_ref = points_cuda.clone().detach().requires_grad_(True) + mtx_cuda = torch.rand(BATCH, 4, 4, dtype=DTYPE, device='cuda', requires_grad=False) + mtx_ref = mtx_cuda.clone().detach().requires_grad_(True) + target = torch.rand(BATCH, RES, 4, dtype=DTYPE, device='cuda', requires_grad=True) + + ref_out = ru.xfm_points(points_ref, mtx_ref, use_python=True) + ref_loss = torch.nn.MSELoss()(ref_out, target) + ref_loss.backward() + + cuda_out = ru.xfm_points(points_cuda, mtx_cuda) + cuda_loss = torch.nn.MSELoss()(cuda_out, target) + cuda_loss.backward() + + print("-------------------------------------------------------------") + + relative_loss("res:", ref_out, cuda_out) + relative_loss("points:", points_ref.grad, points_cuda.grad) + +def test_xfm_vectors(): + points_cuda = torch.rand(1, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + points_ref = points_cuda.clone().detach().requires_grad_(True) + points_cuda_p = points_cuda.clone().detach().requires_grad_(True) + points_ref_p = points_cuda.clone().detach().requires_grad_(True) + mtx_cuda = torch.rand(BATCH, 4, 4, dtype=DTYPE, device='cuda', requires_grad=False) + mtx_ref = mtx_cuda.clone().detach().requires_grad_(True) + target = torch.rand(BATCH, RES, 4, dtype=DTYPE, device='cuda', requires_grad=True) + + ref_out = ru.xfm_vectors(points_ref.contiguous(), mtx_ref, use_python=True) + ref_loss = torch.nn.MSELoss()(ref_out, target[..., 0:3]) + ref_loss.backward() + + cuda_out = ru.xfm_vectors(points_cuda.contiguous(), mtx_cuda) + cuda_loss = torch.nn.MSELoss()(cuda_out, target[..., 0:3]) + cuda_loss.backward() + + ref_out_p = ru.xfm_points(points_ref_p.contiguous(), mtx_ref, use_python=True) + ref_loss_p = torch.nn.MSELoss()(ref_out_p, target) + ref_loss_p.backward() + + cuda_out_p = ru.xfm_points(points_cuda_p.contiguous(), mtx_cuda) + cuda_loss_p = torch.nn.MSELoss()(cuda_out_p, target) + cuda_loss_p.backward() + + print("-------------------------------------------------------------") + + relative_loss("res:", ref_out, cuda_out) + relative_loss("points:", points_ref.grad, points_cuda.grad) + relative_loss("points_p:", points_ref_p.grad, points_cuda_p.grad) + +test_xfm_points() +test_xfm_vectors() diff --git a/src/models/geometry/render/renderutils/tests/test_perf.py b/src/models/geometry/render/renderutils/tests/test_perf.py new file mode 100644 index 0000000000000000000000000000000000000000..ffc143e3004c0fd0a42a1941896823bc2bef939a --- /dev/null +++ b/src/models/geometry/render/renderutils/tests/test_perf.py @@ -0,0 +1,57 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import torch + +import os +import sys +sys.path.insert(0, os.path.join(sys.path[0], '../..')) +import renderutils as ru + +DTYPE=torch.float32 + +def test_bsdf(BATCH, RES, ITR): + kd_cuda = torch.rand(BATCH, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + kd_ref = kd_cuda.clone().detach().requires_grad_(True) + arm_cuda = torch.rand(BATCH, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + arm_ref = arm_cuda.clone().detach().requires_grad_(True) + pos_cuda = torch.rand(BATCH, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + pos_ref = pos_cuda.clone().detach().requires_grad_(True) + nrm_cuda = torch.rand(BATCH, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + nrm_ref = nrm_cuda.clone().detach().requires_grad_(True) + view_cuda = torch.rand(BATCH, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + view_ref = view_cuda.clone().detach().requires_grad_(True) + light_cuda = torch.rand(BATCH, RES, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) + light_ref = light_cuda.clone().detach().requires_grad_(True) + target = torch.rand(BATCH, RES, RES, 3, device='cuda') + + start = torch.cuda.Event(enable_timing=True) + end = torch.cuda.Event(enable_timing=True) + + ru.pbr_bsdf(kd_cuda, arm_cuda, pos_cuda, nrm_cuda, view_cuda, light_cuda) + + print("--- Testing: [%d, %d, %d] ---" % (BATCH, RES, RES)) + + start.record() + for i in range(ITR): + ref = ru.pbr_bsdf(kd_ref, arm_ref, pos_ref, nrm_ref, view_ref, light_ref, use_python=True) + end.record() + torch.cuda.synchronize() + print("Pbr BSDF python:", start.elapsed_time(end)) + + start.record() + for i in range(ITR): + cuda = ru.pbr_bsdf(kd_cuda, arm_cuda, pos_cuda, nrm_cuda, view_cuda, light_cuda) + end.record() + torch.cuda.synchronize() + print("Pbr BSDF cuda:", start.elapsed_time(end)) + +test_bsdf(1, 512, 1000) +test_bsdf(16, 512, 1000) +test_bsdf(1, 2048, 1000) diff --git a/src/models/geometry/render/util.py b/src/models/geometry/render/util.py new file mode 100644 index 0000000000000000000000000000000000000000..e292e91cf1cdd4b05b46f2f18b8a2bb14d2165ba --- /dev/null +++ b/src/models/geometry/render/util.py @@ -0,0 +1,465 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os +import numpy as np +import torch +import nvdiffrast.torch as dr +import imageio + +#---------------------------------------------------------------------------- +# Vector operations +#---------------------------------------------------------------------------- + +def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: + return torch.sum(x*y, -1, keepdim=True) + +def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor: + return 2*dot(x, n)*n - x + +def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: + return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN + +def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: + return x / length(x, eps) + +def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor: + return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w) + +#---------------------------------------------------------------------------- +# sRGB color transforms +#---------------------------------------------------------------------------- + +def _rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: + return torch.where(f <= 0.0031308, f * 12.92, torch.pow(torch.clamp(f, 0.0031308), 1.0/2.4)*1.055 - 0.055) + +def rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: + assert f.shape[-1] == 3 or f.shape[-1] == 4 + out = torch.cat((_rgb_to_srgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _rgb_to_srgb(f) + assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] + return out + +def _srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: + return torch.where(f <= 0.04045, f / 12.92, torch.pow((torch.clamp(f, 0.04045) + 0.055) / 1.055, 2.4)) + +def srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: + assert f.shape[-1] == 3 or f.shape[-1] == 4 + out = torch.cat((_srgb_to_rgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _srgb_to_rgb(f) + assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] + return out + +def reinhard(f: torch.Tensor) -> torch.Tensor: + return f/(1+f) + +#----------------------------------------------------------------------------------- +# Metrics (taken from jaxNerf source code, in order to replicate their measurements) +# +# https://github.com/google-research/google-research/blob/301451a62102b046bbeebff49a760ebeec9707b8/jaxnerf/nerf/utils.py#L266 +# +#----------------------------------------------------------------------------------- + +def mse_to_psnr(mse): + """Compute PSNR given an MSE (we assume the maximum pixel value is 1).""" + return -10. / np.log(10.) * np.log(mse) + +def psnr_to_mse(psnr): + """Compute MSE given a PSNR (we assume the maximum pixel value is 1).""" + return np.exp(-0.1 * np.log(10.) * psnr) + +#---------------------------------------------------------------------------- +# Displacement texture lookup +#---------------------------------------------------------------------------- + +def get_miplevels(texture: np.ndarray) -> float: + minDim = min(texture.shape[0], texture.shape[1]) + return np.floor(np.log2(minDim)) + +def tex_2d(tex_map : torch.Tensor, coords : torch.Tensor, filter='nearest') -> torch.Tensor: + tex_map = tex_map[None, ...] # Add batch dimension + tex_map = tex_map.permute(0, 3, 1, 2) # NHWC -> NCHW + tex = torch.nn.functional.grid_sample(tex_map, coords[None, None, ...] * 2 - 1, mode=filter, align_corners=False) + tex = tex.permute(0, 2, 3, 1) # NCHW -> NHWC + return tex[0, 0, ...] + +#---------------------------------------------------------------------------- +# Cubemap utility functions +#---------------------------------------------------------------------------- + +def cube_to_dir(s, x, y): + if s == 0: rx, ry, rz = torch.ones_like(x), -y, -x + elif s == 1: rx, ry, rz = -torch.ones_like(x), -y, x + elif s == 2: rx, ry, rz = x, torch.ones_like(x), y + elif s == 3: rx, ry, rz = x, -torch.ones_like(x), -y + elif s == 4: rx, ry, rz = x, -y, torch.ones_like(x) + elif s == 5: rx, ry, rz = -x, -y, -torch.ones_like(x) + return torch.stack((rx, ry, rz), dim=-1) + +def latlong_to_cubemap(latlong_map, res): + cubemap = torch.zeros(6, res[0], res[1], latlong_map.shape[-1], dtype=torch.float32, device='cuda') + for s in range(6): + gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), + torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'), + indexing='ij') + v = safe_normalize(cube_to_dir(s, gx, gy)) + + tu = torch.atan2(v[..., 0:1], -v[..., 2:3]) / (2 * np.pi) + 0.5 + tv = torch.acos(torch.clamp(v[..., 1:2], min=-1, max=1)) / np.pi + texcoord = torch.cat((tu, tv), dim=-1) + + cubemap[s, ...] = dr.texture(latlong_map[None, ...], texcoord[None, ...], filter_mode='linear')[0] + return cubemap + +def cubemap_to_latlong(cubemap, res): + gy, gx = torch.meshgrid(torch.linspace( 0.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), + torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'), + indexing='ij') + + sintheta, costheta = torch.sin(gy*np.pi), torch.cos(gy*np.pi) + sinphi, cosphi = torch.sin(gx*np.pi), torch.cos(gx*np.pi) + + reflvec = torch.stack(( + sintheta*sinphi, + costheta, + -sintheta*cosphi + ), dim=-1) + return dr.texture(cubemap[None, ...], reflvec[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')[0] + +#---------------------------------------------------------------------------- +# Image scaling +#---------------------------------------------------------------------------- + +def scale_img_hwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: + return scale_img_nhwc(x[None, ...], size, mag, min)[0] + +def scale_img_nhwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: + assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other" + y = x.permute(0, 3, 1, 2) # NHWC -> NCHW + if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger + y = torch.nn.functional.interpolate(y, size, mode=min) + else: # Magnification + if mag == 'bilinear' or mag == 'bicubic': + y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True) + else: + y = torch.nn.functional.interpolate(y, size, mode=mag) + return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC + +def avg_pool_nhwc(x : torch.Tensor, size) -> torch.Tensor: + y = x.permute(0, 3, 1, 2) # NHWC -> NCHW + y = torch.nn.functional.avg_pool2d(y, size) + return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC + +#---------------------------------------------------------------------------- +# Behaves similar to tf.segment_sum +#---------------------------------------------------------------------------- + +def segment_sum(data: torch.Tensor, segment_ids: torch.Tensor) -> torch.Tensor: + num_segments = torch.unique_consecutive(segment_ids).shape[0] + + # Repeats ids until same dimension as data + if len(segment_ids.shape) == 1: + s = torch.prod(torch.tensor(data.shape[1:], dtype=torch.int64, device='cuda')).long() + segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:]) + + assert data.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal" + + shape = [num_segments] + list(data.shape[1:]) + result = torch.zeros(*shape, dtype=torch.float32, device='cuda') + result = result.scatter_add(0, segment_ids, data) + return result + +#---------------------------------------------------------------------------- +# Matrix helpers. +#---------------------------------------------------------------------------- + +def fovx_to_fovy(fovx, aspect): + return np.arctan(np.tan(fovx / 2) / aspect) * 2.0 + +def focal_length_to_fovy(focal_length, sensor_height): + return 2 * np.arctan(0.5 * sensor_height / focal_length) + +# Reworked so this matches gluPerspective / glm::perspective, using fovy +def perspective(fovy=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None): + y = np.tan(fovy / 2) + return torch.tensor([[1/(y*aspect), 0, 0, 0], + [ 0, 1/-y, 0, 0], + [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], + [ 0, 0, -1, 0]], dtype=torch.float32, device=device) + +# Reworked so this matches gluPerspective / glm::perspective, using fovy +def perspective_offcenter(fovy, fraction, rx, ry, aspect=1.0, n=0.1, f=1000.0, device=None): + y = np.tan(fovy / 2) + + # Full frustum + R, L = aspect*y, -aspect*y + T, B = y, -y + + # Create a randomized sub-frustum + width = (R-L)*fraction + height = (T-B)*fraction + xstart = (R-L)*rx + ystart = (T-B)*ry + + l = L + xstart + r = l + width + b = B + ystart + t = b + height + + # https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix + return torch.tensor([[2/(r-l), 0, (r+l)/(r-l), 0], + [ 0, -2/(t-b), (t+b)/(t-b), 0], + [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], + [ 0, 0, -1, 0]], dtype=torch.float32, device=device) + +def translate(x, y, z, device=None): + return torch.tensor([[1, 0, 0, x], + [0, 1, 0, y], + [0, 0, 1, z], + [0, 0, 0, 1]], dtype=torch.float32, device=device) + +def rotate_x(a, device=None): + s, c = np.sin(a), np.cos(a) + return torch.tensor([[1, 0, 0, 0], + [0, c,-s, 0], + [0, s, c, 0], + [0, 0, 0, 1]], dtype=torch.float32, device=device) + +def rotate_y(a, device=None): + s, c = np.sin(a), np.cos(a) + return torch.tensor([[ c, 0, s, 0], + [ 0, 1, 0, 0], + [-s, 0, c, 0], + [ 0, 0, 0, 1]], dtype=torch.float32, device=device) + +def scale(s, device=None): + return torch.tensor([[ s, 0, 0, 0], + [ 0, s, 0, 0], + [ 0, 0, s, 0], + [ 0, 0, 0, 1]], dtype=torch.float32, device=device) + +def lookAt(eye, at, up): + a = eye - at + w = a / torch.linalg.norm(a) + u = torch.cross(up, w) + u = u / torch.linalg.norm(u) + v = torch.cross(w, u) + translate = torch.tensor([[1, 0, 0, -eye[0]], + [0, 1, 0, -eye[1]], + [0, 0, 1, -eye[2]], + [0, 0, 0, 1]], dtype=eye.dtype, device=eye.device) + rotate = torch.tensor([[u[0], u[1], u[2], 0], + [v[0], v[1], v[2], 0], + [w[0], w[1], w[2], 0], + [0, 0, 0, 1]], dtype=eye.dtype, device=eye.device) + return rotate @ translate + +@torch.no_grad() +def random_rotation_translation(t, device=None): + m = np.random.normal(size=[3, 3]) + m[1] = np.cross(m[0], m[2]) + m[2] = np.cross(m[0], m[1]) + m = m / np.linalg.norm(m, axis=1, keepdims=True) + m = np.pad(m, [[0, 1], [0, 1]], mode='constant') + m[3, 3] = 1.0 + m[:3, 3] = np.random.uniform(-t, t, size=[3]) + return torch.tensor(m, dtype=torch.float32, device=device) + +@torch.no_grad() +def random_rotation(device=None): + m = np.random.normal(size=[3, 3]) + m[1] = np.cross(m[0], m[2]) + m[2] = np.cross(m[0], m[1]) + m = m / np.linalg.norm(m, axis=1, keepdims=True) + m = np.pad(m, [[0, 1], [0, 1]], mode='constant') + m[3, 3] = 1.0 + m[:3, 3] = np.array([0,0,0]).astype(np.float32) + return torch.tensor(m, dtype=torch.float32, device=device) + +#---------------------------------------------------------------------------- +# Compute focal points of a set of lines using least squares. +# handy for poorly centered datasets +#---------------------------------------------------------------------------- + +def lines_focal(o, d): + d = safe_normalize(d) + I = torch.eye(3, dtype=o.dtype, device=o.device) + S = torch.sum(d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...], dim=0) + C = torch.sum((d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...]) @ o[..., None], dim=0).squeeze(1) + return torch.linalg.pinv(S) @ C + +#---------------------------------------------------------------------------- +# Cosine sample around a vector N +#---------------------------------------------------------------------------- +@torch.no_grad() +def cosine_sample(N, size=None): + # construct local frame + N = N/torch.linalg.norm(N) + + dx0 = torch.tensor([0, N[2], -N[1]], dtype=N.dtype, device=N.device) + dx1 = torch.tensor([-N[2], 0, N[0]], dtype=N.dtype, device=N.device) + + dx = torch.where(dot(dx0, dx0) > dot(dx1, dx1), dx0, dx1) + #dx = dx0 if np.dot(dx0,dx0) > np.dot(dx1,dx1) else dx1 + dx = dx / torch.linalg.norm(dx) + dy = torch.cross(N,dx) + dy = dy / torch.linalg.norm(dy) + + # cosine sampling in local frame + if size is None: + phi = 2.0 * np.pi * np.random.uniform() + s = np.random.uniform() + else: + phi = 2.0 * np.pi * torch.rand(*size, 1, dtype=N.dtype, device=N.device) + s = torch.rand(*size, 1, dtype=N.dtype, device=N.device) + costheta = np.sqrt(s) + sintheta = np.sqrt(1.0 - s) + + # cartesian vector in local space + x = np.cos(phi)*sintheta + y = np.sin(phi)*sintheta + z = costheta + + # local to world + return dx*x + dy*y + N*z + +#---------------------------------------------------------------------------- +# Bilinear downsample by 2x. +#---------------------------------------------------------------------------- + +def bilinear_downsample(x : torch.tensor) -> torch.Tensor: + w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 + w = w.expand(x.shape[-1], 1, 4, 4) + x = torch.nn.functional.conv2d(x.permute(0, 3, 1, 2), w, padding=1, stride=2, groups=x.shape[-1]) + return x.permute(0, 2, 3, 1) + +#---------------------------------------------------------------------------- +# Bilinear downsample log(spp) steps +#---------------------------------------------------------------------------- + +def bilinear_downsample(x : torch.tensor, spp) -> torch.Tensor: + w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 + g = x.shape[-1] + w = w.expand(g, 1, 4, 4) + x = x.permute(0, 3, 1, 2) # NHWC -> NCHW + steps = int(np.log2(spp)) + for _ in range(steps): + xp = torch.nn.functional.pad(x, (1,1,1,1), mode='replicate') + x = torch.nn.functional.conv2d(xp, w, padding=0, stride=2, groups=g) + return x.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC + +#---------------------------------------------------------------------------- +# Singleton initialize GLFW +#---------------------------------------------------------------------------- + +_glfw_initialized = False +def init_glfw(): + global _glfw_initialized + try: + import glfw + glfw.ERROR_REPORTING = 'raise' + glfw.default_window_hints() + glfw.window_hint(glfw.VISIBLE, glfw.FALSE) + test = glfw.create_window(8, 8, "Test", None, None) # Create a window and see if not initialized yet + except glfw.GLFWError as e: + if e.error_code == glfw.NOT_INITIALIZED: + glfw.init() + _glfw_initialized = True + +#---------------------------------------------------------------------------- +# Image display function using OpenGL. +#---------------------------------------------------------------------------- + +_glfw_window = None +def display_image(image, title=None): + # Import OpenGL + import OpenGL.GL as gl + import glfw + + # Zoom image if requested. + image = np.asarray(image[..., 0:3]) if image.shape[-1] == 4 else np.asarray(image) + height, width, channels = image.shape + + # Initialize window. + init_glfw() + if title is None: + title = 'Debug window' + global _glfw_window + if _glfw_window is None: + glfw.default_window_hints() + _glfw_window = glfw.create_window(width, height, title, None, None) + glfw.make_context_current(_glfw_window) + glfw.show_window(_glfw_window) + glfw.swap_interval(0) + else: + glfw.make_context_current(_glfw_window) + glfw.set_window_title(_glfw_window, title) + glfw.set_window_size(_glfw_window, width, height) + + # Update window. + glfw.poll_events() + gl.glClearColor(0, 0, 0, 1) + gl.glClear(gl.GL_COLOR_BUFFER_BIT) + gl.glWindowPos2f(0, 0) + gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1) + gl_format = {3: gl.GL_RGB, 2: gl.GL_RG, 1: gl.GL_LUMINANCE}[channels] + gl_dtype = {'uint8': gl.GL_UNSIGNED_BYTE, 'float32': gl.GL_FLOAT}[image.dtype.name] + gl.glDrawPixels(width, height, gl_format, gl_dtype, image[::-1]) + glfw.swap_buffers(_glfw_window) + if glfw.window_should_close(_glfw_window): + return False + return True + +#---------------------------------------------------------------------------- +# Image save/load helper. +#---------------------------------------------------------------------------- + +def save_image(fn, x : np.ndarray): + try: + if os.path.splitext(fn)[1] == ".png": + imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8), compress_level=3) # Low compression for faster saving + else: + imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8)) + except: + print("WARNING: FAILED to save image %s" % fn) + +def save_image_raw(fn, x : np.ndarray): + try: + imageio.imwrite(fn, x) + except: + print("WARNING: FAILED to save image %s" % fn) + + +def load_image_raw(fn) -> np.ndarray: + return imageio.imread(fn) + +def load_image(fn) -> np.ndarray: + img = load_image_raw(fn) + if img.dtype == np.float32: # HDR image + return img + else: # LDR image + return img.astype(np.float32) / 255 + +#---------------------------------------------------------------------------- + +def time_to_text(x): + if x > 3600: + return "%.2f h" % (x / 3600) + elif x > 60: + return "%.2f m" % (x / 60) + else: + return "%.2f s" % x + +#---------------------------------------------------------------------------- + +def checkerboard(res, checker_size) -> np.ndarray: + tiles_y = (res[0] + (checker_size*2) - 1) // (checker_size*2) + tiles_x = (res[1] + (checker_size*2) - 1) // (checker_size*2) + check = np.kron([[1, 0] * tiles_x, [0, 1] * tiles_x] * tiles_y, np.ones((checker_size, checker_size)))*0.33 + 0.33 + check = check[:res[0], :res[1]] + return np.stack((check, check, check), axis=-1) + diff --git a/src/models/geometry/rep_3d/__init__.py b/src/models/geometry/rep_3d/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a3d5628a8433298477d1963f92578d47106b4a0f --- /dev/null +++ b/src/models/geometry/rep_3d/__init__.py @@ -0,0 +1,18 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +import numpy as np + + +class Geometry(): + def __init__(self): + pass + + def forward(self): + pass diff --git a/src/models/geometry/rep_3d/__pycache__/__init__.cpython-310.pyc b/src/models/geometry/rep_3d/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f985cd8a2caedeb0f57019b0d446598cd8398a32 Binary files /dev/null and b/src/models/geometry/rep_3d/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/models/geometry/rep_3d/__pycache__/dmtet.cpython-310.pyc b/src/models/geometry/rep_3d/__pycache__/dmtet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4c35333b0b67ff016d5f04633e2926d867fc9aac Binary files /dev/null and b/src/models/geometry/rep_3d/__pycache__/dmtet.cpython-310.pyc differ diff --git a/src/models/geometry/rep_3d/__pycache__/dmtet_utils.cpython-310.pyc b/src/models/geometry/rep_3d/__pycache__/dmtet_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7d4280146d595deb1f856fa447d1d3b656644e06 Binary files /dev/null and b/src/models/geometry/rep_3d/__pycache__/dmtet_utils.cpython-310.pyc differ diff --git a/src/models/geometry/rep_3d/__pycache__/flexicubes.cpython-310.pyc b/src/models/geometry/rep_3d/__pycache__/flexicubes.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..68d3c14358e06abee45597ac874c664b580e97e1 Binary files /dev/null and b/src/models/geometry/rep_3d/__pycache__/flexicubes.cpython-310.pyc differ diff --git a/src/models/geometry/rep_3d/__pycache__/flexicubes_geometry.cpython-310.pyc b/src/models/geometry/rep_3d/__pycache__/flexicubes_geometry.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..788d1ab94f2907ebd6f58d33116df3d697f3c3b1 Binary files /dev/null and b/src/models/geometry/rep_3d/__pycache__/flexicubes_geometry.cpython-310.pyc differ diff --git a/src/models/geometry/rep_3d/__pycache__/material.cpython-310.pyc b/src/models/geometry/rep_3d/__pycache__/material.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4b31133c4390732a3d306bd6cc7c413a1ebd6e24 Binary files /dev/null and b/src/models/geometry/rep_3d/__pycache__/material.cpython-310.pyc differ diff --git a/src/models/geometry/rep_3d/__pycache__/mesh.cpython-310.pyc b/src/models/geometry/rep_3d/__pycache__/mesh.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f1c0d78a5865544eef1e9314b517b1be14a1d5da Binary files /dev/null and b/src/models/geometry/rep_3d/__pycache__/mesh.cpython-310.pyc differ diff --git a/src/models/geometry/rep_3d/__pycache__/obj.cpython-310.pyc b/src/models/geometry/rep_3d/__pycache__/obj.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0f1a3aba0883ac4224fca4ad57e509f731ffa740 Binary files /dev/null and b/src/models/geometry/rep_3d/__pycache__/obj.cpython-310.pyc differ diff --git a/src/models/geometry/rep_3d/__pycache__/tables.cpython-310.pyc b/src/models/geometry/rep_3d/__pycache__/tables.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..45476168c0f157f43808501c85a280ccbcd1bd18 Binary files /dev/null and b/src/models/geometry/rep_3d/__pycache__/tables.cpython-310.pyc differ diff --git a/src/models/geometry/rep_3d/__pycache__/texture.cpython-310.pyc b/src/models/geometry/rep_3d/__pycache__/texture.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dfbcebe89f178f2fb4e944f0496c05207d9bce54 Binary files /dev/null and b/src/models/geometry/rep_3d/__pycache__/texture.cpython-310.pyc differ diff --git a/src/models/geometry/rep_3d/__pycache__/util.cpython-310.pyc b/src/models/geometry/rep_3d/__pycache__/util.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7dd27191c067dac217897abaaa46793424af8426 Binary files /dev/null and b/src/models/geometry/rep_3d/__pycache__/util.cpython-310.pyc differ diff --git a/src/models/geometry/rep_3d/dmtet.py b/src/models/geometry/rep_3d/dmtet.py new file mode 100644 index 0000000000000000000000000000000000000000..b6a709380abac0bbf66fd1c8582485f3982223e4 --- /dev/null +++ b/src/models/geometry/rep_3d/dmtet.py @@ -0,0 +1,504 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +import numpy as np +import os +from . import Geometry +from .dmtet_utils import get_center_boundary_index +import torch.nn.functional as F + + +############################################################################### +# DMTet utility functions +############################################################################### +def create_mt_variable(device): + triangle_table = torch.tensor( + [ + [-1, -1, -1, -1, -1, -1], + [1, 0, 2, -1, -1, -1], + [4, 0, 3, -1, -1, -1], + [1, 4, 2, 1, 3, 4], + [3, 1, 5, -1, -1, -1], + [2, 3, 0, 2, 5, 3], + [1, 4, 0, 1, 5, 4], + [4, 2, 5, -1, -1, -1], + [4, 5, 2, -1, -1, -1], + [4, 1, 0, 4, 5, 1], + [3, 2, 0, 3, 5, 2], + [1, 3, 5, -1, -1, -1], + [4, 1, 2, 4, 3, 1], + [3, 0, 4, -1, -1, -1], + [2, 0, 1, -1, -1, -1], + [-1, -1, -1, -1, -1, -1] + ], dtype=torch.long, device=device) + + num_triangles_table = torch.tensor([0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long, device=device) + base_tet_edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=device) + v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=device)) + return triangle_table, num_triangles_table, base_tet_edges, v_id + + +def sort_edges(edges_ex2): + with torch.no_grad(): + order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long() + order = order.unsqueeze(dim=1) + a = torch.gather(input=edges_ex2, index=order, dim=1) + b = torch.gather(input=edges_ex2, index=1 - order, dim=1) + return torch.stack([a, b], -1) + + +############################################################################### +# marching tetrahedrons (differentiable) +############################################################################### + +def marching_tets(pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id): + with torch.no_grad(): + occ_n = sdf_n > 0 + occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4) + occ_sum = torch.sum(occ_fx4, -1) + valid_tets = (occ_sum > 0) & (occ_sum < 4) + occ_sum = occ_sum[valid_tets] + + # find all vertices + all_edges = tet_fx4[valid_tets][:, base_tet_edges].reshape(-1, 2) + all_edges = sort_edges(all_edges) + unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) + + unique_edges = unique_edges.long() + mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 + mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=sdf_n.device) * -1 + mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=sdf_n.device) + idx_map = mapping[idx_map] # map edges to verts + + interp_v = unique_edges[mask_edges] # .long() + edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3) + edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1) + edges_to_interp_sdf[:, -1] *= -1 + + denominator = edges_to_interp_sdf.sum(1, keepdim=True) + + edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator + verts = (edges_to_interp * edges_to_interp_sdf).sum(1) + + idx_map = idx_map.reshape(-1, 6) + + tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1) + num_triangles = num_triangles_table[tetindex] + + # Generate triangle indices + faces = torch.cat( + ( + torch.gather( + input=idx_map[num_triangles == 1], dim=1, + index=triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3), + torch.gather( + input=idx_map[num_triangles == 2], dim=1, + index=triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3), + ), dim=0) + return verts, faces + + +def create_tetmesh_variables(device='cuda'): + tet_table = torch.tensor( + [[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1], + [0, 4, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1], + [1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1], + [1, 0, 8, 7, 0, 5, 8, 7, 0, 5, 6, 8], + [2, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1], + [2, 0, 9, 7, 0, 4, 9, 7, 0, 4, 6, 9], + [2, 1, 9, 5, 1, 4, 9, 5, 1, 4, 8, 9], + [6, 0, 1, 2, 6, 1, 2, 8, 6, 8, 2, 9], + [3, 6, 8, 9, -1, -1, -1, -1, -1, -1, -1, -1], + [3, 0, 9, 8, 0, 4, 9, 8, 0, 4, 5, 9], + [3, 1, 9, 6, 1, 4, 9, 6, 1, 4, 7, 9], + [5, 0, 1, 3, 5, 1, 3, 7, 5, 7, 3, 9], + [3, 2, 8, 6, 2, 5, 8, 6, 2, 5, 7, 8], + [4, 0, 2, 3, 4, 2, 3, 7, 4, 7, 3, 8], + [4, 1, 2, 3, 4, 2, 3, 5, 4, 5, 3, 6], + [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], dtype=torch.long, device=device) + num_tets_table = torch.tensor([0, 1, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 0], dtype=torch.long, device=device) + return tet_table, num_tets_table + + +def marching_tets_tetmesh( + pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id, + return_tet_mesh=False, ori_v=None, num_tets_table=None, tet_table=None): + with torch.no_grad(): + occ_n = sdf_n > 0 + occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4) + occ_sum = torch.sum(occ_fx4, -1) + valid_tets = (occ_sum > 0) & (occ_sum < 4) + occ_sum = occ_sum[valid_tets] + + # find all vertices + all_edges = tet_fx4[valid_tets][:, base_tet_edges].reshape(-1, 2) + all_edges = sort_edges(all_edges) + unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) + + unique_edges = unique_edges.long() + mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 + mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=sdf_n.device) * -1 + mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=sdf_n.device) + idx_map = mapping[idx_map] # map edges to verts + + interp_v = unique_edges[mask_edges] # .long() + edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3) + edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1) + edges_to_interp_sdf[:, -1] *= -1 + + denominator = edges_to_interp_sdf.sum(1, keepdim=True) + + edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator + verts = (edges_to_interp * edges_to_interp_sdf).sum(1) + + idx_map = idx_map.reshape(-1, 6) + + tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1) + num_triangles = num_triangles_table[tetindex] + + # Generate triangle indices + faces = torch.cat( + ( + torch.gather( + input=idx_map[num_triangles == 1], dim=1, + index=triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3), + torch.gather( + input=idx_map[num_triangles == 2], dim=1, + index=triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3), + ), dim=0) + if not return_tet_mesh: + return verts, faces + occupied_verts = ori_v[occ_n] + mapping = torch.ones((pos_nx3.shape[0]), dtype=torch.long, device="cuda") * -1 + mapping[occ_n] = torch.arange(occupied_verts.shape[0], device="cuda") + tet_fx4 = mapping[tet_fx4.reshape(-1)].reshape((-1, 4)) + + idx_map = torch.cat([tet_fx4[valid_tets] + verts.shape[0], idx_map], -1) # t x 10 + tet_verts = torch.cat([verts, occupied_verts], 0) + num_tets = num_tets_table[tetindex] + + tets = torch.cat( + ( + torch.gather(input=idx_map[num_tets == 1], dim=1, index=tet_table[tetindex[num_tets == 1]][:, :4]).reshape( + -1, + 4), + torch.gather(input=idx_map[num_tets == 3], dim=1, index=tet_table[tetindex[num_tets == 3]][:, :12]).reshape( + -1, + 4), + ), dim=0) + # add fully occupied tets + fully_occupied = occ_fx4.sum(-1) == 4 + tet_fully_occupied = tet_fx4[fully_occupied] + verts.shape[0] + tets = torch.cat([tets, tet_fully_occupied]) + + return verts, faces, tet_verts, tets + + +############################################################################### +# Compact tet grid +############################################################################### + +def compact_tets(pos_nx3, sdf_n, tet_fx4): + with torch.no_grad(): + # Find surface tets + occ_n = sdf_n > 0 + occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4) + occ_sum = torch.sum(occ_fx4, -1) + valid_tets = (occ_sum > 0) & (occ_sum < 4) # one value per tet, these are the surface tets + + valid_vtx = tet_fx4[valid_tets].reshape(-1) + unique_vtx, idx_map = torch.unique(valid_vtx, dim=0, return_inverse=True) + new_pos = pos_nx3[unique_vtx] + new_sdf = sdf_n[unique_vtx] + new_tets = idx_map.reshape(-1, 4) + return new_pos, new_sdf, new_tets + + +############################################################################### +# Subdivide volume +############################################################################### + +def batch_subdivide_volume(tet_pos_bxnx3, tet_bxfx4, grid_sdf): + device = tet_pos_bxnx3.device + # get new verts + tet_fx4 = tet_bxfx4[0] + edges = [0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3] + all_edges = tet_fx4[:, edges].reshape(-1, 2) + all_edges = sort_edges(all_edges) + unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True) + idx_map = idx_map + tet_pos_bxnx3.shape[1] + all_values = torch.cat([tet_pos_bxnx3, grid_sdf], -1) + mid_points_pos = all_values[:, unique_edges.reshape(-1)].reshape( + all_values.shape[0], -1, 2, + all_values.shape[-1]).mean(2) + new_v = torch.cat([all_values, mid_points_pos], 1) + new_v, new_sdf = new_v[..., :3], new_v[..., 3] + + # get new tets + + idx_a, idx_b, idx_c, idx_d = tet_fx4[:, 0], tet_fx4[:, 1], tet_fx4[:, 2], tet_fx4[:, 3] + idx_ab = idx_map[0::6] + idx_ac = idx_map[1::6] + idx_ad = idx_map[2::6] + idx_bc = idx_map[3::6] + idx_bd = idx_map[4::6] + idx_cd = idx_map[5::6] + + tet_1 = torch.stack([idx_a, idx_ab, idx_ac, idx_ad], dim=1) + tet_2 = torch.stack([idx_b, idx_bc, idx_ab, idx_bd], dim=1) + tet_3 = torch.stack([idx_c, idx_ac, idx_bc, idx_cd], dim=1) + tet_4 = torch.stack([idx_d, idx_ad, idx_cd, idx_bd], dim=1) + tet_5 = torch.stack([idx_ab, idx_ac, idx_ad, idx_bd], dim=1) + tet_6 = torch.stack([idx_ab, idx_ac, idx_bd, idx_bc], dim=1) + tet_7 = torch.stack([idx_cd, idx_ac, idx_bd, idx_ad], dim=1) + tet_8 = torch.stack([idx_cd, idx_ac, idx_bc, idx_bd], dim=1) + + tet_np = torch.cat([tet_1, tet_2, tet_3, tet_4, tet_5, tet_6, tet_7, tet_8], dim=0) + tet_np = tet_np.reshape(1, -1, 4).expand(tet_pos_bxnx3.shape[0], -1, -1) + tet = tet_np.long().to(device) + + return new_v, tet, new_sdf + + +############################################################################### +# Adjacency +############################################################################### +def tet_to_tet_adj_sparse(tet_tx4): + # include self connection!!!!!!!!!!!!!!!!!!! + with torch.no_grad(): + t = tet_tx4.shape[0] + device = tet_tx4.device + idx_array = torch.LongTensor( + [0, 1, 2, + 1, 0, 3, + 2, 3, 0, + 3, 2, 1]).to(device).reshape(4, 3).unsqueeze(0).expand(t, -1, -1) # (t, 4, 3) + + # get all faces + all_faces = torch.gather(input=tet_tx4.unsqueeze(1).expand(-1, 4, -1), index=idx_array, dim=-1).reshape( + -1, + 3) # (tx4, 3) + all_faces_tet_idx = torch.arange(t, device=device).unsqueeze(-1).expand(-1, 4).reshape(-1) + # sort and group + all_faces_sorted, _ = torch.sort(all_faces, dim=1) + + all_faces_unique, inverse_indices, counts = torch.unique( + all_faces_sorted, dim=0, return_counts=True, + return_inverse=True) + tet_face_fx3 = all_faces_unique[counts == 2] + counts = counts[inverse_indices] # tx4 + valid = (counts == 2) + + group = inverse_indices[valid] + # print (inverse_indices.shape, group.shape, all_faces_tet_idx.shape) + _, indices = torch.sort(group) + all_faces_tet_idx_grouped = all_faces_tet_idx[valid][indices] + tet_face_tetidx_fx2 = torch.stack([all_faces_tet_idx_grouped[::2], all_faces_tet_idx_grouped[1::2]], dim=-1) + + tet_adj_idx = torch.cat([tet_face_tetidx_fx2, torch.flip(tet_face_tetidx_fx2, [1])]) + adj_self = torch.arange(t, device=tet_tx4.device) + adj_self = torch.stack([adj_self, adj_self], -1) + tet_adj_idx = torch.cat([tet_adj_idx, adj_self]) + + tet_adj_idx = torch.unique(tet_adj_idx, dim=0) + values = torch.ones( + tet_adj_idx.shape[0], device=tet_tx4.device).float() + adj_sparse = torch.sparse.FloatTensor( + tet_adj_idx.t(), values, torch.Size([t, t])) + + # normalization + neighbor_num = 1.0 / torch.sparse.sum( + adj_sparse, dim=1).to_dense() + values = torch.index_select(neighbor_num, 0, tet_adj_idx[:, 0]) + adj_sparse = torch.sparse.FloatTensor( + tet_adj_idx.t(), values, torch.Size([t, t])) + return adj_sparse + + +############################################################################### +# Compact grid +############################################################################### + +def get_tet_bxfx4x3(bxnxz, bxfx4): + n_batch, z = bxnxz.shape[0], bxnxz.shape[2] + gather_input = bxnxz.unsqueeze(2).expand( + n_batch, bxnxz.shape[1], 4, z) + gather_index = bxfx4.unsqueeze(-1).expand( + n_batch, bxfx4.shape[1], 4, z).long() + tet_bxfx4xz = torch.gather( + input=gather_input, dim=1, index=gather_index) + + return tet_bxfx4xz + + +def shrink_grid(tet_pos_bxnx3, tet_bxfx4, grid_sdf): + with torch.no_grad(): + assert tet_pos_bxnx3.shape[0] == 1 + + occ = grid_sdf[0] > 0 + occ_sum = get_tet_bxfx4x3(occ.unsqueeze(0).unsqueeze(-1), tet_bxfx4).reshape(-1, 4).sum(-1) + mask = (occ_sum > 0) & (occ_sum < 4) + + # build connectivity graph + adj_matrix = tet_to_tet_adj_sparse(tet_bxfx4[0]) + mask = mask.float().unsqueeze(-1) + + # Include a one ring of neighbors + for i in range(1): + mask = torch.sparse.mm(adj_matrix, mask) + mask = mask.squeeze(-1) > 0 + + mapping = torch.zeros((tet_pos_bxnx3.shape[1]), device=tet_pos_bxnx3.device, dtype=torch.long) + new_tet_bxfx4 = tet_bxfx4[:, mask].long() + selected_verts_idx = torch.unique(new_tet_bxfx4) + new_tet_pos_bxnx3 = tet_pos_bxnx3[:, selected_verts_idx] + mapping[selected_verts_idx] = torch.arange(selected_verts_idx.shape[0], device=tet_pos_bxnx3.device) + new_tet_bxfx4 = mapping[new_tet_bxfx4.reshape(-1)].reshape(new_tet_bxfx4.shape) + new_grid_sdf = grid_sdf[:, selected_verts_idx] + return new_tet_pos_bxnx3, new_tet_bxfx4, new_grid_sdf + + +############################################################################### +# Regularizer +############################################################################### + +def sdf_reg_loss(sdf, all_edges): + sdf_f1x6x2 = sdf[all_edges.reshape(-1)].reshape(-1, 2) + mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) + sdf_f1x6x2 = sdf_f1x6x2[mask] + sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits( + sdf_f1x6x2[..., 0], + (sdf_f1x6x2[..., 1] > 0).float()) + \ + torch.nn.functional.binary_cross_entropy_with_logits( + sdf_f1x6x2[..., 1], + (sdf_f1x6x2[..., 0] > 0).float()) + return sdf_diff + + +def sdf_reg_loss_batch(sdf, all_edges): + sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2) + mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) + sdf_f1x6x2 = sdf_f1x6x2[mask] + sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \ + torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float()) + return sdf_diff + + +############################################################################### +# Geometry interface +############################################################################### +class DMTetGeometry(Geometry): + def __init__( + self, grid_res=64, scale=2.0, device='cuda', renderer=None, + render_type='neural_render', args=None): + super(DMTetGeometry, self).__init__() + self.grid_res = grid_res + self.device = device + self.args = args + tets = np.load('data/tets/%d_compress.npz' % (grid_res)) + self.verts = torch.from_numpy(tets['vertices']).float().to(self.device) + # Make sure the tet is zero-centered and length is equal to 1 + length = self.verts.max(dim=0)[0] - self.verts.min(dim=0)[0] + length = length.max() + mid = (self.verts.max(dim=0)[0] + self.verts.min(dim=0)[0]) / 2.0 + self.verts = (self.verts - mid.unsqueeze(dim=0)) / length + if isinstance(scale, list): + self.verts[:, 0] = self.verts[:, 0] * scale[0] + self.verts[:, 1] = self.verts[:, 1] * scale[1] + self.verts[:, 2] = self.verts[:, 2] * scale[1] + else: + self.verts = self.verts * scale + self.indices = torch.from_numpy(tets['tets']).long().to(self.device) + self.triangle_table, self.num_triangles_table, self.base_tet_edges, self.v_id = create_mt_variable(self.device) + self.tet_table, self.num_tets_table = create_tetmesh_variables(self.device) + # Parameters for regularization computation + edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=self.device) + all_edges = self.indices[:, edges].reshape(-1, 2) + all_edges_sorted = torch.sort(all_edges, dim=1)[0] + self.all_edges = torch.unique(all_edges_sorted, dim=0) + + # Parameters used for fix boundary sdf + self.center_indices, self.boundary_indices = get_center_boundary_index(self.verts) + self.renderer = renderer + self.render_type = render_type + + def getAABB(self): + return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values + + def get_mesh(self, v_deformed_nx3, sdf_n, with_uv=False, indices=None): + if indices is None: + indices = self.indices + verts, faces = marching_tets( + v_deformed_nx3, sdf_n, indices, self.triangle_table, + self.num_triangles_table, self.base_tet_edges, self.v_id) + faces = torch.cat( + [faces[:, 0:1], + faces[:, 2:3], + faces[:, 1:2], ], dim=-1) + return verts, faces + + def get_tet_mesh(self, v_deformed_nx3, sdf_n, with_uv=False, indices=None): + if indices is None: + indices = self.indices + verts, faces, tet_verts, tets = marching_tets_tetmesh( + v_deformed_nx3, sdf_n, indices, self.triangle_table, + self.num_triangles_table, self.base_tet_edges, self.v_id, return_tet_mesh=True, + num_tets_table=self.num_tets_table, tet_table=self.tet_table, ori_v=v_deformed_nx3) + faces = torch.cat( + [faces[:, 0:1], + faces[:, 2:3], + faces[:, 1:2], ], dim=-1) + return verts, faces, tet_verts, tets + + def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False): + return_value = dict() + if self.render_type == 'neural_render': + tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth = self.renderer.render_mesh( + mesh_v_nx3.unsqueeze(dim=0), + mesh_f_fx3.int(), + camera_mv_bx4x4, + mesh_v_nx3.unsqueeze(dim=0), + resolution=resolution, + device=self.device, + hierarchical_mask=hierarchical_mask + ) + + return_value['tex_pos'] = tex_pos + return_value['mask'] = mask + return_value['hard_mask'] = hard_mask + return_value['rast'] = rast + return_value['v_pos_clip'] = v_pos_clip + return_value['mask_pyramid'] = mask_pyramid + return_value['depth'] = depth + else: + raise NotImplementedError + + return return_value + + def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256): + # Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1 + v_list = [] + f_list = [] + n_batch = v_deformed_bxnx3.shape[0] + all_render_output = [] + for i_batch in range(n_batch): + verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch]) + v_list.append(verts_nx3) + f_list.append(faces_fx3) + render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution) + all_render_output.append(render_output) + + # Concatenate all render output + return_keys = all_render_output[0].keys() + return_value = dict() + for k in return_keys: + value = [v[k] for v in all_render_output] + return_value[k] = value + # We can do concatenation outside of the render + return return_value diff --git a/src/models/geometry/rep_3d/dmtet_utils.py b/src/models/geometry/rep_3d/dmtet_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..8d466a9e78c49d947c115707693aa18d759885ad --- /dev/null +++ b/src/models/geometry/rep_3d/dmtet_utils.py @@ -0,0 +1,20 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch + + +def get_center_boundary_index(verts): + length_ = torch.sum(verts ** 2, dim=-1) + center_idx = torch.argmin(length_) + boundary_neg = verts == verts.max() + boundary_pos = verts == verts.min() + boundary = torch.bitwise_or(boundary_pos, boundary_neg) + boundary = torch.sum(boundary.float(), dim=-1) + boundary_idx = torch.nonzero(boundary) + return center_idx, boundary_idx.squeeze(dim=-1) diff --git a/src/models/geometry/rep_3d/extract_texture_map.py b/src/models/geometry/rep_3d/extract_texture_map.py new file mode 100644 index 0000000000000000000000000000000000000000..aadea1f018fc00b1824e2d498f0c59504de3298f --- /dev/null +++ b/src/models/geometry/rep_3d/extract_texture_map.py @@ -0,0 +1,40 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +import xatlas +import numpy as np +import nvdiffrast.torch as dr + + +# ============================================================================================== +def interpolate(attr, rast, attr_idx, rast_db=None): + return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all') + + +def xatlas_uvmap(ctx, mesh_v, mesh_pos_idx, resolution): + vmapping, indices, uvs = xatlas.parametrize(mesh_v.detach().cpu().numpy(), mesh_pos_idx.detach().cpu().numpy()) + + # Convert to tensors + indices_int64 = indices.astype(np.uint64, casting='same_kind').view(int) + + uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device) + mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device) + # mesh_v_tex. ture + uv_clip = uvs[None, ...] * 2.0 - 1.0 + + # pad to four component coordinate + uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1) + + # rasterize + rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), (resolution, resolution)) + + # Interpolate world space position + gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int()) + mask = rast[..., 3:4] > 0 + return uvs, mesh_tex_idx, gb_pos, mask diff --git a/src/models/geometry/rep_3d/flexicubes.py b/src/models/geometry/rep_3d/flexicubes.py new file mode 100644 index 0000000000000000000000000000000000000000..26d7b91b6266d802baaf55b64238629cd0f740d0 --- /dev/null +++ b/src/models/geometry/rep_3d/flexicubes.py @@ -0,0 +1,579 @@ +# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. +import torch +from .tables import * + +__all__ = [ + 'FlexiCubes' +] + + +class FlexiCubes: + """ + This class implements the FlexiCubes method for extracting meshes from scalar fields. + It maintains a series of lookup tables and indices to support the mesh extraction process. + FlexiCubes, a differentiable variant of the Dual Marching Cubes (DMC) scheme, enhances + the geometric fidelity and mesh quality of reconstructed meshes by dynamically adjusting + the surface representation through gradient-based optimization. + + During instantiation, the class loads DMC tables from a file and transforms them into + PyTorch tensors on the specified device. + + Attributes: + device (str): Specifies the computational device (default is "cuda"). + dmc_table (torch.Tensor): Dual Marching Cubes (DMC) table that encodes the edges + associated with each dual vertex in 256 Marching Cubes (MC) configurations. + num_vd_table (torch.Tensor): Table holding the number of dual vertices in each of + the 256 MC configurations. + check_table (torch.Tensor): Table resolving ambiguity in cases C16 and C19 + of the DMC configurations. + tet_table (torch.Tensor): Lookup table used in tetrahedralizing the isosurface. + quad_split_1 (torch.Tensor): Indices for splitting a quad into two triangles + along one diagonal. + quad_split_2 (torch.Tensor): Alternative indices for splitting a quad into + two triangles along the other diagonal. + quad_split_train (torch.Tensor): Indices for splitting a quad into four triangles + during training by connecting all edges to their midpoints. + cube_corners (torch.Tensor): Defines the positions of a standard unit cube's + eight corners in 3D space, ordered starting from the origin (0,0,0), + moving along the x-axis, then y-axis, and finally z-axis. + Used as a blueprint for generating a voxel grid. + cube_corners_idx (torch.Tensor): Cube corners indexed as powers of 2, used + to retrieve the case id. + cube_edges (torch.Tensor): Edge connections in a cube, listed in pairs. + Used to retrieve edge vertices in DMC. + edge_dir_table (torch.Tensor): A mapping tensor that associates edge indices with + their corresponding axis. For instance, edge_dir_table[0] = 0 indicates that the + first edge is oriented along the x-axis. + dir_faces_table (torch.Tensor): A tensor that maps the corresponding axis of shared edges + across four adjacent cubes to the shared faces of these cubes. For instance, + dir_faces_table[0] = [5, 4] implies that for four cubes sharing an edge along + the x-axis, the first and second cubes share faces indexed as 5 and 4, respectively. + This tensor is only utilized during isosurface tetrahedralization. + adj_pairs (torch.Tensor): + A tensor containing index pairs that correspond to neighboring cubes that share the same edge. + qef_reg_scale (float): + The scaling factor applied to the regularization loss to prevent issues with singularity + when solving the QEF. This parameter is only used when a 'grad_func' is specified. + weight_scale (float): + The scale of weights in FlexiCubes. Should be between 0 and 1. + """ + + def __init__(self, device="cuda", qef_reg_scale=1e-3, weight_scale=0.99): + + self.device = device + self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False) + self.num_vd_table = torch.tensor(num_vd_table, + dtype=torch.long, device=device, requires_grad=False) + self.check_table = torch.tensor( + check_table, + dtype=torch.long, device=device, requires_grad=False) + + self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False) + self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False) + self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False) + self.quad_split_train = torch.tensor( + [0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False) + + self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [ + 1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device) + self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False)) + self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6, + 2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False) + + self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1], + dtype=torch.long, device=device) + self.dir_faces_table = torch.tensor([ + [[5, 4], [3, 2], [4, 5], [2, 3]], + [[5, 4], [1, 0], [4, 5], [0, 1]], + [[3, 2], [1, 0], [2, 3], [0, 1]] + ], dtype=torch.long, device=device) + self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device) + self.qef_reg_scale = qef_reg_scale + self.weight_scale = weight_scale + + def construct_voxel_grid(self, res): + """ + Generates a voxel grid based on the specified resolution. + + Args: + res (int or list[int]): The resolution of the voxel grid. If an integer + is provided, it is used for all three dimensions. If a list or tuple + of 3 integers is provided, they define the resolution for the x, + y, and z dimensions respectively. + + Returns: + (torch.Tensor, torch.Tensor): Returns the vertices and the indices of the + cube corners (index into vertices) of the constructed voxel grid. + The vertices are centered at the origin, with the length of each + dimension in the grid being one. + """ + base_cube_f = torch.arange(8).to(self.device) + if isinstance(res, int): + res = (res, res, res) + voxel_grid_template = torch.ones(res, device=self.device) + + res = torch.tensor([res], dtype=torch.float, device=self.device) + coords = torch.nonzero(voxel_grid_template).float() / res # N, 3 + verts = (self.cube_corners.unsqueeze(0) / res + coords.unsqueeze(1)).reshape(-1, 3) + cubes = (base_cube_f.unsqueeze(0) + + torch.arange(coords.shape[0], device=self.device).unsqueeze(1) * 8).reshape(-1) + + verts_rounded = torch.round(verts * 10**5) / (10**5) + verts_unique, inverse_indices = torch.unique(verts_rounded, dim=0, return_inverse=True) + cubes = inverse_indices[cubes.reshape(-1)].reshape(-1, 8) + + return verts_unique - 0.5, cubes + + def __call__(self, x_nx3, s_n, cube_fx8, res, beta_fx12=None, alpha_fx8=None, + gamma_f=None, training=False, output_tetmesh=False, grad_func=None): + r""" + Main function for mesh extraction from scalar field using FlexiCubes. This function converts + discrete signed distance fields, encoded on voxel grids and additional per-cube parameters, + to triangle or tetrahedral meshes using a differentiable operation as described in + `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_. FlexiCubes enhances + mesh quality and geometric fidelity by adjusting the surface representation based on gradient + optimization. The output surface is differentiable with respect to the input vertex positions, + scalar field values, and weight parameters. + + If you intend to extract a surface mesh from a fixed Signed Distance Field without the + optimization of parameters, it is suggested to provide the "grad_func" which should + return the surface gradient at any given 3D position. When grad_func is provided, the process + to determine the dual vertex position adapts to solve a Quadratic Error Function (QEF), as + described in the `Manifold Dual Contouring`_ paper, and employs an smart splitting strategy. + Please note, this approach is non-differentiable. + + For more details and example usage in optimization, refer to the + `Flexible Isosurface Extraction for Gradient-Based Mesh Optimization`_ SIGGRAPH 2023 paper. + + Args: + x_nx3 (torch.Tensor): Coordinates of the voxel grid vertices, can be deformed. + s_n (torch.Tensor): Scalar field values at each vertex of the voxel grid. Negative values + denote that the corresponding vertex resides inside the isosurface. This affects + the directions of the extracted triangle faces and volume to be tetrahedralized. + cube_fx8 (torch.Tensor): Indices of 8 vertices for each cube in the voxel grid. + res (int or list[int]): The resolution of the voxel grid. If an integer is provided, it + is used for all three dimensions. If a list or tuple of 3 integers is provided, they + specify the resolution for the x, y, and z dimensions respectively. + beta_fx12 (torch.Tensor, optional): Weight parameters for the cube edges to adjust dual + vertices positioning. Defaults to uniform value for all edges. + alpha_fx8 (torch.Tensor, optional): Weight parameters for the cube corners to adjust dual + vertices positioning. Defaults to uniform value for all vertices. + gamma_f (torch.Tensor, optional): Weight parameters to control the splitting of + quadrilaterals into triangles. Defaults to uniform value for all cubes. + training (bool, optional): If set to True, applies differentiable quad splitting for + training. Defaults to False. + output_tetmesh (bool, optional): If set to True, outputs a tetrahedral mesh, otherwise, + outputs a triangular mesh. Defaults to False. + grad_func (callable, optional): A function to compute the surface gradient at specified + 3D positions (input: Nx3 positions). The function should return gradients as an Nx3 + tensor. If None, the original FlexiCubes algorithm is utilized. Defaults to None. + + Returns: + (torch.Tensor, torch.LongTensor, torch.Tensor): Tuple containing: + - Vertices for the extracted triangular/tetrahedral mesh. + - Faces for the extracted triangular/tetrahedral mesh. + - Regularizer L_dev, computed per dual vertex. + + .. _Flexible Isosurface Extraction for Gradient-Based Mesh Optimization: + https://research.nvidia.com/labs/toronto-ai/flexicubes/ + .. _Manifold Dual Contouring: + https://people.engr.tamu.edu/schaefer/research/dualsimp_tvcg.pdf + """ + + surf_cubes, occ_fx8 = self._identify_surf_cubes(s_n, cube_fx8) + if surf_cubes.sum() == 0: + return torch.zeros( + (0, 3), + device=self.device), torch.zeros( + (0, 4), + dtype=torch.long, device=self.device) if output_tetmesh else torch.zeros( + (0, 3), + dtype=torch.long, device=self.device), torch.zeros( + (0), + device=self.device) + beta_fx12, alpha_fx8, gamma_f = self._normalize_weights(beta_fx12, alpha_fx8, gamma_f, surf_cubes) + + case_ids = self._get_case_id(occ_fx8, surf_cubes, res) + + surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(s_n, cube_fx8, surf_cubes) + + vd, L_dev, vd_gamma, vd_idx_map = self._compute_vd( + x_nx3, cube_fx8[surf_cubes], surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func) + vertices, faces, s_edges, edge_indices = self._triangulate( + s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func) + if not output_tetmesh: + return vertices, faces, L_dev + else: + vertices, tets = self._tetrahedralize( + x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices, + surf_cubes, training) + return vertices, tets, L_dev + + def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges): + """ + Regularizer L_dev as in Equation 8 + """ + dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1) + mean_l2 = torch.zeros_like(vd[:, 0]) + mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float() + mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs() + return mad + + def _normalize_weights(self, beta_fx12, alpha_fx8, gamma_f, surf_cubes): + """ + Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones. + """ + n_cubes = surf_cubes.shape[0] + + if beta_fx12 is not None: + beta_fx12 = (torch.tanh(beta_fx12) * self.weight_scale + 1) + else: + beta_fx12 = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device) + + if alpha_fx8 is not None: + alpha_fx8 = (torch.tanh(alpha_fx8) * self.weight_scale + 1) + else: + alpha_fx8 = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device) + + if gamma_f is not None: + gamma_f = torch.sigmoid(gamma_f) * self.weight_scale + (1 - self.weight_scale)/2 + else: + gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device) + + return beta_fx12[surf_cubes], alpha_fx8[surf_cubes], gamma_f[surf_cubes] + + @torch.no_grad() + def _get_case_id(self, occ_fx8, surf_cubes, res): + """ + Obtains the ID of topology cases based on cell corner occupancy. This function resolves the + ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the + supplementary material. It should be noted that this function assumes a regular grid. + """ + case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1) + + problem_config = self.check_table.to(self.device)[case_ids] + to_check = problem_config[..., 0] == 1 + problem_config = problem_config[to_check] + if not isinstance(res, (list, tuple)): + res = [res, res, res] + + # The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array, + # 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes). + # This allows efficient checking on adjacent cubes. + problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long) + vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3 + vol_idx_problem = vol_idx[surf_cubes][to_check] + problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config + vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4] + + within_range = ( + vol_idx_problem_adj[..., 0] >= 0) & ( + vol_idx_problem_adj[..., 0] < res[0]) & ( + vol_idx_problem_adj[..., 1] >= 0) & ( + vol_idx_problem_adj[..., 1] < res[1]) & ( + vol_idx_problem_adj[..., 2] >= 0) & ( + vol_idx_problem_adj[..., 2] < res[2]) + + vol_idx_problem = vol_idx_problem[within_range] + vol_idx_problem_adj = vol_idx_problem_adj[within_range] + problem_config = problem_config[within_range] + problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0], + vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]] + # If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted. + to_invert = (problem_config_adj[..., 0] == 1) + idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert] + case_ids.index_put_((idx,), problem_config[to_invert][..., -1]) + return case_ids + + @torch.no_grad() + def _identify_surf_edges(self, s_n, cube_fx8, surf_cubes): + """ + Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge + can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge + and marks the cube edges with this index. + """ + occ_n = s_n < 0 + all_edges = cube_fx8[surf_cubes][:, self.cube_edges].reshape(-1, 2) + unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True) + + unique_edges = unique_edges.long() + mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1 + + surf_edges_mask = mask_edges[_idx_map] + counts = counts[_idx_map] + + mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_fx8.device) * -1 + mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_fx8.device) + # Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index + # for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1. + idx_map = mapping[_idx_map] + surf_edges = unique_edges[mask_edges] + return surf_edges, idx_map, counts, surf_edges_mask + + @torch.no_grad() + def _identify_surf_cubes(self, s_n, cube_fx8): + """ + Identifies grid cubes that intersect with the underlying surface by checking if the signs at + all corners are not identical. + """ + occ_n = s_n < 0 + occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8) + _occ_sum = torch.sum(occ_fx8, -1) + surf_cubes = (_occ_sum > 0) & (_occ_sum < 8) + return surf_cubes, occ_fx8 + + def _linear_interp(self, edges_weight, edges_x): + """ + Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'. + """ + edge_dim = edges_weight.dim() - 2 + assert edges_weight.shape[edge_dim] == 2 + edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), - + torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)], edge_dim) + denominator = edges_weight.sum(edge_dim) + ue = (edges_x * edges_weight).sum(edge_dim) / denominator + return ue + + def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3=None): + p_bxnx3 = p_bxnx3.reshape(-1, 7, 3) + norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3) + c_bx3 = c_bx3.reshape(-1, 3) + A = norm_bxnx3 + B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True) + + A_reg = (torch.eye(3, device=p_bxnx3.device) * self.qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1) + B_reg = (self.qef_reg_scale * c_bx3).unsqueeze(-1) + A = torch.cat([A, A_reg], 1) + B = torch.cat([B, B_reg], 1) + dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1) + return dual_verts + + def _compute_vd(self, x_nx3, surf_cubes_fx8, surf_edges, s_n, case_ids, beta_fx12, alpha_fx8, gamma_f, idx_map, grad_func): + """ + Computes the location of dual vertices as described in Section 4.2 + """ + alpha_nx12x2 = torch.index_select(input=alpha_fx8, index=self.cube_edges, dim=1).reshape(-1, 12, 2) + surf_edges_x = torch.index_select(input=x_nx3, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3) + surf_edges_s = torch.index_select(input=s_n, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1) + zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x) + + idx_map = idx_map.reshape(-1, 12) + num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0) + edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], [] + + total_num_vd = 0 + vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False) + if grad_func is not None: + normals = torch.nn.functional.normalize(grad_func(zero_crossing), dim=-1) + vd = [] + for num in torch.unique(num_vd): + cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching) + curr_num_vd = cur_cubes.sum() * num + curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7) + curr_edge_group_to_vd = torch.arange( + curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd + total_num_vd += curr_num_vd + curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[ + cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group) + + curr_mask = (curr_edge_group != -1) + edge_group.append(torch.masked_select(curr_edge_group, curr_mask)) + edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask)) + edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask)) + vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True)) + vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1)) + + if grad_func is not None: + with torch.no_grad(): + cube_e_verts_idx = idx_map[cur_cubes] + curr_edge_group[~curr_mask] = 0 + + verts_group_idx = torch.gather(input=cube_e_verts_idx, dim=1, index=curr_edge_group) + verts_group_idx[verts_group_idx == -1] = 0 + verts_group_pos = torch.index_select( + input=zero_crossing, index=verts_group_idx.reshape(-1), dim=0).reshape(-1, num.item(), 7, 3) + v0 = x_nx3[surf_cubes_fx8[cur_cubes][:, 0]].reshape(-1, 1, 1, 3).repeat(1, num.item(), 1, 1) + curr_mask = curr_mask.reshape(-1, num.item(), 7, 1) + verts_centroid = (verts_group_pos * curr_mask).sum(2) / (curr_mask.sum(2)) + + normals_bx7x3 = torch.index_select(input=normals, index=verts_group_idx.reshape(-1), dim=0).reshape( + -1, num.item(), 7, + 3) + curr_mask = curr_mask.squeeze(2) + vd.append(self._solve_vd_QEF((verts_group_pos - v0) * curr_mask, normals_bx7x3 * curr_mask, + verts_centroid - v0.squeeze(2)) + v0.reshape(-1, 3)) + edge_group = torch.cat(edge_group) + edge_group_to_vd = torch.cat(edge_group_to_vd) + edge_group_to_cube = torch.cat(edge_group_to_cube) + vd_num_edges = torch.cat(vd_num_edges) + vd_gamma = torch.cat(vd_gamma) + + if grad_func is not None: + vd = torch.cat(vd) + L_dev = torch.zeros([1], device=self.device) + else: + vd = torch.zeros((total_num_vd, 3), device=self.device) + beta_sum = torch.zeros((total_num_vd, 1), device=self.device) + + idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group) + + x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3) + s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1) + + zero_crossing_group = torch.index_select( + input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3) + + alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0, + index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1) + ue_group = self._linear_interp(s_group * alpha_group, x_group) + + beta_group = torch.gather(input=beta_fx12.reshape(-1), dim=0, + index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1) + beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group) + vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum + L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges) + + v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd + + vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube * + 12 + edge_group, src=v_idx[edge_group_to_vd]) + + return vd, L_dev, vd_gamma, vd_idx_map + + def _triangulate(self, s_n, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, grad_func): + """ + Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into + triangles based on the gamma parameter, as described in Section 4.3. + """ + with torch.no_grad(): + group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes. + group = idx_map.reshape(-1)[group_mask] + vd_idx = vd_idx_map[group_mask] + edge_indices, indices = torch.sort(group, stable=True) + quad_vd_idx = vd_idx[indices].reshape(-1, 4) + + # Ensure all face directions point towards the positive SDF to maintain consistent winding. + s_edges = s_n[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2) + flip_mask = s_edges[:, 0] > 0 + quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]], + quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]])) + if grad_func is not None: + # when grad_func is given, split quadrilaterals along the diagonals with more consistent gradients. + with torch.no_grad(): + vd_gamma = torch.nn.functional.normalize(grad_func(vd), dim=-1) + quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3) + gamma_02 = (quad_gamma[:, 0] * quad_gamma[:, 2]).sum(-1, keepdims=True) + gamma_13 = (quad_gamma[:, 1] * quad_gamma[:, 3]).sum(-1, keepdims=True) + else: + quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4) + gamma_02 = torch.index_select(input=quad_gamma, index=torch.tensor( + 0, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(2, device=self.device), dim=1) + gamma_13 = torch.index_select(input=quad_gamma, index=torch.tensor( + 1, device=self.device), dim=1) * torch.index_select(input=quad_gamma, index=torch.tensor(3, device=self.device), dim=1) + if not training: + mask = (gamma_02 > gamma_13).squeeze(1) + faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device) + faces[mask] = quad_vd_idx[mask][:, self.quad_split_1] + faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2] + faces = faces.reshape(-1, 3) + else: + vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3) + vd_02 = (torch.index_select(input=vd_quad, index=torch.tensor(0, device=self.device), dim=1) + + torch.index_select(input=vd_quad, index=torch.tensor(2, device=self.device), dim=1)) / 2 + vd_13 = (torch.index_select(input=vd_quad, index=torch.tensor(1, device=self.device), dim=1) + + torch.index_select(input=vd_quad, index=torch.tensor(3, device=self.device), dim=1)) / 2 + weight_sum = (gamma_02 + gamma_13) + 1e-8 + vd_center = ((vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) / + weight_sum.unsqueeze(-1)).squeeze(1) + vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0] + vd = torch.cat([vd, vd_center]) + faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2) + faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3) + return vd, faces, s_edges, edge_indices + + def _tetrahedralize( + self, x_nx3, s_n, cube_fx8, vertices, faces, surf_edges, s_edges, vd_idx_map, case_ids, edge_indices, + surf_cubes, training): + """ + Tetrahedralizes the interior volume to produce a tetrahedral mesh, as described in Section 4.5. + """ + occ_n = s_n < 0 + occ_fx8 = occ_n[cube_fx8.reshape(-1)].reshape(-1, 8) + occ_sum = torch.sum(occ_fx8, -1) + + inside_verts = x_nx3[occ_n] + mapping_inside_verts = torch.ones((occ_n.shape[0]), dtype=torch.long, device=self.device) * -1 + mapping_inside_verts[occ_n] = torch.arange(occ_n.sum(), device=self.device) + vertices.shape[0] + """ + For each grid edge connecting two grid vertices with different + signs, we first form a four-sided pyramid by connecting one + of the grid vertices with four mesh vertices that correspond + to the grid edge and then subdivide the pyramid into two tetrahedra + """ + inside_verts_idx = mapping_inside_verts[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1, 2)[ + s_edges < 0]] + if not training: + inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 2).reshape(-1) + else: + inside_verts_idx = inside_verts_idx.unsqueeze(1).expand(-1, 4).reshape(-1) + + tets_surface = torch.cat([faces, inside_verts_idx.unsqueeze(-1)], -1) + """ + For each grid edge connecting two grid vertices with the + same sign, the tetrahedron is formed by the two grid vertices + and two vertices in consecutive adjacent cells + """ + inside_cubes = (occ_sum == 8) + inside_cubes_center = x_nx3[cube_fx8[inside_cubes].reshape(-1)].reshape(-1, 8, 3).mean(1) + inside_cubes_center_idx = torch.arange( + inside_cubes_center.shape[0], device=inside_cubes.device) + vertices.shape[0] + inside_verts.shape[0] + + surface_n_inside_cubes = surf_cubes | inside_cubes + edge_center_vertex_idx = torch.ones(((surface_n_inside_cubes).sum(), 13), + dtype=torch.long, device=x_nx3.device) * -1 + surf_cubes = surf_cubes[surface_n_inside_cubes] + inside_cubes = inside_cubes[surface_n_inside_cubes] + edge_center_vertex_idx[surf_cubes, :12] = vd_idx_map.reshape(-1, 12) + edge_center_vertex_idx[inside_cubes, 12] = inside_cubes_center_idx + + all_edges = cube_fx8[surface_n_inside_cubes][:, self.cube_edges].reshape(-1, 2) + unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True) + unique_edges = unique_edges.long() + mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 2 + mask = mask_edges[_idx_map] + counts = counts[_idx_map] + mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=self.device) * -1 + mapping[mask_edges] = torch.arange(mask_edges.sum(), device=self.device) + idx_map = mapping[_idx_map] + + group_mask = (counts == 4) & mask + group = idx_map.reshape(-1)[group_mask] + edge_indices, indices = torch.sort(group) + cube_idx = torch.arange((_idx_map.shape[0] // 12), dtype=torch.long, + device=self.device).unsqueeze(1).expand(-1, 12).reshape(-1)[group_mask] + edge_idx = torch.arange((12), dtype=torch.long, device=self.device).unsqueeze( + 0).expand(_idx_map.shape[0] // 12, -1).reshape(-1)[group_mask] + # Identify the face shared by the adjacent cells. + cube_idx_4 = cube_idx[indices].reshape(-1, 4) + edge_dir = self.edge_dir_table[edge_idx[indices]].reshape(-1, 4)[..., 0] + shared_faces_4x2 = self.dir_faces_table[edge_dir].reshape(-1) + cube_idx_4x2 = cube_idx_4[:, self.adj_pairs].reshape(-1) + # Identify an edge of the face with different signs and + # select the mesh vertex corresponding to the identified edge. + case_ids_expand = torch.ones((surface_n_inside_cubes).sum(), dtype=torch.long, device=x_nx3.device) * 255 + case_ids_expand[surf_cubes] = case_ids + cases = case_ids_expand[cube_idx_4x2] + quad_edge = edge_center_vertex_idx[cube_idx_4x2, self.tet_table[cases, shared_faces_4x2]].reshape(-1, 2) + mask = (quad_edge == -1).sum(-1) == 0 + inside_edge = mapping_inside_verts[unique_edges[mask_edges][edge_indices].reshape(-1)].reshape(-1, 2) + tets_inside = torch.cat([quad_edge, inside_edge], -1)[mask] + + tets = torch.cat([tets_surface, tets_inside]) + vertices = torch.cat([vertices, inside_verts, inside_cubes_center]) + return vertices, tets diff --git a/src/models/geometry/rep_3d/flexicubes_geometry.py b/src/models/geometry/rep_3d/flexicubes_geometry.py new file mode 100644 index 0000000000000000000000000000000000000000..50231689382e64d7570def3bbbef9212d4e885db --- /dev/null +++ b/src/models/geometry/rep_3d/flexicubes_geometry.py @@ -0,0 +1,171 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +import numpy as np +import os +import nvdiffrast.torch as dr +from . import Geometry +from .flexicubes import FlexiCubes # replace later +from .dmtet import sdf_reg_loss_batch +from . import mesh +import torch.nn.functional as F +from src.utils import render + +def get_center_boundary_index(grid_res, device): + v = torch.zeros((grid_res + 1, grid_res + 1, grid_res + 1), dtype=torch.bool, device=device) + v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = True + center_indices = torch.nonzero(v.reshape(-1)) + + v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = False + v[:2, ...] = True + v[-2:, ...] = True + v[:, :2, ...] = True + v[:, -2:, ...] = True + v[:, :, :2] = True + v[:, :, -2:] = True + boundary_indices = torch.nonzero(v.reshape(-1)) + return center_indices, boundary_indices + +############################################################################### +# Geometry interface +############################################################################### +class FlexiCubesGeometry(Geometry): + def __init__( + self, grid_res=64, scale=2.0, device='cuda', renderer=None, + render_type='neural_render', args=None): + super(FlexiCubesGeometry, self).__init__() + self.grid_res = grid_res + self.device = device + self.args = args + self.fc = FlexiCubes(device, weight_scale=0.5) + self.verts, self.indices = self.fc.construct_voxel_grid(grid_res) + if isinstance(scale, list): + self.verts[:, 0] = self.verts[:, 0] * scale[0] + self.verts[:, 1] = self.verts[:, 1] * scale[1] + self.verts[:, 2] = self.verts[:, 2] * scale[1] + else: + self.verts = self.verts * scale + + all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2) + self.all_edges = torch.unique(all_edges, dim=0) + + # Parameters used for fix boundary sdf + self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device) + self.renderer = renderer + self.render_type = render_type + self.ctx = dr.RasterizeCudaContext(device=device) + + def getAABB(self): + return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values + + @torch.no_grad() + def map_uv(self, face_gidx, max_idx): + N = int(np.ceil(np.sqrt((max_idx+1)//2))) + tex_y, tex_x = torch.meshgrid( + torch.linspace(0, 1 - (1 / N), N, dtype=torch.float32, device="cuda"), + torch.linspace(0, 1 - (1 / N), N, dtype=torch.float32, device="cuda") + ) + + pad = 0.9 / N + + uvs = torch.stack([ + tex_x , tex_y, + tex_x + pad, tex_y, + tex_x + pad, tex_y + pad, + tex_x , tex_y + pad + ], dim=-1).view(-1, 2) + + def _idx(tet_idx, N): + x = tet_idx % N + y = torch.div(tet_idx, N, rounding_mode='floor') + return y * N + x + + tet_idx = _idx(torch.div(face_gidx, N, rounding_mode='floor'), N) + tri_idx = face_gidx % 2 + + uv_idx = torch.stack(( + tet_idx * 4, tet_idx * 4 + tri_idx + 1, tet_idx * 4 + tri_idx + 2 + ), dim = -1). view(-1, 3) + + return uvs, uv_idx + + def rotate_x(self, a, device=None): + s, c = np.sin(a), np.cos(a) + return torch.tensor([[1, 0, 0, 0], + [0, c,-s, 0], + [0, s, c, 0], + [0, 0, 0, 1]], dtype=torch.float32, device=device) + def rotate_z(self, a, device=None): + s, c = np.sin(a), np.cos(a) + return torch.tensor([[ c, -s, 0, 0], + [ s, c, 0, 0], + [ 0, 0, 1, 0], + [ 0, 0, 0, 1]], dtype=torch.float32, device=device) + def rotate_y(self, a, device=None): + s, c = np.sin(a), np.cos(a) + return torch.tensor([[ c, 0, s, 0], + [ 0, 1, 0, 0], + [-s, 0, c, 0], + [ 0, 0, 0, 1]], dtype=torch.float32, device=device) + + + def get_mesh(self, v_deformed_nx3, sdf_n, weight_n=None, with_uv=False, indices=None, is_training=False): + if indices is None: + indices = self.indices + + verts, faces, v_reg_loss = self.fc(v_deformed_nx3, sdf_n, indices, self.grid_res, + beta_fx12=weight_n[:, :12], alpha_fx8=weight_n[:, 12:20], + gamma_f=weight_n[:, 20], training=is_training + ) + + face_gidx = torch.arange(faces.shape[0], dtype=torch.long, device="cuda") + uvs, uv_idx = self.map_uv(face_gidx, faces.shape[0]) + + verts = verts @ self.rotate_x(np.pi / 2, device=verts.device)[:3,:3] + verts = verts @ self.rotate_y(np.pi / 2, device=verts.device)[:3,:3] + + imesh = mesh.Mesh(verts, faces, v_tex=uvs, t_tex_idx=uv_idx) + + imesh = mesh.auto_normals(imesh) + imesh = mesh.compute_tangents(imesh) + + return verts, faces, v_reg_loss, imesh + + + + def render_mesh(self, mesh_v_nx3, mesh_f_fx3, mesh, camera_mv_bx4x4, camera_pos, env, planes, kd_fn, materials, resolution=256, hierarchical_mask=False, gt_albedo_map=None, gt_normal_map=None, gt_depth_map=None): + return_value = dict() + buffer_dict = render.render_mesh(self.ctx, mesh, camera_mv_bx4x4, camera_pos, env, + planes, kd_fn, materials, [resolution, resolution], + spp=1, num_layers=1, msaa=True, background=None, gt_albedo_map=gt_albedo_map) + + return buffer_dict + + + def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256): + # Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1 + v_list = [] + f_list = [] + n_batch = v_deformed_bxnx3.shape[0] + all_render_output = [] + for i_batch in range(n_batch): + verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch]) + v_list.append(verts_nx3) + f_list.append(faces_fx3) + render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution) + all_render_output.append(render_output) + + # Concatenate all render output + return_keys = all_render_output[0].keys() + return_value = dict() + for k in return_keys: + value = [v[k] for v in all_render_output] + return_value[k] = value + # We can do concatenation outside of the render + return return_value diff --git a/src/models/geometry/rep_3d/light.py b/src/models/geometry/rep_3d/light.py new file mode 100644 index 0000000000000000000000000000000000000000..766ab0a9e4e4fc42f379ac94d765059508cff97e --- /dev/null +++ b/src/models/geometry/rep_3d/light.py @@ -0,0 +1,158 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os +import numpy as np +import torch +import nvdiffrast.torch as dr + +from . import util +from . import renderutils as ru + +###################################################################################### +# Utility functions +###################################################################################### + +class cubemap_mip(torch.autograd.Function): + @staticmethod + def forward(ctx, cubemap): + return util.avg_pool_nhwc(cubemap, (2,2)) + + @staticmethod + def backward(ctx, dout): + res = dout.shape[1] * 2 + out = torch.zeros(6, res, res, dout.shape[-1], dtype=torch.float32, device="cuda") + for s in range(6): + gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"), + torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"), + indexing='ij') + v = util.safe_normalize(util.cube_to_dir(s, gx, gy)) + out[s, ...] = dr.texture(dout[None, ...] * 0.25, v[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube') + return out + +###################################################################################### +# Split-sum environment map light source with automatic mipmap generation +###################################################################################### + +class EnvironmentLight(torch.nn.Module): + LIGHT_MIN_RES = 16 + + MIN_ROUGHNESS = 0.08 + MAX_ROUGHNESS = 0.5 + + def __init__(self, base): + super(EnvironmentLight, self).__init__() + self.mtx = None + self.base = torch.nn.Parameter(base.clone().detach(), requires_grad=True) + self.register_parameter('env_base', self.base) + + def xfm(self, mtx): + self.mtx = mtx + + def clone(self): + return EnvironmentLight(self.base.clone().detach()) + + def clamp_(self, min=None, max=None): + self.base.clamp_(min, max) + + def get_mip(self, roughness): + return torch.where(roughness < self.MAX_ROUGHNESS + , (torch.clamp(roughness, self.MIN_ROUGHNESS, self.MAX_ROUGHNESS) - self.MIN_ROUGHNESS) / (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) * (len(self.specular) - 2) + , (torch.clamp(roughness, self.MAX_ROUGHNESS, 1.0) - self.MAX_ROUGHNESS) / (1.0 - self.MAX_ROUGHNESS) + len(self.specular) - 2) + + def build_mips(self, cutoff=0.99): + self.specular = [self.base] + while self.specular[-1].shape[1] > self.LIGHT_MIN_RES: + self.specular += [cubemap_mip.apply(self.specular[-1])] + + self.diffuse = ru.diffuse_cubemap(self.specular[-1]) + + for idx in range(len(self.specular) - 1): + roughness = (idx / (len(self.specular) - 2)) * (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) + self.MIN_ROUGHNESS + self.specular[idx] = ru.specular_cubemap(self.specular[idx], roughness, cutoff) + self.specular[-1] = ru.specular_cubemap(self.specular[-1], 1.0, cutoff) + + def regularizer(self): + white = (self.base[..., 0:1] + self.base[..., 1:2] + self.base[..., 2:3]) / 3.0 + return torch.mean(torch.abs(self.base - white)) + + def shade(self, gb_pos, gb_normal, kd, ks, view_pos, specular=True): + wo = util.safe_normalize(view_pos - gb_pos) + + if specular: + roughness = ks[..., 1:2] # y component + metallic = ks[..., 2:3] # z component + spec_col = (1.0 - metallic)*0.04 + kd * metallic + diff_col = kd * (1.0 - metallic) + else: + diff_col = kd + + reflvec = util.safe_normalize(util.reflect(wo, gb_normal)) + nrmvec = gb_normal + if self.mtx is not None: # Rotate lookup + mtx = torch.as_tensor(self.mtx, dtype=torch.float32, device='cuda') + reflvec = ru.xfm_vectors(reflvec.view(reflvec.shape[0], reflvec.shape[1] * reflvec.shape[2], reflvec.shape[3]), mtx).view(*reflvec.shape) + nrmvec = ru.xfm_vectors(nrmvec.view(nrmvec.shape[0], nrmvec.shape[1] * nrmvec.shape[2], nrmvec.shape[3]), mtx).view(*nrmvec.shape) + + # Diffuse lookup + diffuse = dr.texture(self.diffuse[None, ...], nrmvec.contiguous(), filter_mode='linear', boundary_mode='cube') + shaded_col = diffuse * diff_col + + if specular: + # Lookup FG term from lookup texture + NdotV = torch.clamp(util.dot(wo, gb_normal), min=1e-4) + fg_uv = torch.cat((NdotV, roughness), dim=-1) + if not hasattr(self, '_FG_LUT'): + self._FG_LUT = torch.as_tensor(np.fromfile('data/irrmaps/bsdf_256_256.bin', dtype=np.float32).reshape(1, 256, 256, 2), dtype=torch.float32, device='cuda') + fg_lookup = dr.texture(self._FG_LUT, fg_uv, filter_mode='linear', boundary_mode='clamp') + + # Roughness adjusted specular env lookup + miplevel = self.get_mip(roughness) + spec = dr.texture(self.specular[0][None, ...], reflvec.contiguous(), mip=list(m[None, ...] for m in self.specular[1:]), mip_level_bias=miplevel[..., 0], filter_mode='linear-mipmap-linear', boundary_mode='cube') + + # Compute aggregate lighting + reflectance = spec_col * fg_lookup[...,0:1] + fg_lookup[...,1:2] + shaded_col += spec * reflectance + + return shaded_col * (1.0 - ks[..., 0:1]) # Modulate by hemisphere visibility + +###################################################################################### +# Load and store +###################################################################################### + +# Load from latlong .HDR file +def _load_env_hdr(fn, scale=1.0): + latlong_img = torch.tensor(util.load_image(fn), dtype=torch.float32, device='cuda')*scale + cubemap = util.latlong_to_cubemap(latlong_img, [512, 512]) + + l = EnvironmentLight(cubemap) + l.build_mips() + + return l + +def load_env(fn, scale=1.0): + if os.path.splitext(fn)[1].lower() == ".hdr": + return _load_env_hdr(fn, scale) + else: + assert False, "Unknown envlight extension %s" % os.path.splitext(fn)[1] + +def save_env_map(fn, light): + assert isinstance(light, EnvironmentLight), "Can only save EnvironmentLight currently" + if isinstance(light, EnvironmentLight): + color = util.cubemap_to_latlong(light.base, [512, 1024]) + util.save_image_raw(fn, color.detach().cpu().numpy()) + +###################################################################################### +# Create trainable env map with random initialization +###################################################################################### + +def create_trainable_env_rnd(base_res, scale=0.5, bias=0.25): + base = torch.rand(6, base_res, base_res, 3, dtype=torch.float32, device='cuda') * scale + bias + return EnvironmentLight(base) + diff --git a/src/models/geometry/rep_3d/material.py b/src/models/geometry/rep_3d/material.py new file mode 100644 index 0000000000000000000000000000000000000000..64772e578493f41e5c94e432d906d9be23325221 --- /dev/null +++ b/src/models/geometry/rep_3d/material.py @@ -0,0 +1,182 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os +import numpy as np +import torch + +from . import util +from . import texture + +###################################################################################### +# Wrapper to make materials behave like a python dict, but register textures as +# torch.nn.Module parameters. +###################################################################################### +class Material(torch.nn.Module): + def __init__(self, mat_dict): + super(Material, self).__init__() + self.mat_keys = set() + for key in mat_dict.keys(): + self.mat_keys.add(key) + self[key] = mat_dict[key] + + def __contains__(self, key): + return hasattr(self, key) + + def __getitem__(self, key): + return getattr(self, key) + + def __setitem__(self, key, val): + self.mat_keys.add(key) + setattr(self, key, val) + + def __delitem__(self, key): + self.mat_keys.remove(key) + delattr(self, key) + + def keys(self): + return self.mat_keys + +###################################################################################### +# .mtl material format loading / storing +###################################################################################### +@torch.no_grad() +def load_mtl(fn, clear_ks=True): + import re + mtl_path = os.path.dirname(fn) + + # Read file + with open(fn, 'r') as f: + lines = f.readlines() + + # Parse materials + materials = [] + for line in lines: + split_line = re.split(' +|\t+|\n+', line.strip()) + prefix = split_line[0].lower() + data = split_line[1:] + if 'newmtl' in prefix: + material = Material({'name' : data[0]}) + materials += [material] + elif materials: + if 'bsdf' in prefix or 'map_kd' in prefix or 'map_ks' in prefix or 'bump' in prefix: + material[prefix] = data[0] + else: + material[prefix] = torch.tensor(tuple(float(d) for d in data), dtype=torch.float32, device='cuda') + + # Convert everything to textures. Our code expects 'kd' and 'ks' to be texture maps. So replace constants with 1x1 maps + for mat in materials: + if not 'bsdf' in mat: + mat['bsdf'] = 'pbr' + + if 'map_kd' in mat: + mat['kd'] = texture.load_texture2D(os.path.join(mtl_path, mat['map_kd'])) + else: + mat['kd'] = texture.Texture2D(mat['kd']) + + if 'map_ks' in mat: + mat['ks'] = texture.load_texture2D(os.path.join(mtl_path, mat['map_ks']), channels=3) + else: + mat['ks'] = texture.Texture2D(mat['ks']) + + if 'bump' in mat: + mat['normal'] = texture.load_texture2D(os.path.join(mtl_path, mat['bump']), lambda_fn=lambda x: x * 2 - 1, channels=3) + + # Convert Kd from sRGB to linear RGB + mat['kd'] = texture.srgb_to_rgb(mat['kd']) + + if clear_ks: + # Override ORM occlusion (red) channel by zeros. We hijack this channel + for mip in mat['ks'].getMips(): + mip[..., 0] = 0.0 + + return materials + +@torch.no_grad() +def save_mtl(fn, material): + folder = os.path.dirname(fn) + with open(fn, "w") as f: + f.write('newmtl defaultMat\n') + if material is not None: + f.write('bsdf %s\n' % material['bsdf']) + if 'kd' in material.keys(): + f.write('map_Kd texture_kd.png\n') + texture.save_texture2D(os.path.join(folder, 'texture_kd.png'), texture.rgb_to_srgb(material['kd'])) + if 'ks' in material.keys(): + f.write('map_Ks texture_ks.png\n') + texture.save_texture2D(os.path.join(folder, 'texture_ks.png'), material['ks']) + if 'normal' in material.keys(): + f.write('bump texture_n.png\n') + texture.save_texture2D(os.path.join(folder, 'texture_n.png'), material['normal'], lambda_fn=lambda x:(util.safe_normalize(x)+1)*0.5) + else: + f.write('Kd 1 1 1\n') + f.write('Ks 0 0 0\n') + f.write('Ka 0 0 0\n') + f.write('Tf 1 1 1\n') + f.write('Ni 1\n') + f.write('Ns 0\n') + +###################################################################################### +# Merge multiple materials into a single uber-material +###################################################################################### + +def _upscale_replicate(x, full_res): + x = x.permute(0, 3, 1, 2) + x = torch.nn.functional.pad(x, (0, full_res[1] - x.shape[3], 0, full_res[0] - x.shape[2]), 'replicate') + return x.permute(0, 2, 3, 1).contiguous() + +def merge_materials(materials, texcoords, tfaces, mfaces): + assert len(materials) > 0 + for mat in materials: + assert mat['bsdf'] == materials[0]['bsdf'], "All materials must have the same BSDF (uber shader)" + assert ('normal' in mat) is ('normal' in materials[0]), "All materials must have either normal map enabled or disabled" + + uber_material = Material({ + 'name' : 'uber_material', + 'bsdf' : materials[0]['bsdf'], + }) + + textures = ['kd', 'ks', 'normal'] + + # Find maximum texture resolution across all materials and textures + max_res = None + for mat in materials: + for tex in textures: + tex_res = np.array(mat[tex].getRes()) if tex in mat else np.array([1, 1]) + max_res = np.maximum(max_res, tex_res) if max_res is not None else tex_res + + # Compute size of compund texture and round up to nearest PoT + full_res = 2**np.ceil(np.log2(max_res * np.array([1, len(materials)]))).astype(np.int) + + # Normalize texture resolution across all materials & combine into a single large texture + for tex in textures: + if tex in materials[0]: + tex_data = torch.cat(tuple(util.scale_img_nhwc(mat[tex].data, tuple(max_res)) for mat in materials), dim=2) # Lay out all textures horizontally, NHWC so dim2 is x + tex_data = _upscale_replicate(tex_data, full_res) + uber_material[tex] = texture.Texture2D(tex_data) + + # Compute scaling values for used / unused texture area + s_coeff = [full_res[0] / max_res[0], full_res[1] / max_res[1]] + + # Recompute texture coordinates to cooincide with new composite texture + new_tverts = {} + new_tverts_data = [] + for fi in range(len(tfaces)): + matIdx = mfaces[fi] + for vi in range(3): + ti = tfaces[fi][vi] + if not (ti in new_tverts): + new_tverts[ti] = {} + if not (matIdx in new_tverts[ti]): # create new vertex + new_tverts_data.append([(matIdx + texcoords[ti][0]) / s_coeff[1], texcoords[ti][1] / s_coeff[0]]) # Offset texture coodrinate (x direction) by material id & scale to local space. Note, texcoords are (u,v) but texture is stored (w,h) so the indexes swap here + new_tverts[ti][matIdx] = len(new_tverts_data) - 1 + tfaces[fi][vi] = new_tverts[ti][matIdx] # reindex vertex + + return uber_material, new_tverts_data, tfaces + diff --git a/src/models/geometry/rep_3d/mesh.py b/src/models/geometry/rep_3d/mesh.py new file mode 100644 index 0000000000000000000000000000000000000000..2009b8b938dc251586fbd665bff716f11cf9616b --- /dev/null +++ b/src/models/geometry/rep_3d/mesh.py @@ -0,0 +1,238 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os +import numpy as np +import torch + +from . import obj +from . import util + +###################################################################################### +# Base mesh class +###################################################################################### +class Mesh: + def __init__(self, v_pos=None, t_pos_idx=None, v_nrm=None, t_nrm_idx=None, v_tex=None, t_tex_idx=None, v_tng=None, t_tng_idx=None, material=None, base=None): + self.v_pos = v_pos + self.v_nrm = v_nrm + self.v_tex = v_tex + self.v_tng = v_tng + self.t_pos_idx = t_pos_idx + self.t_nrm_idx = t_nrm_idx + self.t_tex_idx = t_tex_idx + self.t_tng_idx = t_tng_idx + self.material = material + + if base is not None: + self.copy_none(base) + + def copy_none(self, other): + if self.v_pos is None: + self.v_pos = other.v_pos + if self.t_pos_idx is None: + self.t_pos_idx = other.t_pos_idx + if self.v_nrm is None: + self.v_nrm = other.v_nrm + if self.t_nrm_idx is None: + self.t_nrm_idx = other.t_nrm_idx + if self.v_tex is None: + self.v_tex = other.v_tex + if self.t_tex_idx is None: + self.t_tex_idx = other.t_tex_idx + if self.v_tng is None: + self.v_tng = other.v_tng + if self.t_tng_idx is None: + self.t_tng_idx = other.t_tng_idx + if self.material is None: + self.material = other.material + + def clone(self): + out = Mesh(base=self) + if out.v_pos is not None: + out.v_pos = out.v_pos.clone().detach() + if out.t_pos_idx is not None: + out.t_pos_idx = out.t_pos_idx.clone().detach() + if out.v_nrm is not None: + out.v_nrm = out.v_nrm.clone().detach() + if out.t_nrm_idx is not None: + out.t_nrm_idx = out.t_nrm_idx.clone().detach() + if out.v_tex is not None: + out.v_tex = out.v_tex.clone().detach() + if out.t_tex_idx is not None: + out.t_tex_idx = out.t_tex_idx.clone().detach() + if out.v_tng is not None: + out.v_tng = out.v_tng.clone().detach() + if out.t_tng_idx is not None: + out.t_tng_idx = out.t_tng_idx.clone().detach() + return out + +###################################################################################### +# Mesh loeading helper +###################################################################################### + +def load_mesh(filename, mtl_override=None): + name, ext = os.path.splitext(filename) + if ext == ".obj": + return obj.load_obj(filename, clear_ks=True, mtl_override=mtl_override) + assert False, "Invalid mesh file extension" + +###################################################################################### +# Compute AABB +###################################################################################### +def aabb(mesh): + return torch.min(mesh.v_pos, dim=0).values, torch.max(mesh.v_pos, dim=0).values + +###################################################################################### +# Compute unique edge list from attribute/vertex index list +###################################################################################### +def compute_edges(attr_idx, return_inverse=False): + with torch.no_grad(): + # Create all edges, packed by triangle + all_edges = torch.cat(( + torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1), + torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1), + torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1), + ), dim=-1).view(-1, 2) + + # Swap edge order so min index is always first + order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) + sorted_edges = torch.cat(( + torch.gather(all_edges, 1, order), + torch.gather(all_edges, 1, 1 - order) + ), dim=-1) + + # Eliminate duplicates and return inverse mapping + return torch.unique(sorted_edges, dim=0, return_inverse=return_inverse) + +###################################################################################### +# Compute unique edge to face mapping from attribute/vertex index list +###################################################################################### +def compute_edge_to_face_mapping(attr_idx, return_inverse=False): + with torch.no_grad(): + # Get unique edges + # Create all edges, packed by triangle + all_edges = torch.cat(( + torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1), + torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1), + torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1), + ), dim=-1).view(-1, 2) + + # Swap edge order so min index is always first + order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) + sorted_edges = torch.cat(( + torch.gather(all_edges, 1, order), + torch.gather(all_edges, 1, 1 - order) + ), dim=-1) + + # Elliminate duplicates and return inverse mapping + unique_edges, idx_map = torch.unique(sorted_edges, dim=0, return_inverse=True) + + tris = torch.arange(attr_idx.shape[0]).repeat_interleave(3).cuda() + + tris_per_edge = torch.zeros((unique_edges.shape[0], 2), dtype=torch.int64).cuda() + + # Compute edge to face table + mask0 = order[:,0] == 0 + mask1 = order[:,0] == 1 + tris_per_edge[idx_map[mask0], 0] = tris[mask0] + tris_per_edge[idx_map[mask1], 1] = tris[mask1] + + return tris_per_edge + +###################################################################################### +# Align base mesh to reference mesh:move & rescale to match bounding boxes. +###################################################################################### +def unit_size(mesh): + with torch.no_grad(): + vmin, vmax = aabb(mesh) + scale = 2 / torch.max(vmax - vmin).item() + v_pos = mesh.v_pos - (vmax + vmin) / 2 # Center mesh on origin + v_pos = v_pos * scale # Rescale to unit size + + return Mesh(v_pos, base=mesh) + +###################################################################################### +# Center & scale mesh for rendering +###################################################################################### +def center_by_reference(base_mesh, ref_aabb, scale): + center = (ref_aabb[0] + ref_aabb[1]) * 0.5 + scale = scale / torch.max(ref_aabb[1] - ref_aabb[0]).item() + v_pos = (base_mesh.v_pos - center[None, ...]) * scale + return Mesh(v_pos, base=base_mesh) + +###################################################################################### +# Simple smooth vertex normal computation +###################################################################################### +def auto_normals(imesh): + + i0 = imesh.t_pos_idx[:, 0] + i1 = imesh.t_pos_idx[:, 1] + i2 = imesh.t_pos_idx[:, 2] + + v0 = imesh.v_pos[i0, :] + v1 = imesh.v_pos[i1, :] + v2 = imesh.v_pos[i2, :] + + face_normals = torch.cross(v1 - v0, v2 - v0) + + # Splat face normals to vertices + v_nrm = torch.zeros_like(imesh.v_pos) + v_nrm.scatter_add_(0, i0[:, None].repeat(1,3), face_normals) + v_nrm.scatter_add_(0, i1[:, None].repeat(1,3), face_normals) + v_nrm.scatter_add_(0, i2[:, None].repeat(1,3), face_normals) + + # Normalize, replace zero (degenerated) normals with some default value + v_nrm = torch.where(util.dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')) + v_nrm = util.safe_normalize(v_nrm) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(v_nrm)) + + return Mesh(v_nrm=v_nrm, t_nrm_idx=imesh.t_pos_idx, base=imesh) + +###################################################################################### +# Compute tangent space from texture map coordinates +# Follows http://www.mikktspace.com/ conventions +###################################################################################### +def compute_tangents(imesh): + vn_idx = [None] * 3 + pos = [None] * 3 + tex = [None] * 3 + for i in range(0,3): + pos[i] = imesh.v_pos[imesh.t_pos_idx[:, i]] + tex[i] = imesh.v_tex[imesh.t_tex_idx[:, i]] + vn_idx[i] = imesh.t_nrm_idx[:, i] + + tangents = torch.zeros_like(imesh.v_nrm) + + # Compute tangent space for each triangle + uve1 = tex[1] - tex[0] + uve2 = tex[2] - tex[0] + pe1 = pos[1] - pos[0] + pe2 = pos[2] - pos[0] + + nom = (pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2]) + denom = (uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1]) + + # Avoid division by zero for degenerated texture coordinates + tang = nom / torch.where(denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6)) + + # Update all 3 vertices + for i in range(0,3): + idx = vn_idx[i][:, None].repeat(1,3) + tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang + + # Normalize and make sure tangent is perpendicular to normal + tangents = util.safe_normalize(tangents) + tangents = util.safe_normalize(tangents - util.dot(tangents, imesh.v_nrm) * imesh.v_nrm) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(tangents)) + + return Mesh(v_tng=tangents, t_tng_idx=imesh.t_nrm_idx, base=imesh) diff --git a/src/models/geometry/rep_3d/obj.py b/src/models/geometry/rep_3d/obj.py new file mode 100644 index 0000000000000000000000000000000000000000..a33fbb9e66c69706ad39049e2ea8e5a7c425971c --- /dev/null +++ b/src/models/geometry/rep_3d/obj.py @@ -0,0 +1,176 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os +import torch + +from . import texture +from . import mesh +from . import material + +###################################################################################### +# Utility functions +###################################################################################### + +def _find_mat(materials, name): + for mat in materials: + if mat['name'] == name: + return mat + return materials[0] # Materials 0 is the default + +###################################################################################### +# Create mesh object from objfile +###################################################################################### + +def load_obj(filename, clear_ks=True, mtl_override=None): + obj_path = os.path.dirname(filename) + + # Read entire file + with open(filename, 'r') as f: + lines = f.readlines() + + # Load materials + all_materials = [ + { + 'name' : '_default_mat', + 'bsdf' : 'pbr', + 'kd' : texture.Texture2D(torch.tensor([0.5, 0.5, 0.5], dtype=torch.float32, device='cuda')), + 'ks' : texture.Texture2D(torch.tensor([0.0, 0.0, 0.0], dtype=torch.float32, device='cuda')) + } + ] + if mtl_override is None: + for line in lines: + if len(line.split()) == 0: + continue + if line.split()[0] == 'mtllib': + all_materials += material.load_mtl(os.path.join(obj_path, line.split()[1]), clear_ks) # Read in entire material library + else: + all_materials += material.load_mtl(mtl_override) + + # load vertices + vertices, texcoords, normals = [], [], [] + for line in lines: + if len(line.split()) == 0: + continue + + prefix = line.split()[0].lower() + if prefix == 'v': + vertices.append([float(v) for v in line.split()[1:]]) + elif prefix == 'vt': + val = [float(v) for v in line.split()[1:]] + texcoords.append([val[0], 1.0 - val[1]]) + elif prefix == 'vn': + normals.append([float(v) for v in line.split()[1:]]) + + # load faces + activeMatIdx = None + used_materials = [] + faces, tfaces, nfaces, mfaces = [], [], [], [] + for line in lines: + if len(line.split()) == 0: + continue + + prefix = line.split()[0].lower() + if prefix == 'usemtl': # Track used materials + mat = _find_mat(all_materials, line.split()[1]) + if not mat in used_materials: + used_materials.append(mat) + activeMatIdx = used_materials.index(mat) + elif prefix == 'f': # Parse face + vs = line.split()[1:] + nv = len(vs) + vv = vs[0].split('/') + v0 = int(vv[0]) - 1 + t0 = int(vv[1]) - 1 if vv[1] != "" else -1 + n0 = int(vv[2]) - 1 if vv[2] != "" else -1 + for i in range(nv - 2): # Triangulate polygons + vv = vs[i + 1].split('/') + v1 = int(vv[0]) - 1 + t1 = int(vv[1]) - 1 if vv[1] != "" else -1 + n1 = int(vv[2]) - 1 if vv[2] != "" else -1 + vv = vs[i + 2].split('/') + v2 = int(vv[0]) - 1 + t2 = int(vv[1]) - 1 if vv[1] != "" else -1 + n2 = int(vv[2]) - 1 if vv[2] != "" else -1 + mfaces.append(activeMatIdx) + faces.append([v0, v1, v2]) + tfaces.append([t0, t1, t2]) + nfaces.append([n0, n1, n2]) + assert len(tfaces) == len(faces) and len(nfaces) == len (faces) + + # Create an "uber" material by combining all textures into a larger texture + if len(used_materials) > 1: + uber_material, texcoords, tfaces = material.merge_materials(used_materials, texcoords, tfaces, mfaces) + else: + uber_material = used_materials[0] + + vertices = torch.tensor(vertices, dtype=torch.float32, device='cuda') + texcoords = torch.tensor(texcoords, dtype=torch.float32, device='cuda') if len(texcoords) > 0 else None + normals = torch.tensor(normals, dtype=torch.float32, device='cuda') if len(normals) > 0 else None + + faces = torch.tensor(faces, dtype=torch.int64, device='cuda') + tfaces = torch.tensor(tfaces, dtype=torch.int64, device='cuda') if texcoords is not None else None + nfaces = torch.tensor(nfaces, dtype=torch.int64, device='cuda') if normals is not None else None + + return mesh.Mesh(vertices, faces, normals, nfaces, texcoords, tfaces, material=uber_material) + +###################################################################################### +# Save mesh object to objfile +###################################################################################### + +def write_obj(folder, mesh, save_material=True): + obj_file = os.path.join(folder, 'mesh.obj') + print("Writing mesh: ", obj_file) + with open(obj_file, "w") as f: + f.write("mtllib mesh.mtl\n") + f.write("g default\n") + + v_pos = mesh.v_pos.detach().cpu().numpy() if mesh.v_pos is not None else None + v_nrm = mesh.v_nrm.detach().cpu().numpy() if mesh.v_nrm is not None else None + v_tex = mesh.v_tex.detach().cpu().numpy() if mesh.v_tex is not None else None + + t_pos_idx = mesh.t_pos_idx.detach().cpu().numpy() if mesh.t_pos_idx is not None else None + t_nrm_idx = mesh.t_nrm_idx.detach().cpu().numpy() if mesh.t_nrm_idx is not None else None + t_tex_idx = mesh.t_tex_idx.detach().cpu().numpy() if mesh.t_tex_idx is not None else None + + print(" writing %d vertices" % len(v_pos)) + for v in v_pos: + f.write('v {} {} {} \n'.format(v[0], v[1], v[2])) + + if v_tex is not None: + print(" writing %d texcoords" % len(v_tex)) + assert(len(t_pos_idx) == len(t_tex_idx)) + for v in v_tex: + f.write('vt {} {} \n'.format(v[0], 1.0 - v[1])) + + if v_nrm is not None: + print(" writing %d normals" % len(v_nrm)) + assert(len(t_pos_idx) == len(t_nrm_idx)) + for v in v_nrm: + f.write('vn {} {} {}\n'.format(v[0], v[1], v[2])) + + # faces + f.write("s 1 \n") + f.write("g pMesh1\n") + f.write("usemtl defaultMat\n") + + # Write faces + print(" writing %d faces" % len(t_pos_idx)) + for i in range(len(t_pos_idx)): + f.write("f ") + for j in range(3): + f.write(' %s/%s/%s' % (str(t_pos_idx[i][j]+1), '' if v_tex is None else str(t_tex_idx[i][j]+1), '' if v_nrm is None else str(t_nrm_idx[i][j]+1))) + f.write("\n") + + if save_material: + mtl_file = os.path.join(folder, 'mesh.mtl') + print("Writing material: ", mtl_file) + material.save_mtl(mtl_file, mesh.material) + + print("Done exporting mesh") diff --git a/src/models/geometry/rep_3d/tables.py b/src/models/geometry/rep_3d/tables.py new file mode 100644 index 0000000000000000000000000000000000000000..5873e7727b5595a1e4fbc3bd10ae5be8f3d06cca --- /dev/null +++ b/src/models/geometry/rep_3d/tables.py @@ -0,0 +1,791 @@ +# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. +dmc_table = [ +[[-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 5, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 5, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 5, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 8, 11, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 5, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 5, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 8, 9, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 7, 8, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 7, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 9, 10, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 5, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 8, 9, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 7, 9, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[8, 9, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 9, 10, 11, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 8, 10, 11, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 5, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 8, 9, -1, -1, -1], [1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 7, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 7, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 8, 9, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 5, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 5, 8, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 6, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 6, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 6, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 6, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 6, 7, 8, -1, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 5, -1, -1, -1], [2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 5, 6, 7, 8], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 5, 6, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 2, 3, 5, 6, 8], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 9, 10, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 8, 9, 10, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 6, 8, 11, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 6, 11, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 9, 10, -1, -1, -1], [4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 6, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [4, 5, 9, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1]], +[[0, 2, 4, 5, 10, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 5, 8, 10, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 6, 8, 9, 11, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 6, 9, 11, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 6, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 5, 6, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 6, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[6, 7, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 6, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 6, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 6, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 6, 7, 8, 10, -1], [4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 5, 6, 7, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 5, 6, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 6, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 8, 9, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 7, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 7, 9, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 6, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 6, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[6, 7, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 6, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 6, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 6, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 8, 11, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 8, 9, 11, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 7, 11, -1, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [4, 7, 8, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [5, 6, 10, -1, -1, -1, -1]], +[[1, 2, 4, 7, 9, 11, -1], [5, 6, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 6, 9, 10, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 8, 11, -1, -1, -1], [4, 6, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 6, 10, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 6, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[6, 7, 8, 9, 10, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 6, 7, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 6, 7, 8, 10, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 6, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 5, 6, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 7, -1, -1, -1], [1, 2, 5, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 6, 9, -1, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 5, 6, 7, 9], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [1, 2, 4, 6, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 6, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 6, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 6, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 2, 3, 6, 7, 9], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 6, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 6, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 6, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 6, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [1, 3, 5, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 5, 6, 7, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 6, 9, 11, -1], [4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 6, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 6, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 6, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 6, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 6, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 6, 7, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 6, 7, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[6, 7, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 8, 9, -1, -1, -1], [5, 7, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 5, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [4, 5, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 5, 9, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [4, 7, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 7, 10, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 7, 8, 10, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[8, 9, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 9, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 8, 10, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 10, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 7, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [2, 3, 5, 7, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 5, 7, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 5, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [2, 3, 4, 5, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 5, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 7, 9, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 7, 8, 9, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 2, 3, 4, 7, 10], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 8, 9, 10, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 9, 10, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 2, 3, 8, 10, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 10, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [1, 2, 5, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 5, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 5, 7, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 5, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 2, 3, 4, 5, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 5, 8, 9, 11], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [1, 2, 4, 7, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 4, 7, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 4, 7, 8, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 2, 8, 9, 11, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 2, 3, 9, 11, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 2, 8, 11, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[2, 3, 11, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 5, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 5, 7, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 5, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[5, 7, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 5, 8, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 5, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 5, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 5, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 4, 7, 9, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 4, 7, 8, 9, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 4, 7, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[4, 7, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[1, 3, 8, 9, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 1, 9, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[0, 3, 8, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]], +[[-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1]] +] +num_vd_table = [0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, +2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, +1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 3, 2, 2, 1, 1, 1, 1, +1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 2, 1, 3, 4, 2, +2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, +3, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, +2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, +1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, +1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, +1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0] +check_table = [ +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 1, 0, 0, 194], +[1, -1, 0, 0, 193], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 1, 0, 164], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, -1, 0, 161], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 0, 1, 152], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 0, 1, 145], +[1, 0, 0, 1, 144], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 0, -1, 137], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 1, 0, 133], +[1, 0, 1, 0, 132], +[1, 1, 0, 0, 131], +[1, 1, 0, 0, 130], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 0, 1, 100], +[0, 0, 0, 0, 0], +[1, 0, 0, 1, 98], +[0, 0, 0, 0, 0], +[1, 0, 0, 1, 96], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 1, 0, 88], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, -1, 0, 82], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 1, 0, 74], +[0, 0, 0, 0, 0], +[1, 0, 1, 0, 72], +[0, 0, 0, 0, 0], +[1, 0, 0, -1, 70], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, -1, 0, 0, 67], +[0, 0, 0, 0, 0], +[1, -1, 0, 0, 65], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 1, 0, 0, 56], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, -1, 0, 0, 52], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 1, 0, 0, 44], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 1, 0, 0, 40], +[0, 0, 0, 0, 0], +[1, 0, 0, -1, 38], +[1, 0, -1, 0, 37], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, -1, 0, 33], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, -1, 0, 0, 28], +[0, 0, 0, 0, 0], +[1, 0, -1, 0, 26], +[1, 0, 0, -1, 25], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, -1, 0, 0, 20], +[0, 0, 0, 0, 0], +[1, 0, -1, 0, 18], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 0, -1, 9], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[1, 0, 0, -1, 6], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0], +[0, 0, 0, 0, 0] +] +tet_table = [ +[-1, -1, -1, -1, -1, -1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[4, 4, 4, 4, 4, 4], +[0, 0, 0, 0, 0, 0], +[4, 0, 0, 4, 4, -1], +[1, 1, 1, 1, 1, 1], +[4, 4, 4, 4, 4, 4], +[0, 4, 0, 4, 4, -1], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[5, 5, 5, 5, 5, 5], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[2, 0, 2, -1, 0, 2], +[1, 1, 1, 1, 1, 1], +[2, -1, 2, 4, 4, 2], +[0, 0, 0, 0, 0, 0], +[2, 0, 2, 4, 4, 2], +[1, 1, 1, 1, 1, 1], +[2, 4, 2, 4, 4, 2], +[0, 4, 0, 4, 4, 0], +[2, 0, 2, 0, 0, 2], +[1, 1, 1, 1, 1, 1], +[2, 5, 2, 5, 5, 2], +[0, 0, 0, 0, 0, 0], +[2, 0, 2, 0, 0, 2], +[1, 1, 1, 1, 1, 1], +[1, 1, 1, 1, 1, 1], +[0, 1, 1, -1, 0, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[4, 1, 1, 4, 4, 1], +[0, 1, 1, 0, 0, 1], +[4, 0, 0, 4, 4, 0], +[2, 2, 2, 2, 2, 2], +[-1, 1, 1, 4, 4, 1], +[0, 1, 1, 4, 4, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[5, 1, 1, 5, 5, 1], +[0, 1, 1, 0, 0, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[8, 8, 8, 8, 8, 8], +[1, 1, 1, 4, 4, 1], +[0, 0, 0, 0, 0, 0], +[4, 0, 0, 4, 4, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 4, 4, 1], +[0, 4, 0, 4, 4, 0], +[0, 0, 0, 0, 0, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 5, 5, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[5, 5, 5, 5, 5, 5], +[6, 6, 6, 6, 6, 6], +[6, -1, 0, 6, 0, 6], +[6, 0, 0, 6, 0, 6], +[6, 1, 1, 6, 1, 6], +[4, 4, 4, 4, 4, 4], +[0, 0, 0, 0, 0, 0], +[4, 0, 0, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[6, 4, -1, 6, 4, 6], +[6, 4, 0, 6, 4, 6], +[6, 0, 0, 6, 0, 6], +[6, 1, 1, 6, 1, 6], +[5, 5, 5, 5, 5, 5], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[2, 0, 2, 2, 0, 2], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[2, 0, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[2, 4, 2, 2, 4, 2], +[0, 4, 0, 4, 4, 0], +[2, 0, 2, 2, 0, 2], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[6, 1, 1, 6, -1, 6], +[6, 1, 1, 6, 0, 6], +[6, 0, 0, 6, 0, 6], +[6, 2, 2, 6, 2, 6], +[4, 1, 1, 4, 4, 1], +[0, 1, 1, 0, 0, 1], +[4, 0, 0, 4, 4, 4], +[2, 2, 2, 2, 2, 2], +[6, 1, 1, 6, 4, 6], +[6, 1, 1, 6, 4, 6], +[6, 0, 0, 6, 0, 6], +[6, 2, 2, 6, 2, 6], +[5, 1, 1, 5, 5, 1], +[0, 1, 1, 0, 0, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[6, 6, 6, 6, 6, 6], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 1, 4, 1], +[0, 4, 0, 4, 4, 0], +[0, 0, 0, 0, 0, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 5, 0, 5, 0, 5], +[5, 5, 5, 5, 5, 5], +[5, 5, 5, 5, 5, 5], +[0, 5, 0, 5, 0, 5], +[-1, 5, 0, 5, 0, 5], +[1, 5, 1, 5, 1, 5], +[4, 5, -1, 5, 4, 5], +[0, 5, 0, 5, 0, 5], +[4, 5, 0, 5, 4, 5], +[1, 5, 1, 5, 1, 5], +[4, 4, 4, 4, 4, 4], +[0, 4, 0, 4, 4, 4], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[6, 6, 6, 6, 6, 6], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[2, 5, 2, 5, -1, 5], +[0, 5, 0, 5, 0, 5], +[2, 5, 2, 5, 0, 5], +[1, 5, 1, 5, 1, 5], +[2, 5, 2, 5, 4, 5], +[0, 5, 0, 5, 0, 5], +[2, 5, 2, 5, 4, 5], +[1, 5, 1, 5, 1, 5], +[2, 4, 2, 4, 4, 2], +[0, 4, 0, 4, 4, 4], +[2, 0, 2, 0, 0, 2], +[1, 1, 1, 1, 1, 1], +[2, 6, 2, 6, 6, 2], +[0, 0, 0, 0, 0, 0], +[2, 0, 2, 0, 0, 2], +[1, 1, 1, 1, 1, 1], +[1, 1, 1, 1, 1, 1], +[0, 1, 1, 1, 0, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[4, 1, 1, 1, 4, 1], +[0, 1, 1, 1, 0, 1], +[4, 0, 0, 4, 4, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[5, 5, 5, 5, 5, 5], +[1, 1, 1, 1, 4, 1], +[0, 0, 0, 0, 0, 0], +[4, 0, 0, 4, 4, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[6, 0, 0, 6, 0, 6], +[0, 0, 0, 0, 0, 0], +[6, 6, 6, 6, 6, 6], +[5, 5, 5, 5, 5, 5], +[5, 5, 0, 5, 0, 5], +[5, 5, 0, 5, 0, 5], +[5, 5, 1, 5, 1, 5], +[4, 4, 4, 4, 4, 4], +[0, 0, 0, 0, 0, 0], +[4, 4, 0, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[4, 4, 4, 4, 4, 4], +[4, 4, 0, 4, 4, 4], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[8, 8, 8, 8, 8, 8], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 0, 2], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[4, 1, 1, 4, 4, 1], +[2, 2, 2, 2, 2, 2], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[1, 1, 1, 1, 1, 1], +[1, 1, 1, 1, 1, 1], +[1, 1, 1, 1, 0, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[2, 4, 2, 4, 4, 2], +[1, 1, 1, 1, 1, 1], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[2, 2, 2, 2, 2, 2], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[5, 5, 5, 5, 5, 5], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[4, 4, 4, 4, 4, 4], +[1, 1, 1, 1, 1, 1], +[0, 0, 0, 0, 0, 0], +[0, 0, 0, 0, 0, 0], +[12, 12, 12, 12, 12, 12] +] diff --git a/src/models/geometry/rep_3d/texture.py b/src/models/geometry/rep_3d/texture.py new file mode 100644 index 0000000000000000000000000000000000000000..4e4a39d042dc4d356c47133efee897088b9ce5c6 --- /dev/null +++ b/src/models/geometry/rep_3d/texture.py @@ -0,0 +1,186 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os +import numpy as np +import torch +import nvdiffrast.torch as dr + +from . import util + +###################################################################################### +# Smooth pooling / mip computation with linear gradient upscaling +###################################################################################### + +class texture2d_mip(torch.autograd.Function): + @staticmethod + def forward(ctx, texture): + return util.avg_pool_nhwc(texture, (2,2)) + + @staticmethod + def backward(ctx, dout): + gy, gx = torch.meshgrid(torch.linspace(0.0 + 0.25 / dout.shape[1], 1.0 - 0.25 / dout.shape[1], dout.shape[1]*2, device="cuda"), + torch.linspace(0.0 + 0.25 / dout.shape[2], 1.0 - 0.25 / dout.shape[2], dout.shape[2]*2, device="cuda"), + indexing='ij') + uv = torch.stack((gx, gy), dim=-1) + return dr.texture(dout * 0.25, uv[None, ...].contiguous(), filter_mode='linear', boundary_mode='clamp') + +######################################################################################################## +# Simple texture class. A texture can be either +# - A 3D tensor (using auto mipmaps) +# - A list of 3D tensors (full custom mip hierarchy) +######################################################################################################## + +class Texture2D(torch.nn.Module): + # Initializes a texture from image data. + # Input can be constant value (1D array) or texture (3D array) or mip hierarchy (list of 3d arrays) + def __init__(self, init, min_max=None): + super(Texture2D, self).__init__() + + if isinstance(init, np.ndarray): + init = torch.tensor(init, dtype=torch.float32, device='cuda') + elif isinstance(init, list) and len(init) == 1: + init = init[0] + + if isinstance(init, list): + self.data = list(torch.nn.Parameter(mip.clone().detach(), requires_grad=True) for mip in init) + elif len(init.shape) == 4: + self.data = torch.nn.Parameter(init.clone().detach(), requires_grad=True) + elif len(init.shape) == 3: + self.data = torch.nn.Parameter(init[None, ...].clone().detach(), requires_grad=True) + elif len(init.shape) == 1: + self.data = torch.nn.Parameter(init[None, None, None, :].clone().detach(), requires_grad=True) # Convert constant to 1x1 tensor + else: + assert False, "Invalid texture object" + + self.min_max = min_max + + # Filtered (trilinear) sample texture at a given location + def sample(self, texc, texc_deriv, filter_mode='linear-mipmap-linear'): + if isinstance(self.data, list): + out = dr.texture(self.data[0], texc, texc_deriv, mip=self.data[1:], filter_mode=filter_mode) + else: + if self.data.shape[1] > 1 and self.data.shape[2] > 1: + mips = [self.data] + while mips[-1].shape[1] > 1 and mips[-1].shape[2] > 1: + mips += [texture2d_mip.apply(mips[-1])] + out = dr.texture(mips[0], texc, texc_deriv, mip=mips[1:], filter_mode=filter_mode) + else: + out = dr.texture(self.data, texc, texc_deriv, filter_mode=filter_mode) + return out + + def getRes(self): + return self.getMips()[0].shape[1:3] + + def getChannels(self): + return self.getMips()[0].shape[3] + + def getMips(self): + if isinstance(self.data, list): + return self.data + else: + return [self.data] + + # In-place clamp with no derivative to make sure values are in valid range after training + def clamp_(self): + if self.min_max is not None: + for mip in self.getMips(): + for i in range(mip.shape[-1]): + mip[..., i].clamp_(min=self.min_max[0][i], max=self.min_max[1][i]) + + # In-place clamp with no derivative to make sure values are in valid range after training + def normalize_(self): + with torch.no_grad(): + for mip in self.getMips(): + mip = util.safe_normalize(mip) + +######################################################################################################## +# Helper function to create a trainable texture from a regular texture. The trainable weights are +# initialized with texture data as an initial guess +######################################################################################################## + +def create_trainable(init, res=None, auto_mipmaps=True, min_max=None): + with torch.no_grad(): + if isinstance(init, Texture2D): + assert isinstance(init.data, torch.Tensor) + min_max = init.min_max if min_max is None else min_max + init = init.data + elif isinstance(init, np.ndarray): + init = torch.tensor(init, dtype=torch.float32, device='cuda') + + # Pad to NHWC if needed + if len(init.shape) == 1: # Extend constant to NHWC tensor + init = init[None, None, None, :] + elif len(init.shape) == 3: + init = init[None, ...] + + # Scale input to desired resolution. + if res is not None: + init = util.scale_img_nhwc(init, res) + + # Genreate custom mipchain + if not auto_mipmaps: + mip_chain = [init.clone().detach().requires_grad_(True)] + while mip_chain[-1].shape[1] > 1 or mip_chain[-1].shape[2] > 1: + new_size = [max(mip_chain[-1].shape[1] // 2, 1), max(mip_chain[-1].shape[2] // 2, 1)] + mip_chain += [util.scale_img_nhwc(mip_chain[-1], new_size)] + return Texture2D(mip_chain, min_max=min_max) + else: + return Texture2D(init, min_max=min_max) + +######################################################################################################## +# Convert texture to and from SRGB +######################################################################################################## + +def srgb_to_rgb(texture): + return Texture2D(list(util.srgb_to_rgb(mip) for mip in texture.getMips())) + +def rgb_to_srgb(texture): + return Texture2D(list(util.rgb_to_srgb(mip) for mip in texture.getMips())) + +######################################################################################################## +# Utility functions for loading / storing a texture +######################################################################################################## + +def _load_mip2D(fn, lambda_fn=None, channels=None): + imgdata = torch.tensor(util.load_image(fn), dtype=torch.float32, device='cuda') + if channels is not None: + imgdata = imgdata[..., 0:channels] + if lambda_fn is not None: + imgdata = lambda_fn(imgdata) + return imgdata.detach().clone() + +def load_texture2D(fn, lambda_fn=None, channels=None): + base, ext = os.path.splitext(fn) + if os.path.exists(base + "_0" + ext): + mips = [] + while os.path.exists(base + ("_%d" % len(mips)) + ext): + mips += [_load_mip2D(base + ("_%d" % len(mips)) + ext, lambda_fn, channels)] + return Texture2D(mips) + else: + return Texture2D(_load_mip2D(fn, lambda_fn, channels)) + +def _save_mip2D(fn, mip, mipidx, lambda_fn): + if lambda_fn is not None: + data = lambda_fn(mip).detach().cpu().numpy() + else: + data = mip.detach().cpu().numpy() + + if mipidx is None: + util.save_image(fn, data) + else: + base, ext = os.path.splitext(fn) + util.save_image(base + ("_%d" % mipidx) + ext, data) + +def save_texture2D(fn, tex, lambda_fn=None): + if isinstance(tex.data, list): + for i, mip in enumerate(tex.data): + _save_mip2D(fn, mip[0,...], i, lambda_fn) + else: + _save_mip2D(fn, tex.data[0,...], None, lambda_fn) diff --git a/src/models/geometry/rep_3d/util.py b/src/models/geometry/rep_3d/util.py new file mode 100644 index 0000000000000000000000000000000000000000..c4e512ad110849ec3ed6344b53f9c422fc303096 --- /dev/null +++ b/src/models/geometry/rep_3d/util.py @@ -0,0 +1,466 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os +import numpy as np +import torch +import nvdiffrast.torch as dr +import imageio + +#---------------------------------------------------------------------------- +# Vector operations +#---------------------------------------------------------------------------- + +def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: + return torch.sum(x*y, -1, keepdim=True) + +def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor: + return 2*dot(x, n)*n - x + +def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: + return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN + +def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: + return x / length(x, eps) + +def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor: + return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w) + +#---------------------------------------------------------------------------- +# sRGB color transforms +#---------------------------------------------------------------------------- + +def _rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: + return torch.where(f <= 0.0031308, f * 12.92, torch.pow(torch.clamp(f, 0.0031308), 1.0/2.4)*1.055 - 0.055) + +def rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: + assert f.shape[-1] == 3 or f.shape[-1] == 4 + out = torch.cat((_rgb_to_srgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _rgb_to_srgb(f) + assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] + return out + +def _srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: + return torch.where(f <= 0.04045, f / 12.92, torch.pow((torch.clamp(f, 0.04045) + 0.055) / 1.055, 2.4)) + +def srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: + assert f.shape[-1] == 3 or f.shape[-1] == 4 + out = torch.cat((_srgb_to_rgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _srgb_to_rgb(f) + assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] + return out + +def reinhard(f: torch.Tensor) -> torch.Tensor: + return f/(1+f) + +#----------------------------------------------------------------------------------- +# Metrics (taken from jaxNerf source code, in order to replicate their measurements) +# +# https://github.com/google-research/google-research/blob/301451a62102b046bbeebff49a760ebeec9707b8/jaxnerf/nerf/utils.py#L266 +# +#----------------------------------------------------------------------------------- + +def mse_to_psnr(mse): + """Compute PSNR given an MSE (we assume the maximum pixel value is 1).""" + return -10. / np.log(10.) * np.log(mse) + +def psnr_to_mse(psnr): + """Compute MSE given a PSNR (we assume the maximum pixel value is 1).""" + return np.exp(-0.1 * np.log(10.) * psnr) + +#---------------------------------------------------------------------------- +# Displacement texture lookup +#---------------------------------------------------------------------------- + +def get_miplevels(texture: np.ndarray) -> float: + minDim = min(texture.shape[0], texture.shape[1]) + return np.floor(np.log2(minDim)) + +def tex_2d(tex_map : torch.Tensor, coords : torch.Tensor, filter='nearest') -> torch.Tensor: + tex_map = tex_map[None, ...] # Add batch dimension + tex_map = tex_map.permute(0, 3, 1, 2) # NHWC -> NCHW + tex = torch.nn.functional.grid_sample(tex_map, coords[None, None, ...] * 2 - 1, mode=filter, align_corners=False) + tex = tex.permute(0, 2, 3, 1) # NCHW -> NHWC + return tex[0, 0, ...] + +#---------------------------------------------------------------------------- +# Cubemap utility functions +#---------------------------------------------------------------------------- + +def cube_to_dir(s, x, y): + if s == 0: rx, ry, rz = torch.ones_like(x), -y, -x + elif s == 1: rx, ry, rz = -torch.ones_like(x), -y, x + elif s == 2: rx, ry, rz = x, torch.ones_like(x), y + elif s == 3: rx, ry, rz = x, -torch.ones_like(x), -y + elif s == 4: rx, ry, rz = x, -y, torch.ones_like(x) + elif s == 5: rx, ry, rz = -x, -y, -torch.ones_like(x) + return torch.stack((rx, ry, rz), dim=-1) + +def latlong_to_cubemap(latlong_map, res): + cubemap = torch.zeros(6, res[0], res[1], latlong_map.shape[-1], dtype=torch.float32, device='cuda') + for s in range(6): + gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), + torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'), + indexing='ij') + v = safe_normalize(cube_to_dir(s, gx, gy)) + + tu = torch.atan2(v[..., 0:1], -v[..., 2:3]) / (2 * np.pi) + 0.5 + tv = torch.acos(torch.clamp(v[..., 1:2], min=-1, max=1)) / np.pi + texcoord = torch.cat((tu, tv), dim=-1) + + cubemap[s, ...] = dr.texture(latlong_map[None, ...], texcoord[None, ...], filter_mode='linear')[0] + return cubemap + +def cubemap_to_latlong(cubemap, res): + gy, gx = torch.meshgrid(torch.linspace( 0.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), + torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'), + indexing='ij') + + sintheta, costheta = torch.sin(gy*np.pi), torch.cos(gy*np.pi) + sinphi, cosphi = torch.sin(gx*np.pi), torch.cos(gx*np.pi) + + reflvec = torch.stack(( + sintheta*sinphi, + costheta, + -sintheta*cosphi + ), dim=-1) + return dr.texture(cubemap[None, ...], reflvec[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')[0] + +#---------------------------------------------------------------------------- +# Image scaling +#---------------------------------------------------------------------------- + +def scale_img_hwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: + return scale_img_nhwc(x[None, ...], size, mag, min)[0] + +def scale_img_nhwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: + size = tuple(int(s) for s in size) + assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other" + y = x.permute(0, 3, 1, 2) # NHWC -> NCHW + if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger + y = torch.nn.functional.interpolate(y, size, mode=min) + else: # Magnification + if mag == 'bilinear' or mag == 'bicubic': + y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True) + else: + y = torch.nn.functional.interpolate(y, size, mode=mag) + return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC + +def avg_pool_nhwc(x : torch.Tensor, size) -> torch.Tensor: + y = x.permute(0, 3, 1, 2) # NHWC -> NCHW + y = torch.nn.functional.avg_pool2d(y, size) + return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC + +#---------------------------------------------------------------------------- +# Behaves similar to tf.segment_sum +#---------------------------------------------------------------------------- + +def segment_sum(data: torch.Tensor, segment_ids: torch.Tensor) -> torch.Tensor: + num_segments = torch.unique_consecutive(segment_ids).shape[0] + + # Repeats ids until same dimension as data + if len(segment_ids.shape) == 1: + s = torch.prod(torch.tensor(data.shape[1:], dtype=torch.int64, device='cuda')).long() + segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:]) + + assert data.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal" + + shape = [num_segments] + list(data.shape[1:]) + result = torch.zeros(*shape, dtype=torch.float32, device='cuda') + result = result.scatter_add(0, segment_ids, data) + return result + +#---------------------------------------------------------------------------- +# Matrix helpers. +#---------------------------------------------------------------------------- + +def fovx_to_fovy(fovx, aspect): + return np.arctan(np.tan(fovx / 2) / aspect) * 2.0 + +def focal_length_to_fovy(focal_length, sensor_height): + return 2 * np.arctan(0.5 * sensor_height / focal_length) + +# Reworked so this matches gluPerspective / glm::perspective, using fovy +def perspective(fovy=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None): + y = np.tan(fovy / 2) + return torch.tensor([[1/(y*aspect), 0, 0, 0], + [ 0, 1/-y, 0, 0], + [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], + [ 0, 0, -1, 0]], dtype=torch.float32, device=device) + +# Reworked so this matches gluPerspective / glm::perspective, using fovy +def perspective_offcenter(fovy, fraction, rx, ry, aspect=1.0, n=0.1, f=1000.0, device=None): + y = np.tan(fovy / 2) + + # Full frustum + R, L = aspect*y, -aspect*y + T, B = y, -y + + # Create a randomized sub-frustum + width = (R-L)*fraction + height = (T-B)*fraction + xstart = (R-L)*rx + ystart = (T-B)*ry + + l = L + xstart + r = l + width + b = B + ystart + t = b + height + + # https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix + return torch.tensor([[2/(r-l), 0, (r+l)/(r-l), 0], + [ 0, -2/(t-b), (t+b)/(t-b), 0], + [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], + [ 0, 0, -1, 0]], dtype=torch.float32, device=device) + +def translate(x, y, z, device=None): + return torch.tensor([[1, 0, 0, x], + [0, 1, 0, y], + [0, 0, 1, z], + [0, 0, 0, 1]], dtype=torch.float32, device=device) + +def rotate_x(a, device=None): + s, c = np.sin(a), np.cos(a) + return torch.tensor([[1, 0, 0, 0], + [0, c,-s, 0], + [0, s, c, 0], + [0, 0, 0, 1]], dtype=torch.float32, device=device) + +def rotate_y(a, device=None): + s, c = np.sin(a), np.cos(a) + return torch.tensor([[ c, 0, s, 0], + [ 0, 1, 0, 0], + [-s, 0, c, 0], + [ 0, 0, 0, 1]], dtype=torch.float32, device=device) + +def scale(s, device=None): + return torch.tensor([[ s, 0, 0, 0], + [ 0, s, 0, 0], + [ 0, 0, s, 0], + [ 0, 0, 0, 1]], dtype=torch.float32, device=device) + +def lookAt(eye, at, up): + a = eye - at + w = a / torch.linalg.norm(a) + u = torch.cross(up, w) + u = u / torch.linalg.norm(u) + v = torch.cross(w, u) + translate = torch.tensor([[1, 0, 0, -eye[0]], + [0, 1, 0, -eye[1]], + [0, 0, 1, -eye[2]], + [0, 0, 0, 1]], dtype=eye.dtype, device=eye.device) + rotate = torch.tensor([[u[0], u[1], u[2], 0], + [v[0], v[1], v[2], 0], + [w[0], w[1], w[2], 0], + [0, 0, 0, 1]], dtype=eye.dtype, device=eye.device) + return rotate @ translate + +@torch.no_grad() +def random_rotation_translation(t, device=None): + m = np.random.normal(size=[3, 3]) + m[1] = np.cross(m[0], m[2]) + m[2] = np.cross(m[0], m[1]) + m = m / np.linalg.norm(m, axis=1, keepdims=True) + m = np.pad(m, [[0, 1], [0, 1]], mode='constant') + m[3, 3] = 1.0 + m[:3, 3] = np.random.uniform(-t, t, size=[3]) + return torch.tensor(m, dtype=torch.float32, device=device) + +@torch.no_grad() +def random_rotation(device=None): + m = np.random.normal(size=[3, 3]) + m[1] = np.cross(m[0], m[2]) + m[2] = np.cross(m[0], m[1]) + m = m / np.linalg.norm(m, axis=1, keepdims=True) + m = np.pad(m, [[0, 1], [0, 1]], mode='constant') + m[3, 3] = 1.0 + m[:3, 3] = np.array([0,0,0]).astype(np.float32) + return torch.tensor(m, dtype=torch.float32, device=device) + +#---------------------------------------------------------------------------- +# Compute focal points of a set of lines using least squares. +# handy for poorly centered datasets +#---------------------------------------------------------------------------- + +def lines_focal(o, d): + d = safe_normalize(d) + I = torch.eye(3, dtype=o.dtype, device=o.device) + S = torch.sum(d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...], dim=0) + C = torch.sum((d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...]) @ o[..., None], dim=0).squeeze(1) + return torch.linalg.pinv(S) @ C + +#---------------------------------------------------------------------------- +# Cosine sample around a vector N +#---------------------------------------------------------------------------- +@torch.no_grad() +def cosine_sample(N, size=None): + # construct local frame + N = N/torch.linalg.norm(N) + + dx0 = torch.tensor([0, N[2], -N[1]], dtype=N.dtype, device=N.device) + dx1 = torch.tensor([-N[2], 0, N[0]], dtype=N.dtype, device=N.device) + + dx = torch.where(dot(dx0, dx0) > dot(dx1, dx1), dx0, dx1) + #dx = dx0 if np.dot(dx0,dx0) > np.dot(dx1,dx1) else dx1 + dx = dx / torch.linalg.norm(dx) + dy = torch.cross(N,dx) + dy = dy / torch.linalg.norm(dy) + + # cosine sampling in local frame + if size is None: + phi = 2.0 * np.pi * np.random.uniform() + s = np.random.uniform() + else: + phi = 2.0 * np.pi * torch.rand(*size, 1, dtype=N.dtype, device=N.device) + s = torch.rand(*size, 1, dtype=N.dtype, device=N.device) + costheta = np.sqrt(s) + sintheta = np.sqrt(1.0 - s) + + # cartesian vector in local space + x = np.cos(phi)*sintheta + y = np.sin(phi)*sintheta + z = costheta + + # local to world + return dx*x + dy*y + N*z + +#---------------------------------------------------------------------------- +# Bilinear downsample by 2x. +#---------------------------------------------------------------------------- + +def bilinear_downsample(x : torch.tensor) -> torch.Tensor: + w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 + w = w.expand(x.shape[-1], 1, 4, 4) + x = torch.nn.functional.conv2d(x.permute(0, 3, 1, 2), w, padding=1, stride=2, groups=x.shape[-1]) + return x.permute(0, 2, 3, 1) + +#---------------------------------------------------------------------------- +# Bilinear downsample log(spp) steps +#---------------------------------------------------------------------------- + +def bilinear_downsample(x : torch.tensor, spp) -> torch.Tensor: + w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 + g = x.shape[-1] + w = w.expand(g, 1, 4, 4) + x = x.permute(0, 3, 1, 2) # NHWC -> NCHW + steps = int(np.log2(spp)) + for _ in range(steps): + xp = torch.nn.functional.pad(x, (1,1,1,1), mode='replicate') + x = torch.nn.functional.conv2d(xp, w, padding=0, stride=2, groups=g) + return x.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC + +#---------------------------------------------------------------------------- +# Singleton initialize GLFW +#---------------------------------------------------------------------------- + +_glfw_initialized = False +def init_glfw(): + global _glfw_initialized + try: + import glfw + glfw.ERROR_REPORTING = 'raise' + glfw.default_window_hints() + glfw.window_hint(glfw.VISIBLE, glfw.FALSE) + test = glfw.create_window(8, 8, "Test", None, None) # Create a window and see if not initialized yet + except glfw.GLFWError as e: + if e.error_code == glfw.NOT_INITIALIZED: + glfw.init() + _glfw_initialized = True + +#---------------------------------------------------------------------------- +# Image display function using OpenGL. +#---------------------------------------------------------------------------- + +_glfw_window = None +def display_image(image, title=None): + # Import OpenGL + import OpenGL.GL as gl + import glfw + + # Zoom image if requested. + image = np.asarray(image[..., 0:3]) if image.shape[-1] == 4 else np.asarray(image) + height, width, channels = image.shape + + # Initialize window. + init_glfw() + if title is None: + title = 'Debug window' + global _glfw_window + if _glfw_window is None: + glfw.default_window_hints() + _glfw_window = glfw.create_window(width, height, title, None, None) + glfw.make_context_current(_glfw_window) + glfw.show_window(_glfw_window) + glfw.swap_interval(0) + else: + glfw.make_context_current(_glfw_window) + glfw.set_window_title(_glfw_window, title) + glfw.set_window_size(_glfw_window, width, height) + + # Update window. + glfw.poll_events() + gl.glClearColor(0, 0, 0, 1) + gl.glClear(gl.GL_COLOR_BUFFER_BIT) + gl.glWindowPos2f(0, 0) + gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1) + gl_format = {3: gl.GL_RGB, 2: gl.GL_RG, 1: gl.GL_LUMINANCE}[channels] + gl_dtype = {'uint8': gl.GL_UNSIGNED_BYTE, 'float32': gl.GL_FLOAT}[image.dtype.name] + gl.glDrawPixels(width, height, gl_format, gl_dtype, image[::-1]) + glfw.swap_buffers(_glfw_window) + if glfw.window_should_close(_glfw_window): + return False + return True + +#---------------------------------------------------------------------------- +# Image save/load helper. +#---------------------------------------------------------------------------- + +def save_image(fn, x : np.ndarray): + try: + if os.path.splitext(fn)[1] == ".png": + imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8), compress_level=3) # Low compression for faster saving + else: + imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8)) + except: + print("WARNING: FAILED to save image %s" % fn) + +def save_image_raw(fn, x : np.ndarray): + try: + imageio.imwrite(fn, x) + except: + print("WARNING: FAILED to save image %s" % fn) + + +def load_image_raw(fn) -> np.ndarray: + return imageio.imread(fn) + +def load_image(fn) -> np.ndarray: + img = load_image_raw(fn) + if img.dtype == np.float32: # HDR image + return img + else: # LDR image + return img.astype(np.float32) / 255 + +#---------------------------------------------------------------------------- + +def time_to_text(x): + if x > 3600: + return "%.2f h" % (x / 3600) + elif x > 60: + return "%.2f m" % (x / 60) + else: + return "%.2f s" % x + +#---------------------------------------------------------------------------- + +def checkerboard(res, checker_size) -> np.ndarray: + tiles_y = (res[0] + (checker_size*2) - 1) // (checker_size*2) + tiles_x = (res[1] + (checker_size*2) - 1) // (checker_size*2) + check = np.kron([[1, 0] * tiles_x, [0, 1] * tiles_x] * tiles_y, np.ones((checker_size, checker_size)))*0.33 + 0.33 + check = check[:res[0], :res[1]] + return np.stack((check, check, check), axis=-1) + diff --git a/src/models/lrm_mesh.py b/src/models/lrm_mesh.py new file mode 100644 index 0000000000000000000000000000000000000000..bb365851b435b821008834a40089950ac2dbaa20 --- /dev/null +++ b/src/models/lrm_mesh.py @@ -0,0 +1,413 @@ +# Copyright (c) 2023, Tencent Inc +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import torch +import torch.nn as nn +import nvdiffrast.torch as dr +from einops import rearrange, repeat + +from .encoder.dino_wrapper import DinoWrapper +from .decoder.transformer import TriplaneTransformer +from .renderer.synthesizer_mesh import TriplaneSynthesizer +from .geometry.camera.perspective_camera import PerspectiveCamera +from .geometry.render.neural_render import NeuralRender +from .geometry.rep_3d.flexicubes_geometry import FlexiCubesGeometry +from ..utils.mesh_util import xatlas_uvmap +from .geometry.rep_3d import util +import trimesh +from PIL import Image +from src.utils import render +from src.utils.render_utils import rotate_x, rotate_y + +class PRM(nn.Module): + """ + Full model of the large reconstruction model. + """ + def __init__( + self, + encoder_freeze: bool = False, + encoder_model_name: str = 'facebook/dino-vitb16', + encoder_feat_dim: int = 768, + transformer_dim: int = 1024, + transformer_layers: int = 16, + transformer_heads: int = 16, + triplane_low_res: int = 32, + triplane_high_res: int = 64, + triplane_dim: int = 80, + rendering_samples_per_ray: int = 128, + grid_res: int = 128, + grid_scale: float = 2.0, + ): + super().__init__() + + # attributes + self.grid_res = grid_res + self.grid_scale = grid_scale + self.deformation_multiplier = 4.0 + + # modules + self.encoder = DinoWrapper( + model_name=encoder_model_name, + freeze=encoder_freeze, + ) + + self.transformer = TriplaneTransformer( + inner_dim=transformer_dim, + num_layers=transformer_layers, + num_heads=transformer_heads, + image_feat_dim=encoder_feat_dim, + triplane_low_res=triplane_low_res, + triplane_high_res=triplane_high_res, + triplane_dim=triplane_dim, + ) + + self.synthesizer = TriplaneSynthesizer( + triplane_dim=triplane_dim, + samples_per_ray=rendering_samples_per_ray, + ) + + def init_flexicubes_geometry(self, device, fovy=50.0): + camera = PerspectiveCamera(fovy=fovy, device=device) + renderer = NeuralRender(device, camera_model=camera) + self.geometry = FlexiCubesGeometry( + grid_res=self.grid_res, + scale=self.grid_scale, + renderer=renderer, + render_type='neural_render', + device=device, + ) + + def forward_planes(self, images, cameras): + # images: [B, V, C_img, H_img, W_img] + # cameras: [B, V, 16] + B = images.shape[0] + + # encode images + image_feats = self.encoder(images, cameras) + image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B) + + # decode triplanes + planes = self.transformer(image_feats) + + return planes + + def get_sdf_deformation_prediction(self, planes): + ''' + Predict SDF and deformation for tetrahedron vertices + :param planes: triplane feature map for the geometry + ''' + init_position = self.geometry.verts.unsqueeze(0).expand(planes.shape[0], -1, -1) + + # Step 1: predict the SDF and deformation + sdf, deformation, weight = torch.utils.checkpoint.checkpoint( + self.synthesizer.get_geometry_prediction, + planes, + init_position, + self.geometry.indices, + use_reentrant=False, + ) + + # Step 2: Normalize the deformation to avoid the flipped triangles. + deformation = 1.0 / (self.grid_res * self.deformation_multiplier) * torch.tanh(deformation) + sdf_reg_loss = torch.zeros(sdf.shape[0], device=sdf.device, dtype=torch.float32) + + #### + # Step 3: Fix some sdf if we observe empty shape (full positive or full negative) + sdf_bxnxnxn = sdf.reshape((sdf.shape[0], self.grid_res + 1, self.grid_res + 1, self.grid_res + 1)) + sdf_less_boundary = sdf_bxnxnxn[:, 1:-1, 1:-1, 1:-1].reshape(sdf.shape[0], -1) + pos_shape = torch.sum((sdf_less_boundary > 0).int(), dim=-1) + neg_shape = torch.sum((sdf_less_boundary < 0).int(), dim=-1) + zero_surface = torch.bitwise_or(pos_shape == 0, neg_shape == 0) + if torch.sum(zero_surface).item() > 0: + update_sdf = torch.zeros_like(sdf[0:1]) + max_sdf = sdf.max() + min_sdf = sdf.min() + update_sdf[:, self.geometry.center_indices] += (1.0 - min_sdf) # greater than zero + update_sdf[:, self.geometry.boundary_indices] += (-1 - max_sdf) # smaller than zero + new_sdf = torch.zeros_like(sdf) + for i_batch in range(zero_surface.shape[0]): + if zero_surface[i_batch]: + new_sdf[i_batch:i_batch + 1] += update_sdf + update_mask = (new_sdf == 0).float() + # Regulraization here is used to push the sdf to be a different sign (make it not fully positive or fully negative) + sdf_reg_loss = torch.abs(sdf).mean(dim=-1).mean(dim=-1) + sdf_reg_loss = sdf_reg_loss * zero_surface.float() + sdf = sdf * update_mask + new_sdf * (1 - update_mask) + + # Step 4: Here we remove the gradient for the bad sdf (full positive or full negative) + final_sdf = [] + final_def = [] + for i_batch in range(zero_surface.shape[0]): + if zero_surface[i_batch]: + final_sdf.append(sdf[i_batch: i_batch + 1].detach()) + final_def.append(deformation[i_batch: i_batch + 1].detach()) + else: + final_sdf.append(sdf[i_batch: i_batch + 1]) + final_def.append(deformation[i_batch: i_batch + 1]) + sdf = torch.cat(final_sdf, dim=0) + deformation = torch.cat(final_def, dim=0) + return sdf, deformation, sdf_reg_loss, weight + + def get_geometry_prediction(self, planes=None): + ''' + Function to generate mesh with give triplanes + :param planes: triplane features + ''' + # Step 1: first get the sdf and deformation value for each vertices in the tetrahedon grid. + sdf, deformation, sdf_reg_loss, weight = self.get_sdf_deformation_prediction(planes) + v_deformed = self.geometry.verts.unsqueeze(dim=0).expand(sdf.shape[0], -1, -1) + deformation + tets = self.geometry.indices + n_batch = planes.shape[0] + v_list = [] + f_list = [] + imesh_list = [] + flexicubes_surface_reg_list = [] + + # Step 2: Using marching tet to obtain the mesh + for i_batch in range(n_batch): + verts, faces, flexicubes_surface_reg, imesh = self.geometry.get_mesh( + v_deformed[i_batch], + sdf[i_batch].squeeze(dim=-1), + with_uv=False, + indices=tets, + weight_n=weight[i_batch].squeeze(dim=-1), + is_training=self.training, + ) + flexicubes_surface_reg_list.append(flexicubes_surface_reg) + v_list.append(verts) + f_list.append(faces) + imesh_list.append(imesh) + + flexicubes_surface_reg = torch.cat(flexicubes_surface_reg_list).mean() + flexicubes_weight_reg = (weight ** 2).mean() + + return v_list, f_list, imesh_list, sdf, deformation, v_deformed, (sdf_reg_loss, flexicubes_surface_reg, flexicubes_weight_reg) + + def get_texture_prediction(self, planes, tex_pos, hard_mask=None, gb_normal=None, training=True): + ''' + Predict Texture given triplanes + :param planes: the triplane feature map + :param tex_pos: Position we want to query the texture field + :param hard_mask: 2D silhoueete of the rendered image + ''' + tex_pos = torch.cat(tex_pos, dim=0) + shape = tex_pos.shape + flat_pos = tex_pos.view(-1, 3) + if training: + with torch.no_grad(): + flat_pos = flat_pos @ rotate_y(-np.pi / 2, device=flat_pos.device)[:3, :3] + flat_pos = flat_pos @ rotate_x(-np.pi / 2, device=flat_pos.device)[:3, :3] + tex_pos = flat_pos.reshape(*shape) + if not hard_mask is None: + tex_pos = tex_pos * hard_mask.float() + batch_size = tex_pos.shape[0] + tex_pos = tex_pos.reshape(batch_size, -1, 3) + ################### + # We use mask to get the texture location (to save the memory) + if hard_mask is not None: + n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1) + sample_tex_pose_list = [] + max_point = n_point_list.max() + expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5 + for i in range(tex_pos.shape[0]): + tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3) + if tex_pos_one_shape.shape[1] < max_point: + tex_pos_one_shape = torch.cat( + [tex_pos_one_shape, torch.zeros( + 1, max_point - tex_pos_one_shape.shape[1], 3, + device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1) + sample_tex_pose_list.append(tex_pos_one_shape) + tex_pos = torch.cat(sample_tex_pose_list, dim=0) + + tex_feat, metalic_feat, roughness_feat = torch.utils.checkpoint.checkpoint( + self.synthesizer.get_texture_prediction, + planes, + tex_pos, + use_reentrant=False, + ) + metalic_feat, roughness_feat = metalic_feat[..., None], roughness_feat[..., None] + + if hard_mask is not None: + final_tex_feat = torch.zeros( + planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device) + final_matallic_feat = torch.zeros( + planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], metalic_feat.shape[-1], device=metalic_feat.device) + final_roughness_feat = torch.zeros( + planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], roughness_feat.shape[-1], device=roughness_feat.device) + + expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5 + expanded_hard_mask_m = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_matallic_feat.shape[-1]) > 0.5 + expanded_hard_mask_r = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_roughness_feat.shape[-1]) > 0.5 + + for i in range(planes.shape[0]): + final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1) + final_matallic_feat[i][expanded_hard_mask_m[i]] = metalic_feat[i][:n_point_list[i]].reshape(-1) + final_roughness_feat[i][expanded_hard_mask_r[i]] = roughness_feat[i][:n_point_list[i]].reshape(-1) + + tex_feat = final_tex_feat + metalic_feat = final_matallic_feat + roughness_feat = final_roughness_feat + + return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1]), metalic_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], metalic_feat.shape[-1]), roughness_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], roughness_feat.shape[-1]) + + + def render_mesh(self, mesh_v, mesh_f, imesh, cam_mv, camera_pos, env, planes, materials, render_size=256, gt_albedo_map=None, single=False): + ''' + Function to render a generated mesh with nvdiffrast + :param mesh_v: List of vertices for the mesh + :param mesh_f: List of faces for the mesh + :param cam_mv: 4x4 rotation matrix + :return: + ''' + return_value_list = [] + for i_mesh in range(len(mesh_v)): + return_value = self.geometry.render_mesh( + mesh_v[i_mesh], + mesh_f[i_mesh].int(), + imesh[i_mesh], + cam_mv[i_mesh], + camera_pos[i_mesh], + env[i_mesh], + planes[i_mesh], + self.get_texture_prediction, + materials[i_mesh], + resolution=render_size, + hierarchical_mask=False, + gt_albedo_map=gt_albedo_map, + ) + return_value_list.append(return_value) + return_keys = return_value_list[0].keys() + return_value = dict() + for k in return_keys: + value = [v[k] for v in return_value_list] + return_value[k] = value + # mask = torch.cat(return_value['mask'], dim=0) + hard_mask = torch.cat(return_value['mask'], dim=0) + # tex_pos = return_value['tex_pos'] + rgb = torch.cat(return_value['shaded'], dim=0) + spec_light = torch.cat(return_value['spec_light'], dim=0) + diff_light = torch.cat(return_value['diff_light'], dim=0) + albedo = torch.cat(return_value['albedo'], dim=0) + depth = torch.cat(return_value['depth'], dim=0) + normal = torch.cat(return_value['normal'], dim=0) + gb_normal = torch.cat(return_value['gb_normal'], dim=0) + return rgb, spec_light, diff_light, albedo, depth, normal, gb_normal, hard_mask #, spec_albedo, diff_albedo + + + def forward_geometry(self, planes, render_cameras, camera_pos, env, materials, albedo_map=None, render_size=256, sample_points=None, gt_albedo_map=None, single=False): + ''' + Main function of our Generator. It first generate 3D mesh, then render it into 2D image + with given `render_cameras`. + :param planes: triplane features + :param render_cameras: cameras to render generated 3D shape + ''' + B, NV = render_cameras.shape[:2] + + # Generate 3D mesh first + mesh_v, mesh_f, imesh, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes) + predict_sample_points = None + + # Render the mesh into 2D image (get 3d position of each image plane) + cam_mv = render_cameras + + rgb, spec_light, diff_light, albedo, depth, normal, gb_normal, mask = self.render_mesh(mesh_v, mesh_f, imesh, cam_mv, camera_pos, env, planes, materials, + render_size=render_size, gt_albedo_map=gt_albedo_map, single=single) + albedo = albedo[...,:3].clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV)) + pbr_img = rgb[...,:3].clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV)) + normal_img = gb_normal[...,:3].permute(0, 3, 1, 2).unflatten(0, (B, NV)) + pbr_spec_light = spec_light[...,:3].clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV)) + pbr_diffuse_light = diff_light[...,:3].clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV)) + antilias_mask = mask[...,:3].permute(0, 3, 1, 2).unflatten(0, (B, NV)) + depth = depth[...,:3].permute(0, 3, 1, 2).unflatten(0, (B, NV)) # transform negative depth to positive + + out = { + 'albedo': albedo, + 'pbr_img': pbr_img, + 'normal_img': normal_img, + 'pbr_spec_light': pbr_spec_light, + 'pbr_diffuse_light': pbr_diffuse_light, + 'depth': depth, + 'normal': gb_normal, + 'mask': antilias_mask, + 'sdf': sdf, + 'mesh_v': mesh_v, + 'mesh_f': mesh_f, + 'sdf_reg_loss': sdf_reg_loss, + 'triplane': planes, + 'sample_points': predict_sample_points + } + return out + + def forward(self, images, cameras, render_cameras, render_size: int): + # images: [B, V, C_img, H_img, W_img] + # cameras: [B, V, 16] + # render_cameras: [B, M, D_cam_render] + # render_size: int + B, M = render_cameras.shape[:2] + + planes = self.forward_planes(images, cameras) + out = self.forward_geometry(planes, render_cameras, render_size=render_size) + + return { + 'planes': planes, + **out + } + + def extract_mesh( + self, + planes: torch.Tensor, + use_texture_map: bool = False, + texture_resolution: int = 1024, + **kwargs, + ): + ''' + Extract a 3D mesh from FlexiCubes. Only support batch_size 1. + :param planes: triplane features + :param use_texture_map: use texture map or vertex color + :param texture_resolution: the resolution of texure map + ''' + assert planes.shape[0] == 1 + device = planes.device + + # predict geometry first + mesh_v, mesh_f, imesh, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes) + vertices, faces = mesh_v[0], mesh_f[0] + with torch.no_grad(): + vertices = vertices @ rotate_y(-np.pi / 2, device=vertices.device)[:3, :3] + vertices = vertices @ rotate_x(-np.pi / 2, device=vertices.device)[:3, :3] + if not use_texture_map: + # query vertex colors + vertices_tensor = vertices.unsqueeze(0) + vertices_colors, matellic, roughness = self.synthesizer.get_texture_prediction( + planes, vertices_tensor) + vertices_colors = vertices_colors.clamp(0, 1).squeeze(0).cpu().numpy() + vertices_colors = (vertices_colors * 255).astype(np.uint8) + + return vertices.cpu().numpy(), faces.cpu().numpy(), vertices_colors + + # use x-atlas to get uv mapping for the mesh + ctx = dr.RasterizeCudaContext(device=device) + uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap( + self.geometry.renderer.ctx, vertices, faces, resolution=texture_resolution) + tex_hard_mask = tex_hard_mask.float() + + # query the texture field to get the RGB color for texture map + tex_feat, _, _ = self.get_texture_prediction( + planes, [gb_pos], tex_hard_mask, training=False) + background_feature = torch.zeros_like(tex_feat) + img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask) + texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0) + + return vertices, faces, uvs, mesh_tex_idx, texture_map diff --git a/src/models/renderer/__init__.py b/src/models/renderer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2c772e4fa331c678cfff50884be94d7d31835b34 --- /dev/null +++ b/src/models/renderer/__init__.py @@ -0,0 +1,9 @@ +# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: LicenseRef-NvidiaProprietary +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. diff --git a/src/models/renderer/__pycache__/__init__.cpython-310.pyc b/src/models/renderer/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ffec0bf765aefae93faf0d849cfbadaf29c34bde Binary files /dev/null and b/src/models/renderer/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/models/renderer/__pycache__/synthesizer_mesh.cpython-310.pyc b/src/models/renderer/__pycache__/synthesizer_mesh.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..87e99bb95b66b980245c59e183f8fdd215482252 Binary files /dev/null and b/src/models/renderer/__pycache__/synthesizer_mesh.cpython-310.pyc differ diff --git a/src/models/renderer/synthesizer_mesh.py b/src/models/renderer/synthesizer_mesh.py new file mode 100644 index 0000000000000000000000000000000000000000..a4bc9f555049bc9c02934343434e1fa262e55762 --- /dev/null +++ b/src/models/renderer/synthesizer_mesh.py @@ -0,0 +1,156 @@ +# ORIGINAL LICENSE +# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: LicenseRef-NvidiaProprietary +# +# Modified by Jiale Xu +# The modifications are subject to the same license as the original. + +import itertools +import torch +import torch.nn as nn + +from .utils.renderer import generate_planes, project_onto_planes, sample_from_planes + + +class OSGDecoder(nn.Module): + """ + Triplane decoder that gives RGB and sigma values from sampled features. + Using ReLU here instead of Softplus in the original implementation. + + Reference: + EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112 + """ + def __init__(self, n_features: int, + hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU): + super().__init__() + + self.net_sdf = nn.Sequential( + nn.Linear(3 * n_features, hidden_dim), + activation(), + *itertools.chain(*[[ + nn.Linear(hidden_dim, hidden_dim), + activation(), + ] for _ in range(num_layers - 2)]), + nn.Linear(hidden_dim, 1), + ) + self.net_rgb = nn.Sequential( + nn.Linear(3 * n_features, hidden_dim), + activation(), + *itertools.chain(*[[ + nn.Linear(hidden_dim, hidden_dim), + activation(), + ] for _ in range(num_layers - 2)]), + nn.Linear(hidden_dim, 3), + ) + self.net_material = nn.Sequential( + nn.Linear(3 * n_features, hidden_dim), + activation(), + *itertools.chain(*[[ + nn.Linear(hidden_dim, hidden_dim), + activation(), + ] for _ in range(num_layers - 2)]), + nn.Linear(hidden_dim, 2), + ) + self.net_deformation = nn.Sequential( + nn.Linear(3 * n_features, hidden_dim), + activation(), + *itertools.chain(*[[ + nn.Linear(hidden_dim, hidden_dim), + activation(), + ] for _ in range(num_layers - 2)]), + nn.Linear(hidden_dim, 3), + ) + self.net_weight = nn.Sequential( + nn.Linear(8 * 3 * n_features, hidden_dim), + activation(), + *itertools.chain(*[[ + nn.Linear(hidden_dim, hidden_dim), + activation(), + ] for _ in range(num_layers - 2)]), + nn.Linear(hidden_dim, 21), + ) + + # init all bias to zero + for m in self.modules(): + if isinstance(m, nn.Linear): + nn.init.zeros_(m.bias) + + def get_geometry_prediction(self, sampled_features, flexicubes_indices): + _N, n_planes, _M, _C = sampled_features.shape + sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) + + sdf = self.net_sdf(sampled_features) + deformation = self.net_deformation(sampled_features) + + grid_features = torch.index_select(input=sampled_features, index=flexicubes_indices.reshape(-1), dim=1) + grid_features = grid_features.reshape( + sampled_features.shape[0], flexicubes_indices.shape[0], flexicubes_indices.shape[1] * sampled_features.shape[-1]) + weight = self.net_weight(grid_features) * 0.1 + + return sdf, deformation, weight + + def get_texture_prediction(self, sampled_features): + _N, n_planes, _M, _C = sampled_features.shape + sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) + + rgb = self.net_rgb(sampled_features) + rgb = torch.sigmoid(rgb)*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF + + materials = self.net_material(sampled_features) + materials = torch.sigmoid(materials) + metallic, roughness = materials[...,0], materials[...,1] + rmax, rmin = 1.0, 0.04 ** 2 + roughness = roughness * (rmax - rmin) + rmin + + return rgb, metallic, roughness + + +class TriplaneSynthesizer(nn.Module): + """ + Synthesizer that renders a triplane volume with planes and a camera. + + Reference: + EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L19 + """ + + DEFAULT_RENDERING_KWARGS = { + 'ray_start': 'auto', + 'ray_end': 'auto', + 'box_warp': 2., + 'white_back': True, + 'disparity_space_sampling': False, + 'clamp_mode': 'softplus', + 'sampler_bbox_min': -1., + 'sampler_bbox_max': 1., + } + + def __init__(self, triplane_dim: int, samples_per_ray: int): + super().__init__() + + # attributes + self.triplane_dim = triplane_dim + self.rendering_kwargs = { + **self.DEFAULT_RENDERING_KWARGS, + 'depth_resolution': samples_per_ray // 2, + 'depth_resolution_importance': samples_per_ray // 2, + } + + # modules + self.plane_axes = generate_planes() + self.decoder = OSGDecoder(n_features=triplane_dim) + + def get_geometry_prediction(self, planes, sample_coordinates, flexicubes_indices): + plane_axes = self.plane_axes.to(planes.device) + sampled_features = sample_from_planes( + plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp']) + + sdf, deformation, weight = self.decoder.get_geometry_prediction(sampled_features, flexicubes_indices) + return sdf, deformation, weight + + def get_texture_prediction(self, planes, sample_coordinates): + plane_axes = self.plane_axes.to(planes.device) + sampled_features = sample_from_planes( + plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp']) + + rgb, matellic, roughness = self.decoder.get_texture_prediction(sampled_features) + return rgb, matellic, roughness diff --git a/src/models/renderer/utils/__init__.py b/src/models/renderer/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2c772e4fa331c678cfff50884be94d7d31835b34 --- /dev/null +++ b/src/models/renderer/utils/__init__.py @@ -0,0 +1,9 @@ +# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: LicenseRef-NvidiaProprietary +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. diff --git a/src/models/renderer/utils/__pycache__/__init__.cpython-310.pyc b/src/models/renderer/utils/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d0b97fc4e318097cff1525c8bdbcf16fdf105a6c Binary files /dev/null and b/src/models/renderer/utils/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/models/renderer/utils/__pycache__/math_utils.cpython-310.pyc b/src/models/renderer/utils/__pycache__/math_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e35eff994abdbc9ac84efe68cef07d4d50f505b6 Binary files /dev/null and b/src/models/renderer/utils/__pycache__/math_utils.cpython-310.pyc differ diff --git a/src/models/renderer/utils/__pycache__/renderer.cpython-310.pyc b/src/models/renderer/utils/__pycache__/renderer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d5f3a13a6ea9de29a880d38da17f1d5fd4ab799e Binary files /dev/null and b/src/models/renderer/utils/__pycache__/renderer.cpython-310.pyc differ diff --git a/src/models/renderer/utils/math_utils.py b/src/models/renderer/utils/math_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..4cf9d2b811e0acbc7923bc9126e010b52cb1a8af --- /dev/null +++ b/src/models/renderer/utils/math_utils.py @@ -0,0 +1,118 @@ +# MIT License + +# Copyright (c) 2022 Petr Kellnhofer + +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: + +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. + +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + +import torch + +def transform_vectors(matrix: torch.Tensor, vectors4: torch.Tensor) -> torch.Tensor: + """ + Left-multiplies MxM @ NxM. Returns NxM. + """ + res = torch.matmul(vectors4, matrix.T) + return res + + +def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor: + """ + Normalize vector lengths. + """ + return vectors / (torch.norm(vectors, dim=-1, keepdim=True)) + +def torch_dot(x: torch.Tensor, y: torch.Tensor): + """ + Dot product of two tensors. + """ + return (x * y).sum(-1) + + +def get_ray_limits_box(rays_o: torch.Tensor, rays_d: torch.Tensor, box_side_length): + """ + Author: Petr Kellnhofer + Intersects rays with the [-1, 1] NDC volume. + Returns min and max distance of entry. + Returns -1 for no intersection. + https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection + """ + o_shape = rays_o.shape + rays_o = rays_o.detach().reshape(-1, 3) + rays_d = rays_d.detach().reshape(-1, 3) + + + bb_min = [-1*(box_side_length/2), -1*(box_side_length/2), -1*(box_side_length/2)] + bb_max = [1*(box_side_length/2), 1*(box_side_length/2), 1*(box_side_length/2)] + bounds = torch.tensor([bb_min, bb_max], dtype=rays_o.dtype, device=rays_o.device) + is_valid = torch.ones(rays_o.shape[:-1], dtype=bool, device=rays_o.device) + + # Precompute inverse for stability. + invdir = 1 / rays_d + sign = (invdir < 0).long() + + # Intersect with YZ plane. + tmin = (bounds.index_select(0, sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0] + tmax = (bounds.index_select(0, 1 - sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0] + + # Intersect with XZ plane. + tymin = (bounds.index_select(0, sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1] + tymax = (bounds.index_select(0, 1 - sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1] + + # Resolve parallel rays. + is_valid[torch.logical_or(tmin > tymax, tymin > tmax)] = False + + # Use the shortest intersection. + tmin = torch.max(tmin, tymin) + tmax = torch.min(tmax, tymax) + + # Intersect with XY plane. + tzmin = (bounds.index_select(0, sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2] + tzmax = (bounds.index_select(0, 1 - sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2] + + # Resolve parallel rays. + is_valid[torch.logical_or(tmin > tzmax, tzmin > tmax)] = False + + # Use the shortest intersection. + tmin = torch.max(tmin, tzmin) + tmax = torch.min(tmax, tzmax) + + # Mark invalid. + tmin[torch.logical_not(is_valid)] = -1 + tmax[torch.logical_not(is_valid)] = -2 + + return tmin.reshape(*o_shape[:-1], 1), tmax.reshape(*o_shape[:-1], 1) + + +def linspace(start: torch.Tensor, stop: torch.Tensor, num: int): + """ + Creates a tensor of shape [num, *start.shape] whose values are evenly spaced from start to end, inclusive. + Replicates but the multi-dimensional bahaviour of numpy.linspace in PyTorch. + """ + # create a tensor of 'num' steps from 0 to 1 + steps = torch.arange(num, dtype=torch.float32, device=start.device) / (num - 1) + + # reshape the 'steps' tensor to [-1, *([1]*start.ndim)] to allow for broadcastings + # - using 'steps.reshape([-1, *([1]*start.ndim)])' would be nice here but torchscript + # "cannot statically infer the expected size of a list in this contex", hence the code below + for i in range(start.ndim): + steps = steps.unsqueeze(-1) + + # the output starts at 'start' and increments until 'stop' in each dimension + out = start[None] + steps * (stop - start)[None] + + return out diff --git a/src/models/renderer/utils/renderer.py b/src/models/renderer/utils/renderer.py new file mode 100644 index 0000000000000000000000000000000000000000..d8dce6219fbb353b2d72b2e72b0bcf70a71bde17 --- /dev/null +++ b/src/models/renderer/utils/renderer.py @@ -0,0 +1,97 @@ +# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# SPDX-License-Identifier: LicenseRef-NvidiaProprietary +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. +# +# Modified by Jiale Xu +# The modifications are subject to the same license as the original. + + +""" +The renderer is a module that takes in rays, decides where to sample along each +ray, and computes pixel colors using the volume rendering equation. +""" + +import torch +import torch.nn as nn +import torch.nn.functional as F + +from . import math_utils + + +def generate_planes(): + """ + Defines planes by the three vectors that form the "axes" of the + plane. Should work with arbitrary number of planes and planes of + arbitrary orientation. + + Bugfix reference: https://github.com/NVlabs/eg3d/issues/67 + """ + return torch.tensor([[[1, 0, 0], + [0, 1, 0], + [0, 0, 1]], + [[1, 0, 0], + [0, 0, 1], + [0, 1, 0]], + [[0, 0, 1], + [0, 1, 0], + [1, 0, 0]]], dtype=torch.float32) + +def project_onto_planes(planes, coordinates): + """ + Does a projection of a 3D point onto a batch of 2D planes, + returning 2D plane coordinates. + + Takes plane axes of shape n_planes, 3, 3 + # Takes coordinates of shape N, M, 3 + # returns projections of shape N*n_planes, M, 2 + """ + N, M, C = coordinates.shape + n_planes, _, _ = planes.shape + coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3) + inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3) + projections = torch.bmm(coordinates, inv_planes) + return projections[..., :2] + +def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None): + assert padding_mode == 'zeros' + N, n_planes, C, H, W = plane_features.shape + _, M, _ = coordinates.shape + plane_features = plane_features.view(N*n_planes, C, H, W) + dtype = plane_features.dtype + + coordinates = (2/box_warp) * coordinates # add specific box bounds + + projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1) + output_features = torch.nn.functional.grid_sample( + plane_features, + projected_coordinates.to(dtype), + mode=mode, + padding_mode=padding_mode, + align_corners=False, + ).permute(0, 3, 2, 1).reshape(N, n_planes, M, C) + return output_features + +def sample_from_3dgrid(grid, coordinates): + """ + Expects coordinates in shape (batch_size, num_points_per_batch, 3) + Expects grid in shape (1, channels, H, W, D) + (Also works if grid has batch size) + Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels) + """ + batch_size, n_coords, n_dims = coordinates.shape + sampled_features = torch.nn.functional.grid_sample( + grid.expand(batch_size, -1, -1, -1, -1), + coordinates.reshape(batch_size, 1, 1, -1, n_dims), + mode='bilinear', + padding_mode='zeros', + align_corners=False, + ) + N, C, H, W, D = sampled_features.shape + sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C) + return sampled_features diff --git a/src/utils/__init__.py b/src/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/utils/__pycache__/__init__.cpython-310.pyc b/src/utils/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..64215b207788a0990db211a186db1183672e187d Binary files /dev/null and b/src/utils/__pycache__/__init__.cpython-310.pyc differ diff --git a/src/utils/__pycache__/camera_util.cpython-310.pyc b/src/utils/__pycache__/camera_util.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..98dbe66ef0e13aff19ccad7e2b77968694eb889f Binary files /dev/null and b/src/utils/__pycache__/camera_util.cpython-310.pyc differ diff --git a/src/utils/__pycache__/infer_util.cpython-310.pyc b/src/utils/__pycache__/infer_util.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0401f07e93d08efea2cedb166a8210649946908b Binary files /dev/null and b/src/utils/__pycache__/infer_util.cpython-310.pyc differ diff --git a/src/utils/__pycache__/material.cpython-310.pyc b/src/utils/__pycache__/material.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a2da2132c4f63faab3a7974fe71890a8f804ece5 Binary files /dev/null and b/src/utils/__pycache__/material.cpython-310.pyc differ diff --git a/src/utils/__pycache__/mesh.cpython-310.pyc b/src/utils/__pycache__/mesh.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6d58d4efe6ec2da6d031dac3e456ddb48d1da72a Binary files /dev/null and b/src/utils/__pycache__/mesh.cpython-310.pyc differ diff --git a/src/utils/__pycache__/mesh_util.cpython-310.pyc b/src/utils/__pycache__/mesh_util.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b4a32ab9d2ba1de843c74c58d986652943f73779 Binary files /dev/null and b/src/utils/__pycache__/mesh_util.cpython-310.pyc differ diff --git a/src/utils/__pycache__/obj.cpython-310.pyc b/src/utils/__pycache__/obj.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f5d0ab870c18ada791b3424a31850c01a2ca2d81 Binary files /dev/null and b/src/utils/__pycache__/obj.cpython-310.pyc differ diff --git a/src/utils/__pycache__/render.cpython-310.pyc b/src/utils/__pycache__/render.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0671c93762cb4a5991af1277ca03b3ab8b44506c Binary files /dev/null and b/src/utils/__pycache__/render.cpython-310.pyc differ diff --git a/src/utils/__pycache__/render_utils.cpython-310.pyc b/src/utils/__pycache__/render_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..80908f7c5b5996b6cabacd870286a673ddc391eb Binary files /dev/null and b/src/utils/__pycache__/render_utils.cpython-310.pyc differ diff --git a/src/utils/__pycache__/texture.cpython-310.pyc b/src/utils/__pycache__/texture.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c08c185f105bdebed61c3c560260ce059c2e3ed1 Binary files /dev/null and b/src/utils/__pycache__/texture.cpython-310.pyc differ diff --git a/src/utils/__pycache__/train_util.cpython-310.pyc b/src/utils/__pycache__/train_util.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..47f437d78d4d4248e0c59ce292653130d2af4192 Binary files /dev/null and b/src/utils/__pycache__/train_util.cpython-310.pyc differ diff --git a/src/utils/camera_util.py b/src/utils/camera_util.py new file mode 100644 index 0000000000000000000000000000000000000000..b45a17cc0117082be3a5fffd132c57e27ad535e9 --- /dev/null +++ b/src/utils/camera_util.py @@ -0,0 +1,111 @@ +import torch +import torch.nn.functional as F +import numpy as np + + +def pad_camera_extrinsics_4x4(extrinsics): + if extrinsics.shape[-2] == 4: + return extrinsics + padding = torch.tensor([[0, 0, 0, 1]]).to(extrinsics) + if extrinsics.ndim == 3: + padding = padding.unsqueeze(0).repeat(extrinsics.shape[0], 1, 1) + extrinsics = torch.cat([extrinsics, padding], dim=-2) + return extrinsics + + +def center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None): + """ + Create OpenGL camera extrinsics from camera locations and look-at position. + + camera_position: (M, 3) or (3,) + look_at: (3) + up_world: (3) + return: (M, 3, 4) or (3, 4) + """ + # by default, looking at the origin and world up is z-axis + if look_at is None: + look_at = torch.tensor([0, 0, 0], dtype=torch.float32) + if up_world is None: + up_world = torch.tensor([0, 0, 1], dtype=torch.float32) + if camera_position.ndim == 2: + look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1) + up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1) + + # OpenGL camera: z-backward, x-right, y-up + z_axis = camera_position - look_at + z_axis = F.normalize(z_axis, dim=-1).float() + x_axis = torch.linalg.cross(up_world, z_axis, dim=-1) + x_axis = F.normalize(x_axis, dim=-1).float() + y_axis = torch.linalg.cross(z_axis, x_axis, dim=-1) + y_axis = F.normalize(y_axis, dim=-1).float() + + extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1) + extrinsics = pad_camera_extrinsics_4x4(extrinsics) + return extrinsics + + +def spherical_camera_pose(azimuths: np.ndarray, elevations: np.ndarray, radius=2.5): + azimuths = np.deg2rad(azimuths) + elevations = np.deg2rad(elevations) + + xs = radius * np.cos(elevations) * np.cos(azimuths) + ys = radius * np.cos(elevations) * np.sin(azimuths) + zs = radius * np.sin(elevations) + + cam_locations = np.stack([xs, ys, zs], axis=-1) + cam_locations = torch.from_numpy(cam_locations).float() + + c2ws = center_looking_at_camera_pose(cam_locations) + return c2ws + + +def get_circular_camera_poses(M=120, radius=2.5, elevation=30.0): + # M: number of circular views + # radius: camera dist to center + # elevation: elevation degrees of the camera + # return: (M, 4, 4) + assert M > 0 and radius > 0 + + elevation = np.deg2rad(elevation) + + camera_positions = [] + for i in range(M): + azimuth = 2 * np.pi * i / M + x = radius * np.cos(elevation) * np.cos(azimuth) + y = radius * np.cos(elevation) * np.sin(azimuth) + z = radius * np.sin(elevation) + camera_positions.append([x, y, z]) + camera_positions = np.array(camera_positions) + camera_positions = torch.from_numpy(camera_positions).float() + extrinsics = center_looking_at_camera_pose(camera_positions) + return extrinsics + + +def FOV_to_intrinsics(fov, device='cpu'): + """ + Creates a 3x3 camera intrinsics matrix from the camera field of view, specified in degrees. + Note the intrinsics are returned as normalized by image size, rather than in pixel units. + Assumes principal point is at image center. + """ + focal_length = 0.5 / np.tan(np.deg2rad(fov) * 0.5) + intrinsics = torch.tensor([[focal_length, 0, 0.5], [0, focal_length, 0.5], [0, 0, 1]], device=device) + return intrinsics + + +def get_zero123plus_input_cameras(batch_size=1, radius=4.0, fov=30.0): + """ + Get the input camera parameters. + """ + azimuths = np.array([30, 90, 150, 210, 270, 330]).astype(float) + elevations = np.array([20, -10, 20, -10, 20, -10]).astype(float) + + c2ws = spherical_camera_pose(azimuths, elevations, radius) + c2ws = c2ws.float().flatten(-2) + + Ks = FOV_to_intrinsics(fov).unsqueeze(0).repeat(6, 1, 1).float().flatten(-2) + + extrinsics = c2ws[:, :12] + intrinsics = torch.stack([Ks[:, 0], Ks[:, 4], Ks[:, 2], Ks[:, 5]], dim=-1) + cameras = torch.cat([extrinsics, intrinsics], dim=-1) + + return cameras.unsqueeze(0).repeat(batch_size, 1, 1) diff --git a/src/utils/infer_util.py b/src/utils/infer_util.py new file mode 100644 index 0000000000000000000000000000000000000000..f2faf2bf3b12d4af7b33cb2292da2b5ed62eb52e --- /dev/null +++ b/src/utils/infer_util.py @@ -0,0 +1,97 @@ +import os +import imageio +import rembg +import torch +import numpy as np +import PIL.Image +from PIL import Image +from typing import Any + + +def remove_background(image: PIL.Image.Image, + rembg_session: Any = None, + force: bool = False, + **rembg_kwargs, +) -> PIL.Image.Image: + do_remove = True + if image.mode == "RGBA" and image.getextrema()[3][0] < 255: + do_remove = False + do_remove = do_remove or force + if do_remove: + image = rembg.remove(image, session=rembg_session, **rembg_kwargs) + return image + + +def resize_foreground( + image: PIL.Image.Image, + ratio: float, +) -> PIL.Image.Image: + image = np.array(image) + assert image.shape[-1] == 4 + alpha = np.where(image[..., 3] > 0) + y1, y2, x1, x2 = ( + alpha[0].min(), + alpha[0].max(), + alpha[1].min(), + alpha[1].max(), + ) + # crop the foreground + fg = image[y1:y2, x1:x2] + # pad to square + size = max(fg.shape[0], fg.shape[1]) + ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2 + ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0 + new_image = np.pad( + fg, + ((ph0, ph1), (pw0, pw1), (0, 0)), + mode="constant", + constant_values=((0, 0), (0, 0), (0, 0)), + ) + + # compute padding according to the ratio + new_size = int(new_image.shape[0] / ratio) + # pad to size, double side + ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2 + ph1, pw1 = new_size - size - ph0, new_size - size - pw0 + new_image = np.pad( + new_image, + ((ph0, ph1), (pw0, pw1), (0, 0)), + mode="constant", + constant_values=((0, 0), (0, 0), (0, 0)), + ) + new_image = PIL.Image.fromarray(new_image) + return new_image + + +def images_to_video( + images: torch.Tensor, + output_path: str, + fps: int = 30, +) -> None: + # images: (N, C, H, W) + video_dir = os.path.dirname(output_path) + video_name = os.path.basename(output_path) + os.makedirs(video_dir, exist_ok=True) + + frames = [] + for i in range(len(images)): + frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) + assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ + f"Frame shape mismatch: {frame.shape} vs {images.shape}" + assert frame.min() >= 0 and frame.max() <= 255, \ + f"Frame value out of range: {frame.min()} ~ {frame.max()}" + frames.append(frame) + imageio.mimwrite(output_path, np.stack(frames), fps=fps, quality=10) + + +def save_video( + frames: torch.Tensor, + output_path: str, + fps: int = 30, +) -> None: + # images: (N, C, H, W) + frames = [(frame.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) for frame in frames] + writer = imageio.get_writer(output_path, fps=fps) + for frame in frames: + writer.append_data(frame) + writer.close() \ No newline at end of file diff --git a/src/utils/material.py b/src/utils/material.py new file mode 100644 index 0000000000000000000000000000000000000000..0cacef5d30ae1400bd0d90d9ea4cccc63cd81f88 --- /dev/null +++ b/src/utils/material.py @@ -0,0 +1,197 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os +import numpy as np +import torch + +from src.models.geometry.rep_3d import util +from . import texture + +###################################################################################### +# Wrapper to make materials behave like a python dict, but register textures as +# torch.nn.Module parameters. +###################################################################################### +class Material(torch.nn.Module): + def __init__(self, mat_dict): + super(Material, self).__init__() + self.mat_keys = set() + for key in mat_dict.keys(): + self.mat_keys.add(key) + self[key] = mat_dict[key] + + def __contains__(self, key): + return hasattr(self, key) + + def __getitem__(self, key): + return getattr(self, key) + + def __setitem__(self, key, val): + self.mat_keys.add(key) + setattr(self, key, val) + + def __delitem__(self, key): + self.mat_keys.remove(key) + delattr(self, key) + + def keys(self): + return self.mat_keys + +###################################################################################### +# .mtl material format loading / storing +###################################################################################### +@torch.no_grad() +def load_mtl(fn, clear_ks=True): + import re + mtl_path = os.path.dirname(fn) + + # Read file + with open(fn, 'r') as f: + lines = f.readlines() + + # Parse materials + materials = [] + for line in lines: + split_line = re.split(' +|\t+|\n+', line.strip()) + prefix = split_line[0].lower() + data = split_line[1:] + if 'newmtl' in prefix: + material = Material({'name' : data[0]}) + materials += [material] + elif materials: + if 'map_d' in prefix: + # 设置透明度为1.0,即完全不透明 + material['d'] = torch.tensor(1.0, dtype=torch.float32, device='cuda') + elif 'map_ke' in prefix: + # 设置自发光为0 + material['Ke'] = torch.tensor([0.0, 0.0, 0.0], dtype=torch.float32, device='cuda') + elif 'bsdf' in prefix or 'map_kd' in prefix or 'map_ks' in prefix or 'bump' in prefix: + material[prefix] = data[0] + else: + material[prefix] = torch.tensor(tuple(float(d) for d in data), dtype=torch.float32, device='cuda') + + # Convert everything to textures. Our code expects 'kd' and 'ks' to be texture maps. So replace constants with 1x1 maps + for mat in materials: + if not 'bsdf' in mat: + mat['bsdf'] = 'pbr' + + if 'map_kd' in mat: + mat['kd'] = texture.load_texture2D(os.path.join(mtl_path, mat['map_kd'])) + else: + mat['kd'] = texture.Texture2D(mat['kd']) + + if 'map_ks' in mat: + mat['ks'] = texture.load_texture2D(os.path.join(mtl_path, mat['map_ks']), channels=3) + else: + mat['ks'] = texture.Texture2D(mat['ks']) + + if 'bump' in mat: + mat['normal'] = texture.load_texture2D(os.path.join(mtl_path, mat['bump']), lambda_fn=lambda x: x * 2 - 1, channels=3) + + # Convert Kd from sRGB to linear RGB + mat['kd'] = texture.srgb_to_rgb(mat['kd']) + + if clear_ks: + # Override ORM occlusion (red) channel by zeros. We hijack this channel + for mip in mat['ks'].getMips(): + mip[..., 0] = 0.0 + + return materials + +@torch.no_grad() +def save_mtl(fn, material): + folder = os.path.dirname(fn) + with open(fn, "w") as f: + f.write('newmtl defaultMat\n') + if material is not None: + f.write('bsdf %s\n' % material['bsdf']) + if 'kd' in material.keys(): + f.write('map_Kd texture_kd.png\n') + texture.save_texture2D(os.path.join(folder, 'texture_kd.png'), texture.rgb_to_srgb(material['kd'])) + if 'ks' in material.keys(): + f.write('map_Ks texture_ks.png\n') + texture.save_texture2D(os.path.join(folder, 'texture_ks.png'), material['ks']) + if 'normal' in material.keys(): + f.write('bump texture_n.png\n') + texture.save_texture2D(os.path.join(folder, 'texture_n.png'), material['normal'], lambda_fn=lambda x:(util.safe_normalize(x)+1)*0.5) + else: + f.write('Kd 1 1 1\n') + f.write('Ks 0 0 0\n') + f.write('Ka 0 0 0\n') + f.write('Tf 1 1 1\n') + f.write('Ni 1\n') + f.write('Ns 0\n') + +###################################################################################### +# Merge multiple materials into a single uber-material +###################################################################################### + +def _upscale_replicate(x, full_res): + x = x.permute(0, 3, 1, 2) + x = torch.nn.functional.pad(x, (0, full_res[1] - x.shape[3], 0, full_res[0] - x.shape[2]), 'replicate') + return x.permute(0, 2, 3, 1).contiguous() + +def merge_materials(materials, texcoords, tfaces, mfaces): + assert len(materials) > 0 + for mat in materials: + assert mat['bsdf'] == materials[0]['bsdf'], "All materials must have the same BSDF (uber shader)" + assert ('normal' in mat) is ('normal' in materials[0]), "All materials must have either normal map enabled or disabled" + + uber_material = Material({ + 'name' : 'uber_material', + 'bsdf' : materials[0]['bsdf'], + }) + + textures = ['kd', 'ks', 'normal'] + + # Find maximum texture resolution across all materials and textures + max_res = None + for mat in materials: + for tex in textures: + tex_res = np.array(mat[tex].getRes()) if tex in mat else np.array([1, 1]) + max_res = np.maximum(max_res, tex_res) if max_res is not None else tex_res + + # Compute size of compund texture and round up to nearest PoT + full_res = 2**np.ceil(np.log2(max_res * np.array([1, len(materials)]))).astype(int) + + # Normalize texture resolution across all materials & combine into a single large texture + for tex in textures: + if tex in materials[0]: + # breakpoint() + tex_data_list = [] + for mat in materials: + if tex in mat: + scaled_tex = util.scale_img_nhwc(mat[tex].data, tuple(max_res)) + if scaled_tex.shape[-1] != 3: + scaled_tex = scaled_tex[:, :, :, :3] + tex_data_list.append(scaled_tex) + # tex_data = torch.cat(tuple(util.scale_img_nhwc(mat[tex].data, tuple(max_res)) for mat in materials), dim=2) # Lay out all textures horizontally, NHWC so dim2 is x + tex_data = torch.cat(tuple(tex_data_list), dim=2) # 将所有纹理水平排列,NHWC 的 dim2 是 x 轴 + tex_data = _upscale_replicate(tex_data, full_res) + uber_material[tex] = texture.Texture2D(tex_data) + + # Compute scaling values for used / unused texture area + s_coeff = [full_res[0] / max_res[0], full_res[1] / max_res[1]] + + # Recompute texture coordinates to cooincide with new composite texture + new_tverts = {} + new_tverts_data = [] + for fi in range(len(tfaces)): + matIdx = mfaces[fi] + for vi in range(3): + ti = tfaces[fi][vi] + if not (ti in new_tverts): + new_tverts[ti] = {} + if not (matIdx in new_tverts[ti]): # create new vertex + new_tverts_data.append([(matIdx + texcoords[ti][0]) / s_coeff[1], texcoords[ti][1] / s_coeff[0]]) # Offset texture coodrinate (x direction) by material id & scale to local space. Note, texcoords are (u,v) but texture is stored (w,h) so the indexes swap here + new_tverts[ti][matIdx] = len(new_tverts_data) - 1 + tfaces[fi][vi] = new_tverts[ti][matIdx] # reindex vertex + + return uber_material, new_tverts_data, tfaces + diff --git a/src/utils/mesh.py b/src/utils/mesh.py new file mode 100644 index 0000000000000000000000000000000000000000..0d77cd54d526c68909fe6d94e99b61edb69973e5 --- /dev/null +++ b/src/utils/mesh.py @@ -0,0 +1,255 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os +import numpy as np +import torch + +from . import obj +from src.models.geometry.rep_3d import util + +###################################################################################### +# Base mesh class +###################################################################################### +class Mesh: + def __init__(self, v_pos=None, t_pos_idx=None, v_nrm=None, t_nrm_idx=None, v_tex=None, t_tex_idx=None, v_tng=None, t_tng_idx=None, material=None, base=None): + self.v_pos = v_pos + self.v_nrm = v_nrm + self.v_tex = v_tex + self.v_tng = v_tng + self.t_pos_idx = t_pos_idx + self.t_nrm_idx = t_nrm_idx + self.t_tex_idx = t_tex_idx + self.t_tng_idx = t_tng_idx + self.material = material + + if base is not None: + self.copy_none(base) + + def copy_none(self, other): + if self.v_pos is None: + self.v_pos = other.v_pos + if self.t_pos_idx is None: + self.t_pos_idx = other.t_pos_idx + if self.v_nrm is None: + self.v_nrm = other.v_nrm + if self.t_nrm_idx is None: + self.t_nrm_idx = other.t_nrm_idx + if self.v_tex is None: + self.v_tex = other.v_tex + if self.t_tex_idx is None: + self.t_tex_idx = other.t_tex_idx + if self.v_tng is None: + self.v_tng = other.v_tng + if self.t_tng_idx is None: + self.t_tng_idx = other.t_tng_idx + if self.material is None: + self.material = other.material + + def clone(self): + out = Mesh(base=self) + if out.v_pos is not None: + out.v_pos = out.v_pos.clone().detach() + if out.t_pos_idx is not None: + out.t_pos_idx = out.t_pos_idx.clone().detach() + if out.v_nrm is not None: + out.v_nrm = out.v_nrm.clone().detach() + if out.t_nrm_idx is not None: + out.t_nrm_idx = out.t_nrm_idx.clone().detach() + if out.v_tex is not None: + out.v_tex = out.v_tex.clone().detach() + if out.t_tex_idx is not None: + out.t_tex_idx = out.t_tex_idx.clone().detach() + if out.v_tng is not None: + out.v_tng = out.v_tng.clone().detach() + if out.t_tng_idx is not None: + out.t_tng_idx = out.t_tng_idx.clone().detach() + return out + def rotate_x_90(self): + # 定义绕X轴旋转90度的旋转矩阵 + rotate_x = torch.tensor([[1, 0, 0, 0], + [0, 0, 1, 0], + [0, -1, 0, 0], + [0, 0, 0, 1]], dtype=torch.float32, device=self.v_pos.device) + + # 将旋转矩阵应用到顶点坐标 + if self.v_pos is not None: + v_pos_homo = torch.cat((self.v_pos, torch.ones(self.v_pos.shape[0], 1, device=self.v_pos.device)), dim=1) + v_pos_rotated = v_pos_homo @ rotate_x.T + self.v_pos = v_pos_rotated[:, :3] + + # 将旋转矩阵应用到法线 + if self.v_nrm is not None: + v_nrm_homo = torch.cat((self.v_nrm, torch.zeros(self.v_nrm.shape[0], 1, device=self.v_nrm.device)), dim=1) + v_nrm_rotated = v_nrm_homo @ rotate_x.T + self.v_nrm = v_nrm_rotated[:, :3] +###################################################################################### +# Mesh loeading helper +###################################################################################### + +def load_mesh(filename, mtl_override=None): + name, ext = os.path.splitext(filename) + if ext == ".obj": + return obj.load_obj(filename, clear_ks=True, mtl_override=mtl_override) + assert False, "Invalid mesh file extension" + +###################################################################################### +# Compute AABB +###################################################################################### +def aabb(mesh): + return torch.min(mesh.v_pos, dim=0).values, torch.max(mesh.v_pos, dim=0).values + +###################################################################################### +# Compute unique edge list from attribute/vertex index list +###################################################################################### +def compute_edges(attr_idx, return_inverse=False): + with torch.no_grad(): + # Create all edges, packed by triangle + all_edges = torch.cat(( + torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1), + torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1), + torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1), + ), dim=-1).view(-1, 2) + + # Swap edge order so min index is always first + order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) + sorted_edges = torch.cat(( + torch.gather(all_edges, 1, order), + torch.gather(all_edges, 1, 1 - order) + ), dim=-1) + + # Eliminate duplicates and return inverse mapping + return torch.unique(sorted_edges, dim=0, return_inverse=return_inverse) + +###################################################################################### +# Compute unique edge to face mapping from attribute/vertex index list +###################################################################################### +def compute_edge_to_face_mapping(attr_idx, return_inverse=False): + with torch.no_grad(): + # Get unique edges + # Create all edges, packed by triangle + all_edges = torch.cat(( + torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1), + torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1), + torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1), + ), dim=-1).view(-1, 2) + + # Swap edge order so min index is always first + order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) + sorted_edges = torch.cat(( + torch.gather(all_edges, 1, order), + torch.gather(all_edges, 1, 1 - order) + ), dim=-1) + + # Elliminate duplicates and return inverse mapping + unique_edges, idx_map = torch.unique(sorted_edges, dim=0, return_inverse=True) + + tris = torch.arange(attr_idx.shape[0]).repeat_interleave(3).cuda() + + tris_per_edge = torch.zeros((unique_edges.shape[0], 2), dtype=torch.int64).cuda() + + # Compute edge to face table + mask0 = order[:,0] == 0 + mask1 = order[:,0] == 1 + tris_per_edge[idx_map[mask0], 0] = tris[mask0] + tris_per_edge[idx_map[mask1], 1] = tris[mask1] + + return tris_per_edge + +###################################################################################### +# Align base mesh to reference mesh:move & rescale to match bounding boxes. +###################################################################################### +def unit_size(mesh): + with torch.no_grad(): + vmin, vmax = aabb(mesh) + scale = 2 / torch.max(vmax - vmin).item() + v_pos = mesh.v_pos - (vmax + vmin) / 2 # Center mesh on origin + v_pos = v_pos * scale # Rescale to unit size + + return Mesh(v_pos, base=mesh) + +###################################################################################### +# Center & scale mesh for rendering +###################################################################################### +def center_by_reference(base_mesh, ref_aabb, scale): + center = (ref_aabb[0] + ref_aabb[1]) * 0.5 + scale = scale / torch.max(ref_aabb[1] - ref_aabb[0]).item() + v_pos = (base_mesh.v_pos - center[None, ...]) * scale + return Mesh(v_pos, base=base_mesh) + +###################################################################################### +# Simple smooth vertex normal computation +###################################################################################### +def auto_normals(imesh): + + i0 = imesh.t_pos_idx[:, 0] + i1 = imesh.t_pos_idx[:, 1] + i2 = imesh.t_pos_idx[:, 2] + + v0 = imesh.v_pos[i0, :] + v1 = imesh.v_pos[i1, :] + v2 = imesh.v_pos[i2, :] + + face_normals = torch.cross(v1 - v0, v2 - v0) + + # Splat face normals to vertices + v_nrm = torch.zeros_like(imesh.v_pos) + v_nrm.scatter_add_(0, i0[:, None].repeat(1,3), face_normals) + v_nrm.scatter_add_(0, i1[:, None].repeat(1,3), face_normals) + v_nrm.scatter_add_(0, i2[:, None].repeat(1,3), face_normals) + + # Normalize, replace zero (degenerated) normals with some default value + v_nrm = torch.where(util.dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')) + v_nrm = util.safe_normalize(v_nrm) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(v_nrm)) + + return Mesh(v_nrm=v_nrm, t_nrm_idx=imesh.t_pos_idx, base=imesh) + +###################################################################################### +# Compute tangent space from texture map coordinates +# Follows http://www.mikktspace.com/ conventions +###################################################################################### +def compute_tangents(imesh): + vn_idx = [None] * 3 + pos = [None] * 3 + tex = [None] * 3 + for i in range(0,3): + pos[i] = imesh.v_pos[imesh.t_pos_idx[:, i]] + tex[i] = imesh.v_tex[imesh.t_tex_idx[:, i]] + vn_idx[i] = imesh.t_nrm_idx[:, i] + + tangents = torch.zeros_like(imesh.v_nrm) + + # Compute tangent space for each triangle + uve1 = tex[1] - tex[0] + uve2 = tex[2] - tex[0] + pe1 = pos[1] - pos[0] + pe2 = pos[2] - pos[0] + + nom = (pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2]) + denom = (uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1]) + + # Avoid division by zero for degenerated texture coordinates + tang = nom / torch.where(denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6)) + + # Update all 3 vertices + for i in range(0,3): + idx = vn_idx[i][:, None].repeat(1,3) + tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang + + # Normalize and make sure tangent is perpendicular to normal + tangents = util.safe_normalize(tangents) + tangents = util.safe_normalize(tangents - util.dot(tangents, imesh.v_nrm) * imesh.v_nrm) + + if torch.is_anomaly_enabled(): + assert torch.all(torch.isfinite(tangents)) + + return Mesh(v_tng=tangents, t_tng_idx=imesh.t_nrm_idx, base=imesh) diff --git a/src/utils/mesh_util.py b/src/utils/mesh_util.py new file mode 100644 index 0000000000000000000000000000000000000000..740181ab99afcc73426d600b38587b4a5f2ee68d --- /dev/null +++ b/src/utils/mesh_util.py @@ -0,0 +1,191 @@ +# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property +# and proprietary rights in and to this software, related documentation +# and any modifications thereto. Any use, reproduction, disclosure or +# distribution of this software and related documentation without an express +# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited. + +import torch +import xatlas +import trimesh +import cv2 +import numpy as np +import nvdiffrast.torch as dr +from PIL import Image + + +def save_obj(pointnp_px3, facenp_fx3, colornp_px3, fpath): + + pointnp_px3 = pointnp_px3 @ np.array([[1, 0, 0], [0, 1, 0], [0, 0, -1]]) + facenp_fx3 = facenp_fx3[:, [2, 1, 0]] + + mesh = trimesh.Trimesh( + vertices=pointnp_px3, + faces=facenp_fx3, + vertex_colors=colornp_px3, + ) + mesh.export(fpath, 'obj') + + +def save_glb(pointnp_px3, facenp_fx3, colornp_px3, fpath): + + pointnp_px3 = pointnp_px3 @ np.array([[-1, 0, 0], [0, 1, 0], [0, 0, -1]]) + + mesh = trimesh.Trimesh( + vertices=pointnp_px3, + faces=facenp_fx3, + vertex_colors=colornp_px3, + ) + mesh.export(fpath, 'glb') + +def save_ply(pointnp_px3, facenp_fx3, colornp_px3, fpath): + pointnp_px3 = pointnp_px3 @ np.array([[1, 0, 0], [0, 1, 0], [0, 0, -1]]) + facenp_fx3 = facenp_fx3[:, [2, 1, 0]] + + mesh = trimesh.Trimesh( + vertices=pointnp_px3, + faces=facenp_fx3 + ) + mesh.export(fpath, 'ply') + + +def save_obj_with_mtl(pointnp_px3, tcoords_px2, facenp_fx3, facetex_fx3, texmap_hxwx3, fname): + import os + fol, na = os.path.split(fname) + na, _ = os.path.splitext(na) + + matname = '%s/%s.mtl' % (fol, na) + fid = open(matname, 'w') + fid.write('newmtl material_0\n') + fid.write('Kd 1 1 1\n') + fid.write('Ka 0 0 0\n') + fid.write('Ks 0.4 0.4 0.4\n') + fid.write('Ns 10\n') + fid.write('illum 2\n') + fid.write('map_Kd %s.png\n' % na) + fid.close() + #### + + fid = open(fname, 'w') + fid.write('mtllib %s.mtl\n' % na) + + for pidx, p in enumerate(pointnp_px3): + pp = p + fid.write('v %f %f %f\n' % (pp[0], pp[1], pp[2])) + + for pidx, p in enumerate(tcoords_px2): + pp = p + fid.write('vt %f %f\n' % (pp[0], pp[1])) + + fid.write('usemtl material_0\n') + for i, f in enumerate(facenp_fx3): + f1 = f + 1 + f2 = facetex_fx3[i] + 1 + fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2])) + fid.close() + + # save texture map + lo, hi = 0, 1 + img = np.asarray(texmap_hxwx3, dtype=np.float32) + img = (img - lo) * (255 / (hi - lo)) + img = img.clip(0, 255) + mask = np.sum(img.astype(np.float32), axis=-1, keepdims=True) + mask = (mask <= 3.0).astype(np.float32) + kernel = np.ones((3, 3), 'uint8') + dilate_img = cv2.dilate(img, kernel, iterations=1) + img = img * (1 - mask) + dilate_img * mask + img = img.clip(0, 255).astype(np.uint8) + Image.fromarray(np.ascontiguousarray(img[::-1, :, :]), 'RGB').save(f'{fol}/{na}.png') + + +def loadobj(meshfile): + v = [] + f = [] + meshfp = open(meshfile, 'r') + for line in meshfp.readlines(): + data = line.strip().split(' ') + data = [da for da in data if len(da) > 0] + if len(data) != 4: + continue + if data[0] == 'v': + v.append([float(d) for d in data[1:]]) + if data[0] == 'f': + data = [da.split('/')[0] for da in data] + f.append([int(d) for d in data[1:]]) + meshfp.close() + + # torch need int64 + facenp_fx3 = np.array(f, dtype=np.int64) - 1 + pointnp_px3 = np.array(v, dtype=np.float32) + return pointnp_px3, facenp_fx3 + + +def loadobjtex(meshfile): + v = [] + vt = [] + f = [] + ft = [] + meshfp = open(meshfile, 'r') + for line in meshfp.readlines(): + data = line.strip().split(' ') + data = [da for da in data if len(da) > 0] + if not ((len(data) == 3) or (len(data) == 4) or (len(data) == 5)): + continue + if data[0] == 'v': + assert len(data) == 4 + + v.append([float(d) for d in data[1:]]) + if data[0] == 'vt': + if len(data) == 3 or len(data) == 4: + vt.append([float(d) for d in data[1:3]]) + if data[0] == 'f': + data = [da.split('/') for da in data] + if len(data) == 4: + f.append([int(d[0]) for d in data[1:]]) + ft.append([int(d[1]) for d in data[1:]]) + elif len(data) == 5: + idx1 = [1, 2, 3] + data1 = [data[i] for i in idx1] + f.append([int(d[0]) for d in data1]) + ft.append([int(d[1]) for d in data1]) + idx2 = [1, 3, 4] + data2 = [data[i] for i in idx2] + f.append([int(d[0]) for d in data2]) + ft.append([int(d[1]) for d in data2]) + meshfp.close() + + # torch need int64 + facenp_fx3 = np.array(f, dtype=np.int64) - 1 + ftnp_fx3 = np.array(ft, dtype=np.int64) - 1 + pointnp_px3 = np.array(v, dtype=np.float32) + uvs = np.array(vt, dtype=np.float32) + return pointnp_px3, facenp_fx3, uvs, ftnp_fx3 + + +# ============================================================================================== +def interpolate(attr, rast, attr_idx, rast_db=None): + return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all') + + +def xatlas_uvmap(ctx, mesh_v, mesh_pos_idx, resolution): + vmapping, indices, uvs = xatlas.parametrize(mesh_v.detach().cpu().numpy(), mesh_pos_idx.detach().cpu().numpy()) + + # Convert to tensors + indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64) + + uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device) + mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device) + # mesh_v_tex. ture + uv_clip = uvs[None, ...] * 2.0 - 1.0 + + # pad to four component coordinate + uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1) + + # rasterize + rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), (resolution, resolution)) + + # Interpolate world space position + gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int()) + mask = rast[..., 3:4] > 0 + return uvs, mesh_tex_idx, gb_pos, mask diff --git a/src/utils/obj.py b/src/utils/obj.py new file mode 100644 index 0000000000000000000000000000000000000000..a824af003bc6f253669d58c6926ba01815ef6169 --- /dev/null +++ b/src/utils/obj.py @@ -0,0 +1,209 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os +import torch + +from . import texture +from . import mesh +from . import material + +###################################################################################### +# Utility functions +###################################################################################### + +def _find_mat(materials, name): + for mat in materials: + if mat['name'] == name: + return mat + return materials[0] # Materials 0 is the default + + +def normalize_mesh(vertices, scale_factor=1.0): + # 计算边界框 + min_vals, _ = torch.min(vertices, dim=0) + max_vals, _ = torch.max(vertices, dim=0) + + # 计算中心点 + center = (max_vals + min_vals) / 2 + + # 平移顶点 + vertices = vertices - center + + # 计算缩放因子 + max_extent = torch.max(max_vals - min_vals) + scale = 2.0 * scale_factor / max_extent + + # 缩放顶点 + vertices = vertices * scale + + return vertices + +###################################################################################### +# Create mesh object from objfile +###################################################################################### +def rotate_y_90(v_pos): + # 定义绕X轴旋转90度的旋转矩阵 + rotate_y = torch.tensor([[0, 0, 1, 0], + [0, 1, 0, 0], + [-1, 0, 0, 0], + [0, 0, 0, 1]], dtype=torch.float32, device=v_pos.device) + return rotate_y + +def load_obj(filename, clear_ks=True, mtl_override=None, return_attributes=False, path_is_attributrs=False, scale_factor=1.0): + obj_path = os.path.dirname(filename) + + # Read entire file + with open(filename, 'r') as f: + lines = f.readlines() + + # Load materials + all_materials = [ + { + 'name' : '_default_mat', + 'bsdf' : 'pbr', + 'kd' : texture.Texture2D(torch.tensor([0.5, 0.5, 0.5], dtype=torch.float32, device='cuda')), + 'ks' : texture.Texture2D(torch.tensor([0.0, 0.0, 0.0], dtype=torch.float32, device='cuda')) + } + ] + if mtl_override is None: + for line in lines: + if len(line.split()) == 0: + continue + if line.split()[0] == 'mtllib': + all_materials += material.load_mtl(os.path.join(obj_path, line.split()[1]), clear_ks) # Read in entire material library + else: + all_materials += material.load_mtl(mtl_override) + + # load vertices + vertices, texcoords, normals = [], [], [] + for line in lines: + if len(line.split()) == 0: + continue + + prefix = line.split()[0].lower() + if prefix == 'v': + vertices.append([float(v) for v in line.split()[1:]]) + elif prefix == 'vt': + val = [float(v) for v in line.split()[1:]] + texcoords.append([val[0], 1.0 - val[1]]) + elif prefix == 'vn': + normals.append([float(v) for v in line.split()[1:]]) + + # load faces + activeMatIdx = None + used_materials = [] + faces, tfaces, nfaces, mfaces = [], [], [], [] + for line in lines: + if len(line.split()) == 0: + continue + + prefix = line.split()[0].lower() + if prefix == 'usemtl': # Track used materials + mat = _find_mat(all_materials, line.split()[1]) + if not mat in used_materials: + used_materials.append(mat) + activeMatIdx = used_materials.index(mat) + elif prefix == 'f': # Parse face + vs = line.split()[1:] + nv = len(vs) + vv = vs[0].split('/') + v0 = int(vv[0]) - 1 + t0 = int(vv[1]) - 1 if vv[1] != "" else -1 + n0 = int(vv[2]) - 1 if vv[2] != "" else -1 + for i in range(nv - 2): # Triangulate polygons + vv = vs[i + 1].split('/') + v1 = int(vv[0]) - 1 + t1 = int(vv[1]) - 1 if vv[1] != "" else -1 + n1 = int(vv[2]) - 1 if vv[2] != "" else -1 + vv = vs[i + 2].split('/') + v2 = int(vv[0]) - 1 + t2 = int(vv[1]) - 1 if vv[1] != "" else -1 + n2 = int(vv[2]) - 1 if vv[2] != "" else -1 + mfaces.append(activeMatIdx) + faces.append([v0, v1, v2]) + tfaces.append([t0, t1, t2]) + nfaces.append([n0, n1, n2]) + assert len(tfaces) == len(faces) and len(nfaces) == len (faces) + + # Create an "uber" material by combining all textures into a larger texture + if len(used_materials) > 1: + uber_material, texcoords, tfaces = material.merge_materials(used_materials, texcoords, tfaces, mfaces) + else: + uber_material = used_materials[0] + + vertices = torch.tensor(vertices, dtype=torch.float32, device='cuda') + texcoords = torch.tensor(texcoords, dtype=torch.float32, device='cuda') if len(texcoords) > 0 else None + normals = torch.tensor(normals, dtype=torch.float32, device='cuda') if len(normals) > 0 else None + + faces = torch.tensor(faces, dtype=torch.int64, device='cuda') + tfaces = torch.tensor(tfaces, dtype=torch.int64, device='cuda') if texcoords is not None else None + nfaces = torch.tensor(nfaces, dtype=torch.int64, device='cuda') if normals is not None else None + + vertices = normalize_mesh(vertices, scale_factor=scale_factor) + # vertices = vertices @ rotate_y_90(vertices)[:3,:3] + + if return_attributes: + return mesh.Mesh(vertices, faces, normals, nfaces, texcoords, tfaces, material=uber_material), vertices, faces, normals, nfaces, texcoords, tfaces, uber_material + return mesh.Mesh(vertices, faces, normals, nfaces, texcoords, tfaces, material=uber_material) + +###################################################################################### +# Save mesh object to objfile +###################################################################################### + +def write_obj(folder, mesh, save_material=True): + obj_file = os.path.join(folder, 'mesh.obj') + print("Writing mesh: ", obj_file) + with open(obj_file, "w") as f: + f.write("mtllib mesh.mtl\n") + f.write("g default\n") + + v_pos = mesh.v_pos.detach().cpu().numpy() if mesh.v_pos is not None else None + v_nrm = mesh.v_nrm.detach().cpu().numpy() if mesh.v_nrm is not None else None + v_tex = mesh.v_tex.detach().cpu().numpy() if mesh.v_tex is not None else None + + t_pos_idx = mesh.t_pos_idx.detach().cpu().numpy() if mesh.t_pos_idx is not None else None + t_nrm_idx = mesh.t_nrm_idx.detach().cpu().numpy() if mesh.t_nrm_idx is not None else None + t_tex_idx = mesh.t_tex_idx.detach().cpu().numpy() if mesh.t_tex_idx is not None else None + + print(" writing %d vertices" % len(v_pos)) + for v in v_pos: + f.write('v {} {} {} \n'.format(v[0], v[1], v[2])) + + if v_tex is not None: + print(" writing %d texcoords" % len(v_tex)) + assert(len(t_pos_idx) == len(t_tex_idx)) + for v in v_tex: + f.write('vt {} {} \n'.format(v[0], 1.0 - v[1])) + + if v_nrm is not None: + print(" writing %d normals" % len(v_nrm)) + assert(len(t_pos_idx) == len(t_nrm_idx)) + for v in v_nrm: + f.write('vn {} {} {}\n'.format(v[0], v[1], v[2])) + + # faces + f.write("s 1 \n") + f.write("g pMesh1\n") + f.write("usemtl defaultMat\n") + + # Write faces + print(" writing %d faces" % len(t_pos_idx)) + for i in range(len(t_pos_idx)): + f.write("f ") + for j in range(3): + f.write(' %s/%s/%s' % (str(t_pos_idx[i][j]+1), '' if v_tex is None else str(t_tex_idx[i][j]+1), '' if v_nrm is None else str(t_nrm_idx[i][j]+1))) + f.write("\n") + + if save_material: + mtl_file = os.path.join(folder, 'mesh.mtl') + print("Writing material: ", mtl_file) + material.save_mtl(mtl_file, mesh.material) + + print("Done exporting mesh") diff --git a/src/utils/render.py b/src/utils/render.py new file mode 100644 index 0000000000000000000000000000000000000000..e60506a613b97dfb2339a5de9b602dce1f2d330b --- /dev/null +++ b/src/utils/render.py @@ -0,0 +1,359 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import torch +import nvdiffrast.torch as dr + +from . import render_utils +from src.models.geometry.render import renderutils as ru +import numpy as np +from PIL import Image +import torchvision + +# ============================================================================================== +# Helper functions +# ============================================================================================== +def interpolate(attr, rast, attr_idx, rast_db=None): + return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db, diff_attrs=None if rast_db is None else 'all') + + +def get_mip(roughness): + return torch.where(roughness < 1.0 + , (torch.clamp(roughness, 0.04, 1.0) - 0.04) / (1.0 - 0.04) * (6 - 2) + , (torch.clamp(roughness, 1.0, 1.0) - 1.0) / (1.0 - 1.0) + 6 - 2) + +def shade_with_env(gb_pos, gb_normal, kd, metallic, roughness, view_pos, run_n_view, env, metallic_gt, roughness_gt, use_material_gt=True, gt_render=False): + + #mask = mask[..., 0] + view_pos = view_pos.expand(-1, gb_pos.shape[1], gb_pos.shape[2], -1) #.reshape(1, 512, 10240, 3) + + wo = render_utils.safe_normalize(view_pos - gb_pos) + + spec_col = (1.0 - metallic_gt)*0.04 + kd * metallic_gt + diff_col = kd * (1.0 - metallic_gt) + + + nrmvec = gb_normal + reflvec = render_utils.safe_normalize(render_utils.reflect(wo, nrmvec)) + + prb_rendered_list = [] + pbr_specular_light_list = [] + pbr_diffuse_light_list = [] + for i in range(run_n_view): + specular_light, diffuse_light = env[i] + diffuse_light = diffuse_light.cuda() + specular_light_new = [] + for split_specular_light in specular_light: + specular_light_new.append(split_specular_light.cuda()) + specular_light = specular_light_new + + shaded_col = torch.ones((gb_pos.shape[1], gb_pos.shape[2], 3)).cuda() + + diffuse = dr.texture(diffuse_light[None, ...], nrmvec[i,:,:,:][None, ...].contiguous(), filter_mode='linear', boundary_mode='cube') + diffuse_comp = diffuse * diff_col[i,:,:,:][None, ...] + + # Lookup FG term from lookup texture + NdotV = torch.clamp(render_utils.dot(wo[i,:,:,:], nrmvec[i,:,:,:]), min=1e-4) + fg_uv = torch.cat((NdotV, roughness_gt[i,:,:,:]), dim=-1) + _FG_LUT = torch.as_tensor(np.fromfile('src/data/bsdf_256_256.bin', dtype=np.float32).reshape(1, 256, 256, 2), dtype=torch.float32, device='cuda') + fg_lookup = dr.texture(_FG_LUT, fg_uv[None, ...], filter_mode='linear', boundary_mode='clamp') + + miplevel = get_mip(roughness_gt[i,:,:,:]) + miplevel = miplevel[None, ...] + spec = dr.texture(specular_light[0][None, ...], reflvec[i,:,:,:][None, ...].contiguous(), mip=list(m[None, ...] for m in specular_light[1:]), mip_level_bias=miplevel[..., 0], filter_mode='linear-mipmap-linear', boundary_mode='cube') + + # Compute aggregate lighting + reflectance = spec_col[i,:,:,:][None, ...] * fg_lookup[...,0:1] + fg_lookup[...,1:2] + specular_comp = spec * reflectance + shaded_col = (specular_comp[0] + diffuse_comp[0]) + + prb_rendered_list.append(shaded_col) + pbr_specular_light_list.append(spec[0]) + pbr_diffuse_light_list.append(diffuse[0]) + + shaded_col_all = torch.stack(prb_rendered_list, dim=0) + pbr_specular_light = torch.stack(pbr_specular_light_list, dim=0) + pbr_diffuse_light = torch.stack(pbr_diffuse_light_list, dim=0) + + shaded_col_all = render_utils.rgb_to_srgb(shaded_col_all).clamp(0.,1.) + pbr_specular_light = render_utils.rgb_to_srgb(pbr_specular_light).clamp(0.,1.) + pbr_diffuse_light = render_utils.rgb_to_srgb(pbr_diffuse_light).clamp(0.,1.) + + return shaded_col_all, pbr_specular_light, pbr_diffuse_light + +# ============================================================================================== +# pixel shader +# ============================================================================================== +def shade( + gb_pos, + gb_geometric_normal, + gb_normal, + gb_tangent, + gb_texc, + gb_texc_deriv, + view_pos, + env, + planes, + kd_fn, + materials, + material, + mask, + gt_render, + gt_albedo_map=None, + ): + + ################################################################################ + # Texture lookups + ################################################################################ + perturbed_nrm = None + resolution = gb_pos.shape[1] + N_views = view_pos.shape[0] + + if planes is None: + kd = material['kd'].sample(gb_texc, gb_texc_deriv) + matellic_gt, roughness_gt = (materials[0] * torch.ones(*kd.shape[:-1])).unsqueeze(-1).cuda(), (materials[1] * torch.ones(*kd.shape[:-1])).unsqueeze(-1).cuda() + matellic, roughness = None, None + else: + # predict kd with MLP and interpolated feature + gb_pos_interp, mask = [gb_pos], [mask] + gb_pos_interp = [torch.cat([pos[i_view:i_view + 1] for i_view in range(N_views)], dim=2) for pos in gb_pos_interp] + mask = [torch.cat([ma[i_view:i_view + 1] for i_view in range(N_views)], dim=2) for ma in mask] + # gt_albedo_map + if gt_albedo_map is not None: + kd = gt_albedo_map[0].permute(0,2,3,1) + matellic, roughness = None, None + else: + kd, matellic, roughness = kd_fn( planes[None,...], gb_pos_interp, mask[0]) + kd = torch.cat( [torch.cat([kd[i:i + 1, :, resolution * i_view: resolution * (i_view + 1)]for i_view in range(N_views)], dim=0) for i in range(len(kd))], dim=0) + + matellic_gt = torch.full((N_views, resolution, resolution, 1), fill_value=0, dtype=torch.float32) + roughness_gt = torch.full((N_views, resolution, resolution, 1), fill_value=0, dtype=torch.float32) + + matellic_val = [x[0] for x in materials] + roughness_val = [y[1] for y in materials] + + for i in range(len(matellic_gt)): + matellic_gt[i, :, :, 0].fill_(matellic_val[i]) + roughness_gt[i, :, :, 0].fill_(roughness_val[i]) + + matellic_gt = matellic_gt.cuda() + roughness_gt = roughness_gt.cuda() + + # Separate kd into alpha and color, default alpha = 1 + alpha = kd[..., 3:4] if kd.shape[-1] == 4 else torch.ones_like(kd[..., 0:1]) + kd = kd[..., 0:3].clamp(0., 1.) + ################################################################################ + # Normal perturbation & normal bend + ################################################################################ + #if 'no_perturbed_nrm' in material and material['no_perturbed_nrm']: + perturbed_nrm = None + + gb_normal_ = ru.prepare_shading_normal(gb_pos, view_pos, perturbed_nrm, gb_normal, gb_tangent, gb_geometric_normal, two_sided_shading=True, opengl=True) + + ################################################################################ + # Evaluate BSDF + ################################################################################ + + shaded_col, spec_light, diff_light = shade_with_env(gb_pos, gb_normal_, kd, matellic, roughness, view_pos, N_views, env, matellic_gt, roughness_gt, use_material_gt=True, gt_render=gt_render) + + buffers = { + 'shaded' : torch.cat((shaded_col, alpha), dim=-1), + 'spec_light': torch.cat((spec_light, alpha), dim=-1), + 'diff_light': torch.cat((diff_light, alpha), dim=-1), + 'gb_normal' : torch.cat((gb_normal_, alpha), dim=-1), + 'normal' : torch.cat((gb_normal, alpha), dim=-1), + 'albedo' : torch.cat((kd, alpha), dim=-1), + } + return buffers + +# ============================================================================================== +# Render a depth slice of the mesh (scene), some limitations: +# - Single mesh +# - Single light +# - Single material +# ============================================================================================== +def render_layer( + rast, + rast_deriv, + mesh, + view_pos, + env, + planes, + kd_fn, + materials, + v_pos_clip, + resolution, + spp, + msaa, + gt_render, + gt_albedo_map=None, + ): + + full_res = [resolution[0]*spp, resolution[1]*spp] + + ################################################################################ + # Rasterize + ################################################################################ + + # Scale down to shading resolution when MSAA is enabled, otherwise shade at full resolution + if spp > 1 and msaa: + rast_out_s = render_utils.scale_img_nhwc(rast, resolution, mag='nearest', min='nearest') + rast_out_deriv_s = render_utils.scale_img_nhwc(rast_deriv, resolution, mag='nearest', min='nearest') * spp + else: + rast_out_s = rast + rast_out_deriv_s = rast_deriv + + ################################################################################ + # Interpolate attributes + ################################################################################ + + # Interpolate world space position + gb_pos, _ = interpolate(mesh.v_pos[None, ...], rast_out_s, mesh.t_pos_idx.int()) + + # Compute geometric normals. We need those because of bent normals trick (for bump mapping) + v0 = mesh.v_pos[mesh.t_pos_idx[:, 0], :] + v1 = mesh.v_pos[mesh.t_pos_idx[:, 1], :] + v2 = mesh.v_pos[mesh.t_pos_idx[:, 2], :] + face_normals = render_utils.safe_normalize(torch.cross(v1 - v0, v2 - v0)) + face_normal_indices = (torch.arange(0, face_normals.shape[0], dtype=torch.int64, device='cuda')[:, None]).repeat(1, 3) + gb_geometric_normal, _ = interpolate(face_normals[None, ...], rast_out_s, face_normal_indices.int()) + + # Compute tangent space + assert mesh.v_nrm is not None and mesh.v_tng is not None + gb_normal, _ = interpolate(mesh.v_nrm[None, ...], rast_out_s, mesh.t_nrm_idx.int()) + gb_tangent, _ = interpolate(mesh.v_tng[None, ...], rast_out_s, mesh.t_tng_idx.int()) # Interpolate tangents + + # Texture coordinate + assert mesh.v_tex is not None + gb_texc, gb_texc_deriv = interpolate(mesh.v_tex[None, ...], rast_out_s, mesh.t_tex_idx.int(), rast_db=rast_out_deriv_s) + + # render depth + depth = torch.linalg.norm(view_pos.expand_as(gb_pos) - gb_pos, dim=-1) + + mask = torch.clamp(rast[..., -1:], 0, 1) + antialias_mask = dr.antialias(mask.clone().contiguous(), rast, v_pos_clip,mesh.t_pos_idx.int()) + + ################################################################################ + # Shade + ################################################################################ + buffers = shade(gb_pos, gb_geometric_normal, gb_normal, gb_tangent, gb_texc, gb_texc_deriv, view_pos, env, planes, kd_fn, materials, mesh.material, mask, gt_render, gt_albedo_map=gt_albedo_map) + buffers['depth'] = torch.cat((depth.unsqueeze(-1).repeat(1,1,1,3), torch.ones_like(gb_pos[..., 0:1])), dim=-1 ) + buffers['mask'] = torch.cat((antialias_mask.repeat(1,1,1,3), torch.ones_like(gb_pos[..., 0:1])), dim=-1 ) + ################################################################################ + # Prepare output + ################################################################################ + + # Scale back up to visibility resolution if using MSAA + if spp > 1 and msaa: + for key in buffers.keys(): + buffers[key] = render_utils.scale_img_nhwc(buffers[key], full_res, mag='nearest', min='nearest') + + # Return buffers + return buffers + +# ============================================================================================== +# Render a depth peeled mesh (scene), some limitations: +# - Single mesh +# - Single light +# - Single material +# ============================================================================================== +def render_mesh( + ctx, + mesh, + mtx_in, + view_pos, + env, + planes, + kd_fn, + materials, + resolution, + spp = 1, + num_layers = 1, + msaa = False, + background = None, + gt_render = False, + gt_albedo_map = None, + ): + def prepare_input_vector(x): + x = torch.tensor(x, dtype=torch.float32, device='cuda') if not torch.is_tensor(x) else x + return x[:, None, None, :] if len(x.shape) == 2 else x + + def composite_buffer(key, layers, background, antialias): + accum = background + for buffers, rast in reversed(layers): + alpha = (rast[..., -1:] > 0).float() * buffers[key][..., -1:] + accum = torch.lerp(accum, torch.cat((buffers[key][..., :-1], torch.ones_like(buffers[key][..., -1:])), dim=-1), alpha) + if antialias: + accum = dr.antialias(accum.contiguous(), rast, v_pos_clip, mesh.t_pos_idx.int()) + return accum + + assert mesh.t_pos_idx.shape[0] > 0, "Got empty training triangle mesh (unrecoverable discontinuity)" + assert background is None or (background.shape[1] == resolution[0] and background.shape[2] == resolution[1]) + + full_res = [resolution[0]*spp, resolution[1]*spp] + + # Convert numpy arrays to torch tensors + mtx_in = torch.tensor(mtx_in, dtype=torch.float32, device='cuda') if not torch.is_tensor(mtx_in) else mtx_in + view_pos = prepare_input_vector(view_pos) + + # clip space transform + v_pos_clip = ru.xfm_points(mesh.v_pos[None, ...], mtx_in) + + # Render all layers front-to-back + layers = [] + with dr.DepthPeeler(ctx, v_pos_clip, mesh.t_pos_idx.int(), full_res) as peeler: + for _ in range(num_layers): + rast, db = peeler.rasterize_next_layer() + layers += [(render_layer(rast, db, mesh, view_pos, env, planes, kd_fn, materials, v_pos_clip, resolution, spp, msaa, gt_render, gt_albedo_map), rast)] + + # Setup background + if background is not None: + if spp > 1: + background = render_utils.scale_img_nhwc(background, full_res, mag='nearest', min='nearest') + background = torch.cat((background, torch.zeros_like(background[..., 0:1])), dim=-1) + else: + background = torch.ones(1, full_res[0], full_res[1], 4, dtype=torch.float32, device='cuda') + background_black = torch.zeros(1, full_res[0], full_res[1], 4, dtype=torch.float32, device='cuda') + + # Composite layers front-to-back + out_buffers = {} + + for key in layers[0][0].keys(): + if key == 'mask': + accum = composite_buffer(key, layers, background_black, True) + else: + accum = composite_buffer(key, layers, background, True) + + # Downscale to framebuffer resolution. Use avg pooling + out_buffers[key] = render_utils.avg_pool_nhwc(accum, spp) if spp > 1 else accum + + return out_buffers + +# ============================================================================================== +# Render UVs +# ============================================================================================== +def render_uv(ctx, mesh, resolution, mlp_texture): + + # clip space transform + uv_clip = mesh.v_tex[None, ...]*2.0 - 1.0 + + # pad to four component coordinate + uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[...,0:1]), torch.ones_like(uv_clip[...,0:1])), dim = -1) + + # rasterize + rast, _ = dr.rasterize(ctx, uv_clip4, mesh.t_tex_idx.int(), resolution) + + # Interpolate world space position + gb_pos, _ = interpolate(mesh.v_pos[None, ...], rast, mesh.t_pos_idx.int()) + + # Sample out textures from MLP + all_tex = mlp_texture.sample(gb_pos) + assert all_tex.shape[-1] == 9 or all_tex.shape[-1] == 10, "Combined kd_ks_normal must be 9 or 10 channels" + perturbed_nrm = all_tex[..., -3:] + return (rast[..., -1:] > 0).float(), all_tex[..., :-6], all_tex[..., -6:-3], render_utils.safe_normalize(perturbed_nrm) diff --git a/src/utils/render_utils.py b/src/utils/render_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..e92e94d0878ddacb4a0c2cb0d5ab422c448d0714 --- /dev/null +++ b/src/utils/render_utils.py @@ -0,0 +1,514 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os +import numpy as np +import torch +import nvdiffrast.torch as dr +import imageio +imageio.plugins.freeimage.download() +os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1" +#---------------------------------------------------------------------------- +# Vector operations +#---------------------------------------------------------------------------- + +def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: + return torch.sum(x*y, -1, keepdim=True) + +def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor: + return 2*dot(x, n)*n - x + +def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: + return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN + +def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: + return x / length(x, eps) + +def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor: + return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w) + +#---------------------------------------------------------------------------- +# sRGB color transforms +#---------------------------------------------------------------------------- + +def _rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: + return torch.where(f <= 0.0031308, f * 12.92, torch.pow(torch.clamp(f, 0.0031308), 1.0/2.4)*1.055 - 0.055) + +def rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: + assert f.shape[-1] == 3 or f.shape[-1] == 4 + out = torch.cat((_rgb_to_srgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _rgb_to_srgb(f) + assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] + return out + +def _srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: + return torch.where(f <= 0.04045, f / 12.92, torch.pow((torch.clamp(f, 0.04045) + 0.055) / 1.055, 2.4)) + +def srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: + assert f.shape[-1] == 3 or f.shape[-1] == 4 + out = torch.cat((_srgb_to_rgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _srgb_to_rgb(f) + assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] + return out + +def reinhard(f: torch.Tensor) -> torch.Tensor: + return f/(1+f) + +#----------------------------------------------------------------------------------- +# Metrics (taken from jaxNerf source code, in order to replicate their measurements) +# +# https://github.com/google-research/google-research/blob/301451a62102b046bbeebff49a760ebeec9707b8/jaxnerf/nerf/utils.py#L266 +# +#----------------------------------------------------------------------------------- + +def mse_to_psnr(mse): + """Compute PSNR given an MSE (we assume the maximum pixel value is 1).""" + return -10. / np.log(10.) * np.log(mse) + +def psnr_to_mse(psnr): + """Compute MSE given a PSNR (we assume the maximum pixel value is 1).""" + return np.exp(-0.1 * np.log(10.) * psnr) + +#---------------------------------------------------------------------------- +# Displacement texture lookup +#---------------------------------------------------------------------------- + +def get_miplevels(texture: np.ndarray) -> float: + minDim = min(texture.shape[0], texture.shape[1]) + return np.floor(np.log2(minDim)) + +def tex_2d(tex_map : torch.Tensor, coords : torch.Tensor, filter='nearest') -> torch.Tensor: + tex_map = tex_map[None, ...] # Add batch dimension + tex_map = tex_map.permute(0, 3, 1, 2) # NHWC -> NCHW + tex = torch.nn.functional.grid_sample(tex_map, coords[None, None, ...] * 2 - 1, mode=filter, align_corners=False) + tex = tex.permute(0, 2, 3, 1) # NCHW -> NHWC + return tex[0, 0, ...] + +#---------------------------------------------------------------------------- +# Cubemap utility functions +#---------------------------------------------------------------------------- + +def cube_to_dir(s, x, y): + if s == 0: rx, ry, rz = torch.ones_like(x), -y, -x + elif s == 1: rx, ry, rz = -torch.ones_like(x), -y, x + elif s == 2: rx, ry, rz = x, torch.ones_like(x), y + elif s == 3: rx, ry, rz = x, -torch.ones_like(x), -y + elif s == 4: rx, ry, rz = x, -y, torch.ones_like(x) + elif s == 5: rx, ry, rz = -x, -y, -torch.ones_like(x) + return torch.stack((rx, ry, rz), dim=-1) + +def latlong_to_cubemap(latlong_map, res): + cubemap = torch.zeros(6, res[0], res[1], latlong_map.shape[-1], dtype=torch.float32, device='cuda') + for s in range(6): + gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), + torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'), + indexing='ij') + v = safe_normalize(cube_to_dir(s, gx, gy)) + + tu = torch.atan2(v[..., 0:1], -v[..., 2:3]) / (2 * np.pi) + 0.5 + tv = torch.acos(torch.clamp(v[..., 1:2], min=-1, max=1)) / np.pi + texcoord = torch.cat((tu, tv), dim=-1) + + cubemap[s, ...] = dr.texture(latlong_map[None, ...], texcoord[None, ...], filter_mode='linear')[0] + return cubemap + +def cubemap_to_latlong(cubemap, res): + gy, gx = torch.meshgrid(torch.linspace( 0.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), + torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'), + indexing='ij') + + sintheta, costheta = torch.sin(gy*np.pi), torch.cos(gy*np.pi) + sinphi, cosphi = torch.sin(gx*np.pi), torch.cos(gx*np.pi) + + reflvec = torch.stack(( + sintheta*sinphi, + costheta, + -sintheta*cosphi + ), dim=-1) + return dr.texture(cubemap[None, ...], reflvec[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')[0] + +#---------------------------------------------------------------------------- +# Image scaling +#---------------------------------------------------------------------------- + +def scale_img_hwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: + return scale_img_nhwc(x[None, ...], size, mag, min)[0] + +def scale_img_nhwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: + assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other" + y = x.permute(0, 3, 1, 2) # NHWC -> NCHW + if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger + y = torch.nn.functional.interpolate(y, size, mode=min) + else: # Magnification + if mag == 'bilinear' or mag == 'bicubic': + y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True) + else: + y = torch.nn.functional.interpolate(y, size, mode=mag) + return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC + +def avg_pool_nhwc(x : torch.Tensor, size) -> torch.Tensor: + y = x.permute(0, 3, 1, 2) # NHWC -> NCHW + y = torch.nn.functional.avg_pool2d(y, size) + return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC + +#---------------------------------------------------------------------------- +# Behaves similar to tf.segment_sum +#---------------------------------------------------------------------------- + +def segment_sum(data: torch.Tensor, segment_ids: torch.Tensor) -> torch.Tensor: + num_segments = torch.unique_consecutive(segment_ids).shape[0] + + # Repeats ids until same dimension as data + if len(segment_ids.shape) == 1: + s = torch.prod(torch.tensor(data.shape[1:], dtype=torch.int64, device='cuda')).long() + segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:]) + + assert data.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal" + + shape = [num_segments] + list(data.shape[1:]) + result = torch.zeros(*shape, dtype=torch.float32, device='cuda') + result = result.scatter_add(0, segment_ids, data) + return result + +#---------------------------------------------------------------------------- +# Matrix helpers. +#---------------------------------------------------------------------------- + +def fovx_to_fovy(fovx, aspect): + return np.arctan(np.tan(fovx / 2) / aspect) * 2.0 + +def focal_length_to_fovy(focal_length, sensor_height): + return 2 * np.arctan(0.5 * sensor_height / focal_length) + +# Reworked so this matches gluPerspective / glm::perspective, using fovy +def perspective(fovy=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None): + y = np.tan(fovy / 2) + return torch.tensor([[1/(y*aspect), 0, 0, 0], + [ 0, 1/-y, 0, 0], + [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], + [ 0, 0, -1, 0]], dtype=torch.float32, device=device) + +# Reworked so this matches gluPerspective / glm::perspective, using fovy +def perspective_offcenter(fovy, fraction, rx, ry, aspect=1.0, n=0.1, f=1000.0, device=None): + y = np.tan(fovy / 2) + + # Full frustum + R, L = aspect*y, -aspect*y + T, B = y, -y + + # Create a randomized sub-frustum + width = (R-L)*fraction + height = (T-B)*fraction + xstart = (R-L)*rx + ystart = (T-B)*ry + + l = L + xstart + r = l + width + b = B + ystart + t = b + height + + # https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix + return torch.tensor([[2/(r-l), 0, (r+l)/(r-l), 0], + [ 0, -2/(t-b), (t+b)/(t-b), 0], + [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], + [ 0, 0, -1, 0]], dtype=torch.float32, device=device) + +def translate(x, y, z, device=None): + return torch.tensor([[1, 0, 0, x], + [0, 1, 0, y], + [0, 0, 1, z], + [0, 0, 0, 1]], dtype=torch.float32, device=device) + +def rotate_x(a, device=None): + s, c = np.sin(a), np.cos(a) + return torch.tensor([[1, 0, 0, 0], + [0, c,-s, 0], + [0, s, c, 0], + [0, 0, 0, 1]], dtype=torch.float32, device=device) + +def rotate_y(a, device=None): + s, c = np.sin(a), np.cos(a) + return torch.tensor([[ c, 0, s, 0], + [ 0, 1, 0, 0], + [-s, 0, c, 0], + [ 0, 0, 0, 1]], dtype=torch.float32, device=device) + +def rotate_z(a, device=None): + s, c = np.sin(a), np.cos(a) + return torch.tensor([[ c, -s, 0, 0], + [ s, c, 0, 0], + [ 0, 0, 1, 0], + [ 0, 0, 0, 1]], dtype=torch.float32, device=device) + +def scale(s, device=None): + return torch.tensor([[ s, 0, 0, 0], + [ 0, s, 0, 0], + [ 0, 0, s, 0], + [ 0, 0, 0, 1]], dtype=torch.float32, device=device) + +def lookAt(eye, at, up): + a = eye - at + w = a / torch.linalg.norm(a) + u = torch.cross(up, w) + u = u / torch.linalg.norm(u) + v = torch.cross(w, u) + translate = torch.tensor([[1, 0, 0, -eye[0]], + [0, 1, 0, -eye[1]], + [0, 0, 1, -eye[2]], + [0, 0, 0, 1]], dtype=eye.dtype, device=eye.device) + rotate = torch.tensor([[u[0], u[1], u[2], 0], + [v[0], v[1], v[2], 0], + [w[0], w[1], w[2], 0], + [0, 0, 0, 1]], dtype=eye.dtype, device=eye.device) + return rotate @ translate +# def lookAt(eye, center, up): +# f = (center - eye) +# f = f / torch.norm(f) + +# u = up / torch.norm(up) +# s = torch.cross(f, u) +# u = torch.cross(s, f) + +# result = torch.eye(4) +# result[0, 0:3] = s +# result[1, 0:3] = u +# result[2, 0:3] = -f +# result[0, 3] = -torch.dot(s, eye) +# result[1, 3] = -torch.dot(u, eye) +# result[2, 3] = torch.dot(f, eye) + +# return result + +def look_at_opengl(eye, at, up): + # 计算前向量 + forward = (at - eye) + forward = forward / torch.norm(forward) + + # 计算右向量 + right = torch.cross(up, forward) + right = right / torch.norm(right) + + # 计算实际的上向量 + up = torch.cross(forward, right) + + # 构建视图矩阵 + view_matrix = torch.eye(4) + view_matrix[0, :3] = right + view_matrix[1, :3] = up + view_matrix[2, :3] = -forward + view_matrix[:3, 3] = -eye + + # 计算 c2w 矩阵 + # c2w = torch.inverse(view_matrix) + + return view_matrix + +@torch.no_grad() +def random_rotation_translation(t, device=None): + m = np.random.normal(size=[3, 3]) + m[1] = np.cross(m[0], m[2]) + m[2] = np.cross(m[0], m[1]) + m = m / np.linalg.norm(m, axis=1, keepdims=True) + m = np.pad(m, [[0, 1], [0, 1]], mode='constant') + m[3, 3] = 1.0 + m[:3, 3] = np.random.uniform(-t, t, size=[3]) + return torch.tensor(m, dtype=torch.float32, device=device) + +@torch.no_grad() +def random_rotation(device=None): + m = np.random.normal(size=[3, 3]) + m[1] = np.cross(m[0], m[2]) + m[2] = np.cross(m[0], m[1]) + m = m / np.linalg.norm(m, axis=1, keepdims=True) + m = np.pad(m, [[0, 1], [0, 1]], mode='constant') + m[3, 3] = 1.0 + m[:3, 3] = np.array([0,0,0]).astype(np.float32) + return torch.tensor(m, dtype=torch.float32, device=device) + +#---------------------------------------------------------------------------- +# Compute focal points of a set of lines using least squares. +# handy for poorly centered datasets +#---------------------------------------------------------------------------- + +def lines_focal(o, d): + d = safe_normalize(d) + I = torch.eye(3, dtype=o.dtype, device=o.device) + S = torch.sum(d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...], dim=0) + C = torch.sum((d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...]) @ o[..., None], dim=0).squeeze(1) + return torch.linalg.pinv(S) @ C + +#---------------------------------------------------------------------------- +# Cosine sample around a vector N +#---------------------------------------------------------------------------- +@torch.no_grad() +def cosine_sample(N, size=None): + # construct local frame + N = N/torch.linalg.norm(N) + + dx0 = torch.tensor([0, N[2], -N[1]], dtype=N.dtype, device=N.device) + dx1 = torch.tensor([-N[2], 0, N[0]], dtype=N.dtype, device=N.device) + + dx = torch.where(dot(dx0, dx0) > dot(dx1, dx1), dx0, dx1) + #dx = dx0 if np.dot(dx0,dx0) > np.dot(dx1,dx1) else dx1 + dx = dx / torch.linalg.norm(dx) + dy = torch.cross(N,dx) + dy = dy / torch.linalg.norm(dy) + + # cosine sampling in local frame + if size is None: + phi = 2.0 * np.pi * np.random.uniform() + s = np.random.uniform() + else: + phi = 2.0 * np.pi * torch.rand(*size, 1, dtype=N.dtype, device=N.device) + s = torch.rand(*size, 1, dtype=N.dtype, device=N.device) + costheta = np.sqrt(s) + sintheta = np.sqrt(1.0 - s) + + # cartesian vector in local space + x = np.cos(phi)*sintheta + y = np.sin(phi)*sintheta + z = costheta + + # local to world + return dx*x + dy*y + N*z + +#---------------------------------------------------------------------------- +# Bilinear downsample by 2x. +#---------------------------------------------------------------------------- + +def bilinear_downsample(x : torch.tensor) -> torch.Tensor: + w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 + w = w.expand(x.shape[-1], 1, 4, 4) + x = torch.nn.functional.conv2d(x.permute(0, 3, 1, 2), w, padding=1, stride=2, groups=x.shape[-1]) + return x.permute(0, 2, 3, 1) + +#---------------------------------------------------------------------------- +# Bilinear downsample log(spp) steps +#---------------------------------------------------------------------------- + +def bilinear_downsample(x : torch.tensor, spp) -> torch.Tensor: + w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 + g = x.shape[-1] + w = w.expand(g, 1, 4, 4) + x = x.permute(0, 3, 1, 2) # NHWC -> NCHW + steps = int(np.log2(spp)) + for _ in range(steps): + xp = torch.nn.functional.pad(x, (1,1,1,1), mode='replicate') + x = torch.nn.functional.conv2d(xp, w, padding=0, stride=2, groups=g) + return x.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC + +#---------------------------------------------------------------------------- +# Singleton initialize GLFW +#---------------------------------------------------------------------------- + +_glfw_initialized = False +def init_glfw(): + global _glfw_initialized + try: + import glfw + glfw.ERROR_REPORTING = 'raise' + glfw.default_window_hints() + glfw.window_hint(glfw.VISIBLE, glfw.FALSE) + test = glfw.create_window(8, 8, "Test", None, None) # Create a window and see if not initialized yet + except glfw.GLFWError as e: + if e.error_code == glfw.NOT_INITIALIZED: + glfw.init() + _glfw_initialized = True + +#---------------------------------------------------------------------------- +# Image display function using OpenGL. +#---------------------------------------------------------------------------- + +_glfw_window = None +def display_image(image, title=None): + # Import OpenGL + import OpenGL.GL as gl + import glfw + + # Zoom image if requested. + image = np.asarray(image[..., 0:3]) if image.shape[-1] == 4 else np.asarray(image) + height, width, channels = image.shape + + # Initialize window. + init_glfw() + if title is None: + title = 'Debug window' + global _glfw_window + if _glfw_window is None: + glfw.default_window_hints() + _glfw_window = glfw.create_window(width, height, title, None, None) + glfw.make_context_current(_glfw_window) + glfw.show_window(_glfw_window) + glfw.swap_interval(0) + else: + glfw.make_context_current(_glfw_window) + glfw.set_window_title(_glfw_window, title) + glfw.set_window_size(_glfw_window, width, height) + + # Update window. + glfw.poll_events() + gl.glClearColor(0, 0, 0, 1) + gl.glClear(gl.GL_COLOR_BUFFER_BIT) + gl.glWindowPos2f(0, 0) + gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1) + gl_format = {3: gl.GL_RGB, 2: gl.GL_RG, 1: gl.GL_LUMINANCE}[channels] + gl_dtype = {'uint8': gl.GL_UNSIGNED_BYTE, 'float32': gl.GL_FLOAT}[image.dtype.name] + gl.glDrawPixels(width, height, gl_format, gl_dtype, image[::-1]) + glfw.swap_buffers(_glfw_window) + if glfw.window_should_close(_glfw_window): + return False + return True + +#---------------------------------------------------------------------------- +# Image save/load helper. +#---------------------------------------------------------------------------- + +def save_image(fn, x : np.ndarray): + try: + if os.path.splitext(fn)[1] == ".png": + imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8), compress_level=3) # Low compression for faster saving + else: + imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8)) + except: + print("WARNING: FAILED to save image %s" % fn) + +def save_image_raw(fn, x : np.ndarray): + try: + imageio.imwrite(fn, x) + except: + print("WARNING: FAILED to save image %s" % fn) + + +def load_image_raw(fn) -> np.ndarray: + return imageio.imread(fn) + +def load_image(fn) -> np.ndarray: + img = load_image_raw(fn) + if img.dtype == np.float32: # HDR image + return img + else: # LDR image + return img.astype(np.float32) / 255 + +#---------------------------------------------------------------------------- + +def time_to_text(x): + if x > 3600: + return "%.2f h" % (x / 3600) + elif x > 60: + return "%.2f m" % (x / 60) + else: + return "%.2f s" % x + +#---------------------------------------------------------------------------- + +def checkerboard(res, checker_size) -> np.ndarray: + tiles_y = (res[0] + (checker_size*2) - 1) // (checker_size*2) + tiles_x = (res[1] + (checker_size*2) - 1) // (checker_size*2) + check = np.kron([[1, 0] * tiles_x, [0, 1] * tiles_x] * tiles_y, np.ones((checker_size, checker_size)))*0.33 + 0.33 + check = check[:res[0], :res[1]] + return np.stack((check, check, check), axis=-1) + diff --git a/src/utils/texture.py b/src/utils/texture.py new file mode 100644 index 0000000000000000000000000000000000000000..7f7fa0e441f3051a055ab3b7787baf4d5de5d89d --- /dev/null +++ b/src/utils/texture.py @@ -0,0 +1,189 @@ +# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. +# +# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual +# property and proprietary rights in and to this material, related +# documentation and any modifications thereto. Any use, reproduction, +# disclosure or distribution of this material and related documentation +# without an express license agreement from NVIDIA CORPORATION or +# its affiliates is strictly prohibited. + +import os +import numpy as np +import torch +import nvdiffrast.torch as dr + +from src.models.geometry.rep_3d import util + +###################################################################################### +# Smooth pooling / mip computation with linear gradient upscaling +###################################################################################### + +class texture2d_mip(torch.autograd.Function): + @staticmethod + def forward(ctx, texture): + return util.avg_pool_nhwc(texture, (2,2)) + + @staticmethod + def backward(ctx, dout): + gy, gx = torch.meshgrid(torch.linspace(0.0 + 0.25 / dout.shape[1], 1.0 - 0.25 / dout.shape[1], dout.shape[1]*2, device="cuda"), + torch.linspace(0.0 + 0.25 / dout.shape[2], 1.0 - 0.25 / dout.shape[2], dout.shape[2]*2, device="cuda"), + indexing='ij') + uv = torch.stack((gx, gy), dim=-1) + return dr.texture(dout * 0.25, uv[None, ...].contiguous(), filter_mode='linear', boundary_mode='clamp') + +######################################################################################################## +# Simple texture class. A texture can be either +# - A 3D tensor (using auto mipmaps) +# - A list of 3D tensors (full custom mip hierarchy) +######################################################################################################## + +class Texture2D(torch.nn.Module): + # Initializes a texture from image data. + # Input can be constant value (1D array) or texture (3D array) or mip hierarchy (list of 3d arrays) + def __init__(self, init, min_max=None): + super(Texture2D, self).__init__() + + if isinstance(init, np.ndarray): + init = torch.tensor(init, dtype=torch.float32, device='cuda') + elif isinstance(init, list) and len(init) == 1: + init = init[0] + + if isinstance(init, list): + self.data = list(torch.nn.Parameter(mip.clone().detach(), requires_grad=True) for mip in init) + elif len(init.shape) == 4: + self.data = torch.nn.Parameter(init.clone().detach(), requires_grad=True) + elif len(init.shape) == 3: + self.data = torch.nn.Parameter(init[None, ...].clone().detach(), requires_grad=True) + elif len(init.shape) == 2: + self.data = torch.nn.Parameter(init[None, :, :, None].repeat(1,1,1,3).clone().detach(), requires_grad=True) + # breakpoint() + elif len(init.shape) == 1: + self.data = torch.nn.Parameter(init[None, None, None, :].clone().detach(), requires_grad=True) # Convert constant to 1x1 tensor + else: + assert False, "Invalid texture object" + + self.min_max = min_max + + # Filtered (trilinear) sample texture at a given location + def sample(self, texc, texc_deriv, filter_mode='linear-mipmap-linear'): + if isinstance(self.data, list): + out = dr.texture(self.data[0], texc, texc_deriv, mip=self.data[1:], filter_mode=filter_mode) + else: + if self.data.shape[1] > 1 and self.data.shape[2] > 1: + mips = [self.data] + while mips[-1].shape[1] > 1 and mips[-1].shape[2] > 1: + mips += [texture2d_mip.apply(mips[-1])] + out = dr.texture(mips[0], texc, texc_deriv, mip=mips[1:], filter_mode=filter_mode) + else: + out = dr.texture(self.data, texc, texc_deriv, filter_mode=filter_mode) + return out + + def getRes(self): + return self.getMips()[0].shape[1:3] + + def getChannels(self): + return self.getMips()[0].shape[3] + + def getMips(self): + if isinstance(self.data, list): + return self.data + else: + return [self.data] + + # In-place clamp with no derivative to make sure values are in valid range after training + def clamp_(self): + if self.min_max is not None: + for mip in self.getMips(): + for i in range(mip.shape[-1]): + mip[..., i].clamp_(min=self.min_max[0][i], max=self.min_max[1][i]) + + # In-place clamp with no derivative to make sure values are in valid range after training + def normalize_(self): + with torch.no_grad(): + for mip in self.getMips(): + mip = util.safe_normalize(mip) + +######################################################################################################## +# Helper function to create a trainable texture from a regular texture. The trainable weights are +# initialized with texture data as an initial guess +######################################################################################################## + +def create_trainable(init, res=None, auto_mipmaps=True, min_max=None): + with torch.no_grad(): + if isinstance(init, Texture2D): + assert isinstance(init.data, torch.Tensor) + min_max = init.min_max if min_max is None else min_max + init = init.data + elif isinstance(init, np.ndarray): + init = torch.tensor(init, dtype=torch.float32, device='cuda') + + # Pad to NHWC if needed + if len(init.shape) == 1: # Extend constant to NHWC tensor + init = init[None, None, None, :] + elif len(init.shape) == 3: + init = init[None, ...] + + # Scale input to desired resolution. + if res is not None: + init = util.scale_img_nhwc(init, res) + + # Genreate custom mipchain + if not auto_mipmaps: + mip_chain = [init.clone().detach().requires_grad_(True)] + while mip_chain[-1].shape[1] > 1 or mip_chain[-1].shape[2] > 1: + new_size = [max(mip_chain[-1].shape[1] // 2, 1), max(mip_chain[-1].shape[2] // 2, 1)] + mip_chain += [util.scale_img_nhwc(mip_chain[-1], new_size)] + return Texture2D(mip_chain, min_max=min_max) + else: + return Texture2D(init, min_max=min_max) + +######################################################################################################## +# Convert texture to and from SRGB +######################################################################################################## + +def srgb_to_rgb(texture): + return Texture2D(list(util.srgb_to_rgb(mip) for mip in texture.getMips())) + +def rgb_to_srgb(texture): + return Texture2D(list(util.rgb_to_srgb(mip) for mip in texture.getMips())) + +######################################################################################################## +# Utility functions for loading / storing a texture +######################################################################################################## + +def _load_mip2D(fn, lambda_fn=None, channels=None): + imgdata = torch.tensor(util.load_image(fn), dtype=torch.float32, device='cuda') + if channels is not None: + imgdata = imgdata[..., 0:channels] + if lambda_fn is not None: + imgdata = lambda_fn(imgdata) + return imgdata.detach().clone() + +def load_texture2D(fn, lambda_fn=None, channels=None): + base, ext = os.path.splitext(fn) + if os.path.exists(base + "_0" + ext): + mips = [] + while os.path.exists(base + ("_%d" % len(mips)) + ext): + mips += [_load_mip2D(base + ("_%d" % len(mips)) + ext, lambda_fn, channels)] + return Texture2D(mips) + else: + return Texture2D(_load_mip2D(fn, lambda_fn, channels)) + +def _save_mip2D(fn, mip, mipidx, lambda_fn): + if lambda_fn is not None: + data = lambda_fn(mip).detach().cpu().numpy() + else: + data = mip.detach().cpu().numpy() + + if mipidx is None: + util.save_image(fn, data) + else: + base, ext = os.path.splitext(fn) + util.save_image(base + ("_%d" % mipidx) + ext, data) + +def save_texture2D(fn, tex, lambda_fn=None): + if isinstance(tex.data, list): + for i, mip in enumerate(tex.data): + _save_mip2D(fn, mip[0,...], i, lambda_fn) + else: + _save_mip2D(fn, tex.data[0,...], None, lambda_fn) diff --git a/src/utils/train_util.py b/src/utils/train_util.py new file mode 100644 index 0000000000000000000000000000000000000000..2e65421bffa8cc42c1517e86f2dfd8183caf52ab --- /dev/null +++ b/src/utils/train_util.py @@ -0,0 +1,26 @@ +import importlib + + +def count_params(model, verbose=False): + total_params = sum(p.numel() for p in model.parameters()) + if verbose: + print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.") + return total_params + + +def instantiate_from_config(config): + if not "target" in config: + if config == '__is_first_stage__': + return None + elif config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", dict())) + + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) diff --git a/train.py b/train.py new file mode 100644 index 0000000000000000000000000000000000000000..c1d1279dc63119cb4dc4915cb8df74961994dd75 --- /dev/null +++ b/train.py @@ -0,0 +1,296 @@ +import os, sys +import argparse +import shutil +import subprocess +from omegaconf import OmegaConf +import torch +from pytorch_lightning import seed_everything +from pytorch_lightning.trainer import Trainer +from pytorch_lightning.strategies import DDPStrategy +from pytorch_lightning.callbacks import Callback +from pytorch_lightning.utilities import rank_zero_only + +from src.utils.train_util import instantiate_from_config +import os +os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512' + +@rank_zero_only +def rank_zero_print(*args): + print(*args) + + +def get_parser(**parser_kwargs): + def str2bool(v): + if isinstance(v, bool): + return v + if v.lower() in ("yes", "true", "t", "y", "1"): + return True + elif v.lower() in ("no", "false", "f", "n", "0"): + return False + else: + raise argparse.ArgumentTypeError("Boolean value expected.") + + parser = argparse.ArgumentParser(**parser_kwargs) + parser.add_argument( + "-r", + "--resume", + type=str, + default=None, + help="resume from checkpoint", + ) + parser.add_argument( + "--resume_weights_only", + action="store_true", + help="only resume model weights", + ) + parser.add_argument( + "-b", + "--base", + type=str, + default="base_config.yaml", + help="path to base configs", + ) + parser.add_argument( + "-n", + "--name", + type=str, + default="", + help="experiment name", + ) + parser.add_argument( + "--num_nodes", + type=int, + default=1, + help="number of nodes to use", + ) + parser.add_argument( + "--gpus", + type=str, + default="0,", + help="gpu ids to use", + ) + parser.add_argument( + "-s", + "--seed", + type=int, + default=42, + help="seed for seed_everything", + ) + parser.add_argument( + "-l", + "--logdir", + type=str, + default="logs", + help="directory for logging data", + ) + return parser + + +class ClearCacheCallback(Callback): + def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx): + torch.cuda.empty_cache() + # print("Cleared CUDA cache after training batch") + + def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): + torch.cuda.empty_cache() + # print("Cleared CUDA cache after validation batch") + +class SetupCallback(Callback): + def __init__(self, resume, logdir, ckptdir, cfgdir, config): + super().__init__() + self.resume = resume + self.logdir = logdir + self.ckptdir = ckptdir + self.cfgdir = cfgdir + self.config = config + + def on_fit_start(self, trainer, pl_module): + if trainer.global_rank == 0: + # Create logdirs and save configs + os.makedirs(self.logdir, exist_ok=True) + os.makedirs(self.ckptdir, exist_ok=True) + os.makedirs(self.cfgdir, exist_ok=True) + + rank_zero_print("Project config") + rank_zero_print(OmegaConf.to_yaml(self.config)) + OmegaConf.save(self.config, + os.path.join(self.cfgdir, "project.yaml")) + + +class CodeSnapshot(Callback): + """ + Modified from https://github.com/threestudio-project/threestudio/blob/main/threestudio/utils/callbacks.py#L60 + """ + def __init__(self, savedir): + self.savedir = savedir + + def get_file_list(self): + return [ + b.decode() + for b in set( + subprocess.check_output( + 'git ls-files -- ":!:configs/*"', shell=True + ).splitlines() + ) + | set( # hard code, TODO: use config to exclude folders or files + subprocess.check_output( + "git ls-files --others --exclude-standard", shell=True + ).splitlines() + ) + ] + + @rank_zero_only + def save_code_snapshot(self): + os.makedirs(self.savedir, exist_ok=True) + for f in self.get_file_list(): + if not os.path.exists(f) or os.path.isdir(f): + continue + os.makedirs(os.path.join(self.savedir, os.path.dirname(f)), exist_ok=True) + shutil.copyfile(f, os.path.join(self.savedir, f)) + + def on_fit_start(self, trainer, pl_module): + try: + # self.save_code_snapshot() + pass + except: + rank_zero_only( + "Code snapshot is not saved. Please make sure you have git installed and are in a git repository." + ) + + +if __name__ == "__main__": + sys.path.append(os.getcwd()) + + parser = get_parser() + opt, unknown = parser.parse_known_args() + + cfg_fname = os.path.split(opt.base)[-1] + cfg_name = os.path.splitext(cfg_fname)[0] + exp_name = "-" + opt.name if opt.name != "" else "" + logdir = os.path.join(opt.logdir, cfg_name+exp_name) + + ckptdir = os.path.join(logdir, "checkpoints") + cfgdir = os.path.join(logdir, "configs") + codedir = os.path.join(logdir, "code") + seed_everything(opt.seed) + + # init configs + config = OmegaConf.load(opt.base) + lightning_config = config.lightning + trainer_config = lightning_config.trainer + + trainer_config["accelerator"] = "cuda" + rank_zero_print(f"Running on GPUs {opt.gpus}") + ngpu = len(opt.gpus.strip(",").split(',')) + trainer_config['devices'] = ngpu + + trainer_opt = argparse.Namespace(**trainer_config) + lightning_config.trainer = trainer_config + + # model + model = instantiate_from_config(config.model) + if opt.resume and opt.resume_weights_only: + model = model.__class__.load_from_checkpoint(opt.resume, **config.model.params) + + model.logdir = logdir + + # trainer and callbacks + trainer_kwargs = dict() + + # logger + default_logger_cfg = { + "target": "pytorch_lightning.loggers.TensorBoardLogger", + "params": { + "name": "tensorboard", + "save_dir": logdir, + "version": "0", + } + } + logger_cfg = OmegaConf.merge(default_logger_cfg) + trainer_kwargs["logger"] = instantiate_from_config(logger_cfg) + + # model checkpoint + default_modelckpt_cfg = { + "target": "pytorch_lightning.callbacks.ModelCheckpoint", + "params": { + "dirpath": ckptdir, + "filename": "{step:08}", + "verbose": True, + "save_last": True, + "every_n_train_steps": 5000, + "save_top_k": -1, # save all checkpoints + } + } + + if "modelcheckpoint" in lightning_config: + modelckpt_cfg = lightning_config.modelcheckpoint + else: + modelckpt_cfg = OmegaConf.create() + modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg) + + # callbacks + default_callbacks_cfg = { + "setup_callback": { + "target": "train.SetupCallback", + "params": { + "resume": opt.resume, + "logdir": logdir, + "ckptdir": ckptdir, + "cfgdir": cfgdir, + "config": config, + } + }, + "learning_rate_logger": { + "target": "pytorch_lightning.callbacks.LearningRateMonitor", + "params": { + "logging_interval": "step", + } + }, + "code_snapshot": { + "target": "train.CodeSnapshot", + "params": { + "savedir": codedir, + } + }, + } + default_callbacks_cfg["checkpoint_callback"] = modelckpt_cfg + + if "callbacks" in lightning_config: + callbacks_cfg = lightning_config.callbacks + else: + callbacks_cfg = OmegaConf.create() + callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg) + + trainer_kwargs["callbacks"] = [ + instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg] + trainer_kwargs["callbacks"].append(ClearCacheCallback()) + + trainer_kwargs['precision'] = '32-true' + trainer_kwargs["strategy"] = DDPStrategy(find_unused_parameters=True) + + # trainer + trainer = Trainer(**trainer_config, **trainer_kwargs, num_nodes=opt.num_nodes) + trainer.logdir = logdir + + # data + data = instantiate_from_config(config.data) + data.prepare_data() + data.setup("fit") + + # configure learning rate + base_lr = config.model.base_learning_rate + if 'accumulate_grad_batches' in lightning_config.trainer: + accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches + else: + accumulate_grad_batches = 1 + rank_zero_print(f"accumulate_grad_batches = {accumulate_grad_batches}") + lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches + model.learning_rate = base_lr + rank_zero_print("++++ NOT USING LR SCALING ++++") + rank_zero_print(f"Setting learning rate to {model.learning_rate:.2e}") + + # run training loop + if opt.resume and not opt.resume_weights_only: + trainer.fit(model, data, ckpt_path=opt.resume) + else: + trainer.fit(model, data) diff --git a/upload_huggingface.py b/upload_huggingface.py new file mode 100644 index 0000000000000000000000000000000000000000..d6dd5ff55205368b0b6ba4433077b8713dbc7488 --- /dev/null +++ b/upload_huggingface.py @@ -0,0 +1,27 @@ +from huggingface_hub import HfApi, HfFolder, Repository, create_repo, upload_file +import os + +# 登录到 Hugging Face +from huggingface_hub import login +login() + +# 创建或指定现有的 Repository +repo_name = "PRM" +username = "LTT" +repo_id = f"{username}/{repo_name}" + +# 创建仓库(如果它不存在) +create_repo(repo_id, exist_ok=True) +# 上传模型文件 +model_path = "/hpc2hdd/home/jlin695/code/For_debug/intrinsic-LRM/new_ckpt/camera_random_step=00006400-nerf-12wdata.ckpt" +upload_file(path_or_fileobj=model_path, path_in_repo="final_ckpt.ckpt", repo_id=repo_id) + +# # 上传数据文件 +data_path = "/hpc2hdd/home/jlin695/data/pretrained_model/models--TencentARC--InstantMesh/diffusion_pytorch_model.bin" +upload_file(path_or_fileobj=data_path, path_in_repo="diffusion_pytorch_model.bin", repo_id=repo_id) + +# # 上传数据文件 +# data_path = "/hpc2hdd/home/jlin695/data/env_map/data/env_map_light_large.tar.gz" +# upload_file(path_or_fileobj=data_path, path_in_repo="env_map_light_large.tar.gz", repo_id=repo_id) + +print("模型和数据文件已上传到 Hugging Face。") \ No newline at end of file diff --git a/zero123plus/model.py b/zero123plus/model.py new file mode 100644 index 0000000000000000000000000000000000000000..1655c45f2df23640d9a9270b6240b3453557599e --- /dev/null +++ b/zero123plus/model.py @@ -0,0 +1,272 @@ +import os +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +import pytorch_lightning as pl +from tqdm import tqdm +from torchvision.transforms import v2 +from torchvision.utils import make_grid, save_image +from einops import rearrange + +from src.utils.train_util import instantiate_from_config +from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, DDPMScheduler, UNet2DConditionModel +from .pipeline import RefOnlyNoisedUNet + + +def scale_latents(latents): + latents = (latents - 0.22) * 0.75 + return latents + + +def unscale_latents(latents): + latents = latents / 0.75 + 0.22 + return latents + + +def scale_image(image): + image = image * 0.5 / 0.8 + return image + + +def unscale_image(image): + image = image / 0.5 * 0.8 + return image + + +def extract_into_tensor(a, t, x_shape): + b, *_ = t.shape + out = a.gather(-1, t) + return out.reshape(b, *((1,) * (len(x_shape) - 1))) + + +class MVDiffusion(pl.LightningModule): + def __init__( + self, + stable_diffusion_config, + drop_cond_prob=0.1, + ): + super(MVDiffusion, self).__init__() + + self.drop_cond_prob = drop_cond_prob + + self.register_schedule() + + # init modules + pipeline = DiffusionPipeline.from_pretrained(**stable_diffusion_config) + pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( + pipeline.scheduler.config, timestep_spacing='trailing' + ) + self.pipeline = pipeline + + train_sched = DDPMScheduler.from_config(self.pipeline.scheduler.config) + if isinstance(self.pipeline.unet, UNet2DConditionModel): + self.pipeline.unet = RefOnlyNoisedUNet(self.pipeline.unet, train_sched, self.pipeline.scheduler) + + self.train_scheduler = train_sched # use ddpm scheduler during training + + self.unet = pipeline.unet + + # validation output buffer + self.validation_step_outputs = [] + + def register_schedule(self): + self.num_timesteps = 1000 + + # replace scaled_linear schedule with linear schedule as Zero123++ + beta_start = 0.00085 + beta_end = 0.0120 + betas = torch.linspace(beta_start, beta_end, 1000, dtype=torch.float32) + + alphas = 1. - betas + alphas_cumprod = torch.cumprod(alphas, dim=0) + alphas_cumprod_prev = torch.cat([torch.ones(1, dtype=torch.float64), alphas_cumprod[:-1]], 0) + + self.register_buffer('betas', betas.float()) + self.register_buffer('alphas_cumprod', alphas_cumprod.float()) + self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev.float()) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod).float()) + self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1 - alphas_cumprod).float()) + + self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod).float()) + self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1).float()) + + def on_fit_start(self): + device = torch.device(f'cuda:{self.global_rank}') + self.pipeline.to(device) + if self.global_rank == 0: + os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True) + os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True) + + def prepare_batch_data(self, batch): + # prepare stable diffusion input + cond_imgs = batch['cond_imgs'] # (B, C, H, W) + cond_imgs = cond_imgs.to(self.device) + + # random resize the condition image + cond_size = np.random.randint(128, 513) + cond_imgs = v2.functional.resize(cond_imgs, cond_size, interpolation=3, antialias=True).clamp(0, 1) + + target_imgs = batch['target_imgs'] # (B, 6, C, H, W) + target_imgs = v2.functional.resize(target_imgs, 320, interpolation=3, antialias=True).clamp(0, 1) + target_imgs = rearrange(target_imgs, 'b (x y) c h w -> b c (x h) (y w)', x=3, y=2) # (B, C, 3H, 2W) + target_imgs = target_imgs.to(self.device) + + return cond_imgs, target_imgs + + @torch.no_grad() + def forward_vision_encoder(self, images): + dtype = next(self.pipeline.vision_encoder.parameters()).dtype + image_pil = [v2.functional.to_pil_image(images[i]) for i in range(images.shape[0])] + image_pt = self.pipeline.feature_extractor_clip(images=image_pil, return_tensors="pt").pixel_values + image_pt = image_pt.to(device=self.device, dtype=dtype) + global_embeds = self.pipeline.vision_encoder(image_pt, output_hidden_states=False).image_embeds + global_embeds = global_embeds.unsqueeze(-2) + + encoder_hidden_states = self.pipeline._encode_prompt("", self.device, 1, False)[0] + ramp = global_embeds.new_tensor(self.pipeline.config.ramping_coefficients).unsqueeze(-1) + encoder_hidden_states = encoder_hidden_states + global_embeds * ramp + + return encoder_hidden_states + + @torch.no_grad() + def encode_condition_image(self, images): + dtype = next(self.pipeline.vae.parameters()).dtype + image_pil = [v2.functional.to_pil_image(images[i]) for i in range(images.shape[0])] + image_pt = self.pipeline.feature_extractor_vae(images=image_pil, return_tensors="pt").pixel_values + image_pt = image_pt.to(device=self.device, dtype=dtype) + latents = self.pipeline.vae.encode(image_pt).latent_dist.sample() + return latents + + @torch.no_grad() + def encode_target_images(self, images): + dtype = next(self.pipeline.vae.parameters()).dtype + # equals to scaling images to [-1, 1] first and then call scale_image + images = (images - 0.5) / 0.8 # [-0.625, 0.625] + posterior = self.pipeline.vae.encode(images.to(dtype)).latent_dist + latents = posterior.sample() * self.pipeline.vae.config.scaling_factor + latents = scale_latents(latents) + return latents + + def forward_unet(self, latents, t, prompt_embeds, cond_latents): + dtype = next(self.pipeline.unet.parameters()).dtype + latents = latents.to(dtype) + prompt_embeds = prompt_embeds.to(dtype) + cond_latents = cond_latents.to(dtype) + cross_attention_kwargs = dict(cond_lat=cond_latents) + pred_noise = self.pipeline.unet( + latents, + t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=cross_attention_kwargs, + return_dict=False, + )[0] + return pred_noise + + def predict_start_from_z_and_v(self, x_t, t, v): + return ( + extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t - + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v + ) + + def get_v(self, x, noise, t): + return ( + extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise - + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x + ) + + def training_step(self, batch, batch_idx): + # get input + cond_imgs, target_imgs = self.prepare_batch_data(batch) + + # sample random timestep + B = cond_imgs.shape[0] + + t = torch.randint(0, self.num_timesteps, size=(B,)).long().to(self.device) + + # classifier-free guidance + if np.random.rand() < self.drop_cond_prob: + prompt_embeds = self.pipeline._encode_prompt([""]*B, self.device, 1, False) + cond_latents = self.encode_condition_image(torch.zeros_like(cond_imgs)) + else: + prompt_embeds = self.forward_vision_encoder(cond_imgs) + cond_latents = self.encode_condition_image(cond_imgs) + + latents = self.encode_target_images(target_imgs) + noise = torch.randn_like(latents) + latents_noisy = self.train_scheduler.add_noise(latents, noise, t) + + v_pred = self.forward_unet(latents_noisy, t, prompt_embeds, cond_latents) + v_target = self.get_v(latents, noise, t) + + loss, loss_dict = self.compute_loss(v_pred, v_target) + + # logging + self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True) + self.log("global_step", self.global_step, prog_bar=True, logger=True, on_step=True, on_epoch=False) + lr = self.optimizers().param_groups[0]['lr'] + self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) + + if self.global_step % 500 == 0 and self.global_rank == 0: + with torch.no_grad(): + latents_pred = self.predict_start_from_z_and_v(latents_noisy, t, v_pred) + + latents = unscale_latents(latents_pred) + images = unscale_image(self.pipeline.vae.decode(latents / self.pipeline.vae.config.scaling_factor, return_dict=False)[0]) # [-1, 1] + images = (images * 0.5 + 0.5).clamp(0, 1) + images = torch.cat([target_imgs, images], dim=-2) + + grid = make_grid(images, nrow=images.shape[0], normalize=True, value_range=(0, 1)) + save_image(grid, os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png')) + + return loss + + def compute_loss(self, noise_pred, noise_gt): + loss = F.mse_loss(noise_pred, noise_gt) + + prefix = 'train' + loss_dict = {} + loss_dict.update({f'{prefix}/loss': loss}) + + return loss, loss_dict + + @torch.no_grad() + def validation_step(self, batch, batch_idx): + # get input + cond_imgs, target_imgs = self.prepare_batch_data(batch) + + images_pil = [v2.functional.to_pil_image(cond_imgs[i]) for i in range(cond_imgs.shape[0])] + + outputs = [] + for cond_img in images_pil: + latent = self.pipeline(cond_img, num_inference_steps=75, output_type='latent').images + image = unscale_image(self.pipeline.vae.decode(latent / self.pipeline.vae.config.scaling_factor, return_dict=False)[0]) # [-1, 1] + image = (image * 0.5 + 0.5).clamp(0, 1) + outputs.append(image) + outputs = torch.cat(outputs, dim=0).to(self.device) + images = torch.cat([target_imgs, outputs], dim=-2) + + self.validation_step_outputs.append(images) + + @torch.no_grad() + def on_validation_epoch_end(self): + images = torch.cat(self.validation_step_outputs, dim=0) + + all_images = self.all_gather(images) + all_images = rearrange(all_images, 'r b c h w -> (r b) c h w') + + if self.global_rank == 0: + grid = make_grid(all_images, nrow=8, normalize=True, value_range=(0, 1)) + save_image(grid, os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png')) + + self.validation_step_outputs.clear() # free memory + + def configure_optimizers(self): + lr = self.learning_rate + + optimizer = torch.optim.AdamW(self.unet.parameters(), lr=lr) + scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 3000, eta_min=lr/4) + + return {'optimizer': optimizer, 'lr_scheduler': scheduler} diff --git a/zero123plus/pipeline.py b/zero123plus/pipeline.py new file mode 100644 index 0000000000000000000000000000000000000000..0088218346b36f07662d051670e51c658df59f1f --- /dev/null +++ b/zero123plus/pipeline.py @@ -0,0 +1,406 @@ +from typing import Any, Dict, Optional +from diffusers.models import AutoencoderKL, UNet2DConditionModel +from diffusers.schedulers import KarrasDiffusionSchedulers + +import numpy +import torch +import torch.nn as nn +import torch.utils.checkpoint +import torch.distributed +import transformers +from collections import OrderedDict +from PIL import Image +from torchvision import transforms +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer + +import diffusers +from diffusers import ( + AutoencoderKL, + DDPMScheduler, + DiffusionPipeline, + EulerAncestralDiscreteScheduler, + UNet2DConditionModel, + ImagePipelineOutput +) +from diffusers.image_processor import VaeImageProcessor +from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0 +from diffusers.utils.import_utils import is_xformers_available + + +def to_rgb_image(maybe_rgba: Image.Image): + if maybe_rgba.mode == 'RGB': + return maybe_rgba + elif maybe_rgba.mode == 'RGBA': + rgba = maybe_rgba + img = numpy.random.randint(255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8) + img = Image.fromarray(img, 'RGB') + img.paste(rgba, mask=rgba.getchannel('A')) + return img + else: + raise ValueError("Unsupported image type.", maybe_rgba.mode) + + +class ReferenceOnlyAttnProc(torch.nn.Module): + def __init__( + self, + chained_proc, + enabled=False, + name=None + ) -> None: + super().__init__() + self.enabled = enabled + self.chained_proc = chained_proc + self.name = name + + def __call__( + self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, + mode="w", ref_dict: dict = None, is_cfg_guidance = False + ) -> Any: + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + if self.enabled and is_cfg_guidance: + res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask) + hidden_states = hidden_states[1:] + encoder_hidden_states = encoder_hidden_states[1:] + if self.enabled: + if mode == 'w': + ref_dict[self.name] = encoder_hidden_states + elif mode == 'r': + encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1) + elif mode == 'm': + encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1) + else: + assert False, mode + res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask) + if self.enabled and is_cfg_guidance: + res = torch.cat([res0, res]) + return res + + +class RefOnlyNoisedUNet(torch.nn.Module): + def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None: + super().__init__() + self.unet = unet + self.train_sched = train_sched + self.val_sched = val_sched + + unet_lora_attn_procs = dict() + for name, _ in unet.attn_processors.items(): + if torch.__version__ >= '2.0': + default_attn_proc = AttnProcessor2_0() + elif is_xformers_available(): + default_attn_proc = XFormersAttnProcessor() + else: + default_attn_proc = AttnProcessor() + unet_lora_attn_procs[name] = ReferenceOnlyAttnProc( + default_attn_proc, enabled=name.endswith("attn1.processor"), name=name + ) + unet.set_attn_processor(unet_lora_attn_procs) + + def __getattr__(self, name: str): + try: + return super().__getattr__(name) + except AttributeError: + return getattr(self.unet, name) + + def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs): + if is_cfg_guidance: + encoder_hidden_states = encoder_hidden_states[1:] + class_labels = class_labels[1:] + self.unet( + noisy_cond_lat, timestep, + encoder_hidden_states=encoder_hidden_states, + class_labels=class_labels, + cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict), + **kwargs + ) + + def forward( + self, sample, timestep, encoder_hidden_states, class_labels=None, + *args, cross_attention_kwargs, + down_block_res_samples=None, mid_block_res_sample=None, + **kwargs + ): + cond_lat = cross_attention_kwargs['cond_lat'] + is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False) + noise = torch.randn_like(cond_lat) + if self.training: + noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep) + noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep) + else: + noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1)) + noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1)) + ref_dict = {} + self.forward_cond( + noisy_cond_lat, timestep, + encoder_hidden_states, class_labels, + ref_dict, is_cfg_guidance, **kwargs + ) + weight_dtype = self.unet.dtype + return self.unet( + sample, timestep, + encoder_hidden_states, *args, + class_labels=class_labels, + cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance), + down_block_additional_residuals=[ + sample.to(dtype=weight_dtype) for sample in down_block_res_samples + ] if down_block_res_samples is not None else None, + mid_block_additional_residual=( + mid_block_res_sample.to(dtype=weight_dtype) + if mid_block_res_sample is not None else None + ), + **kwargs + ) + + +def scale_latents(latents): + latents = (latents - 0.22) * 0.75 + return latents + + +def unscale_latents(latents): + latents = latents / 0.75 + 0.22 + return latents + + +def scale_image(image): + image = image * 0.5 / 0.8 + return image + + +def unscale_image(image): + image = image / 0.5 * 0.8 + return image + + +class DepthControlUNet(torch.nn.Module): + def __init__(self, unet: RefOnlyNoisedUNet, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0) -> None: + super().__init__() + self.unet = unet + if controlnet is None: + self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet) + else: + self.controlnet = controlnet + DefaultAttnProc = AttnProcessor2_0 + if is_xformers_available(): + DefaultAttnProc = XFormersAttnProcessor + self.controlnet.set_attn_processor(DefaultAttnProc()) + self.conditioning_scale = conditioning_scale + + def __getattr__(self, name: str): + try: + return super().__getattr__(name) + except AttributeError: + return getattr(self.unet, name) + + def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs): + cross_attention_kwargs = dict(cross_attention_kwargs) + control_depth = cross_attention_kwargs.pop('control_depth') + down_block_res_samples, mid_block_res_sample = self.controlnet( + sample, + timestep, + encoder_hidden_states=encoder_hidden_states, + controlnet_cond=control_depth, + conditioning_scale=self.conditioning_scale, + return_dict=False, + ) + return self.unet( + sample, + timestep, + encoder_hidden_states=encoder_hidden_states, + down_block_res_samples=down_block_res_samples, + mid_block_res_sample=mid_block_res_sample, + cross_attention_kwargs=cross_attention_kwargs + ) + + +class ModuleListDict(torch.nn.Module): + def __init__(self, procs: dict) -> None: + super().__init__() + self.keys = sorted(procs.keys()) + self.values = torch.nn.ModuleList(procs[k] for k in self.keys) + + def __getitem__(self, key): + return self.values[self.keys.index(key)] + + +class SuperNet(torch.nn.Module): + def __init__(self, state_dict: Dict[str, torch.Tensor]): + super().__init__() + state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys())) + self.layers = torch.nn.ModuleList(state_dict.values()) + self.mapping = dict(enumerate(state_dict.keys())) + self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())} + + # .processor for unet, .self_attn for text encoder + self.split_keys = [".processor", ".self_attn"] + + # we add a hook to state_dict() and load_state_dict() so that the + # naming fits with `unet.attn_processors` + def map_to(module, state_dict, *args, **kwargs): + new_state_dict = {} + for key, value in state_dict.items(): + num = int(key.split(".")[1]) # 0 is always "layers" + new_key = key.replace(f"layers.{num}", module.mapping[num]) + new_state_dict[new_key] = value + + return new_state_dict + + def remap_key(key, state_dict): + for k in self.split_keys: + if k in key: + return key.split(k)[0] + k + return key.split('.')[0] + + def map_from(module, state_dict, *args, **kwargs): + all_keys = list(state_dict.keys()) + for key in all_keys: + replace_key = remap_key(key, state_dict) + new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}") + state_dict[new_key] = state_dict[key] + del state_dict[key] + + self._register_state_dict_hook(map_to) + self._register_load_state_dict_pre_hook(map_from, with_module=True) + + +class Zero123PlusPipeline(diffusers.StableDiffusionPipeline): + tokenizer: transformers.CLIPTokenizer + text_encoder: transformers.CLIPTextModel + vision_encoder: transformers.CLIPVisionModelWithProjection + + feature_extractor_clip: transformers.CLIPImageProcessor + unet: UNet2DConditionModel + scheduler: diffusers.schedulers.KarrasDiffusionSchedulers + + vae: AutoencoderKL + ramping: nn.Linear + + feature_extractor_vae: transformers.CLIPImageProcessor + + depth_transforms_multi = transforms.Compose([ + transforms.ToTensor(), + transforms.Normalize([0.5], [0.5]) + ]) + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + unet: UNet2DConditionModel, + scheduler: KarrasDiffusionSchedulers, + vision_encoder: transformers.CLIPVisionModelWithProjection, + feature_extractor_clip: CLIPImageProcessor, + feature_extractor_vae: CLIPImageProcessor, + ramping_coefficients: Optional[list] = None, + safety_checker=None, + ): + DiffusionPipeline.__init__(self) + + self.register_modules( + vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, + unet=unet, scheduler=scheduler, safety_checker=None, + vision_encoder=vision_encoder, + feature_extractor_clip=feature_extractor_clip, + feature_extractor_vae=feature_extractor_vae + ) + self.register_to_config(ramping_coefficients=ramping_coefficients) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def prepare(self): + train_sched = DDPMScheduler.from_config(self.scheduler.config) + if isinstance(self.unet, UNet2DConditionModel): + self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval() + + def add_controlnet(self, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0): + self.prepare() + self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale) + return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)])) + + def encode_condition_image(self, image: torch.Tensor): + image = self.vae.encode(image).latent_dist.sample() + return image + + @torch.no_grad() + def __call__( + self, + image: Image.Image = None, + prompt = "", + *args, + num_images_per_prompt: Optional[int] = 1, + guidance_scale=4.0, + depth_image: Image.Image = None, + output_type: Optional[str] = "pil", + width=640, + height=960, + num_inference_steps=28, + return_dict=True, + **kwargs + ): + self.prepare() + if image is None: + raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.") + assert not isinstance(image, torch.Tensor) + image = to_rgb_image(image) + image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values + image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values + if depth_image is not None and hasattr(self.unet, "controlnet"): + depth_image = to_rgb_image(depth_image) + depth_image = self.depth_transforms_multi(depth_image).to( + device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype + ) + image = image_1.to(device=self.vae.device, dtype=self.vae.dtype) + image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype) + cond_lat = self.encode_condition_image(image) + if guidance_scale > 1: + negative_lat = self.encode_condition_image(torch.zeros_like(image)) + cond_lat = torch.cat([negative_lat, cond_lat]) + encoded = self.vision_encoder(image_2, output_hidden_states=False) + global_embeds = encoded.image_embeds + global_embeds = global_embeds.unsqueeze(-2) + + if hasattr(self, "encode_prompt"): + encoder_hidden_states = self.encode_prompt( + prompt, + self.device, + num_images_per_prompt, + False + )[0] + else: + encoder_hidden_states = self._encode_prompt( + prompt, + self.device, + num_images_per_prompt, + False + ) + ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) + encoder_hidden_states = encoder_hidden_states + global_embeds * ramp + cak = dict(cond_lat=cond_lat) + if hasattr(self.unet, "controlnet"): + cak['control_depth'] = depth_image + latents: torch.Tensor = super().__call__( + None, + *args, + cross_attention_kwargs=cak, + guidance_scale=guidance_scale, + num_images_per_prompt=num_images_per_prompt, + prompt_embeds=encoder_hidden_states, + num_inference_steps=num_inference_steps, + output_type='latent', + width=width, + height=height, + **kwargs + ).images + latents = unscale_latents(latents) + if not output_type == "latent": + image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]) + else: + image = latents + + image = self.image_processor.postprocess(image, output_type=output_type) + if not return_dict: + return (image,) + + return ImagePipelineOutput(images=image)