# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. import os import numpy as np import torch import nvdiffrast.torch as dr from . import util from . import renderutils as ru ###################################################################################### # Utility functions ###################################################################################### class cubemap_mip(torch.autograd.Function): @staticmethod def forward(ctx, cubemap): return util.avg_pool_nhwc(cubemap, (2,2)) @staticmethod def backward(ctx, dout): res = dout.shape[1] * 2 out = torch.zeros(6, res, res, dout.shape[-1], dtype=torch.float32, device="cuda") for s in range(6): gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"), torch.linspace(-1.0 + 1.0 / res, 1.0 - 1.0 / res, res, device="cuda"), indexing='ij') v = util.safe_normalize(util.cube_to_dir(s, gx, gy)) out[s, ...] = dr.texture(dout[None, ...] * 0.25, v[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube') return out ###################################################################################### # Split-sum environment map light source with automatic mipmap generation ###################################################################################### class EnvironmentLight(torch.nn.Module): LIGHT_MIN_RES = 16 MIN_ROUGHNESS = 0.08 MAX_ROUGHNESS = 0.5 def __init__(self, base): super(EnvironmentLight, self).__init__() self.mtx = None self.base = torch.nn.Parameter(base.clone().detach(), requires_grad=True) self.register_parameter('env_base', self.base) def xfm(self, mtx): self.mtx = mtx def clone(self): return EnvironmentLight(self.base.clone().detach()) def clamp_(self, min=None, max=None): self.base.clamp_(min, max) def get_mip(self, roughness): return torch.where(roughness < self.MAX_ROUGHNESS , (torch.clamp(roughness, self.MIN_ROUGHNESS, self.MAX_ROUGHNESS) - self.MIN_ROUGHNESS) / (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) * (len(self.specular) - 2) , (torch.clamp(roughness, self.MAX_ROUGHNESS, 1.0) - self.MAX_ROUGHNESS) / (1.0 - self.MAX_ROUGHNESS) + len(self.specular) - 2) def build_mips(self, cutoff=0.99): self.specular = [self.base] while self.specular[-1].shape[1] > self.LIGHT_MIN_RES: self.specular += [cubemap_mip.apply(self.specular[-1])] self.diffuse = ru.diffuse_cubemap(self.specular[-1]) for idx in range(len(self.specular) - 1): roughness = (idx / (len(self.specular) - 2)) * (self.MAX_ROUGHNESS - self.MIN_ROUGHNESS) + self.MIN_ROUGHNESS self.specular[idx] = ru.specular_cubemap(self.specular[idx], roughness, cutoff) self.specular[-1] = ru.specular_cubemap(self.specular[-1], 1.0, cutoff) def regularizer(self): white = (self.base[..., 0:1] + self.base[..., 1:2] + self.base[..., 2:3]) / 3.0 return torch.mean(torch.abs(self.base - white)) def shade(self, gb_pos, gb_normal, kd, ks, view_pos, specular=True): wo = util.safe_normalize(view_pos - gb_pos) if specular: roughness = ks[..., 1:2] # y component metallic = ks[..., 2:3] # z component spec_col = (1.0 - metallic)*0.04 + kd * metallic diff_col = kd * (1.0 - metallic) else: diff_col = kd reflvec = util.safe_normalize(util.reflect(wo, gb_normal)) nrmvec = gb_normal if self.mtx is not None: # Rotate lookup mtx = torch.as_tensor(self.mtx, dtype=torch.float32, device='cuda') reflvec = ru.xfm_vectors(reflvec.view(reflvec.shape[0], reflvec.shape[1] * reflvec.shape[2], reflvec.shape[3]), mtx).view(*reflvec.shape) nrmvec = ru.xfm_vectors(nrmvec.view(nrmvec.shape[0], nrmvec.shape[1] * nrmvec.shape[2], nrmvec.shape[3]), mtx).view(*nrmvec.shape) # Diffuse lookup diffuse = dr.texture(self.diffuse[None, ...], nrmvec.contiguous(), filter_mode='linear', boundary_mode='cube') shaded_col = diffuse * diff_col if specular: # Lookup FG term from lookup texture NdotV = torch.clamp(util.dot(wo, gb_normal), min=1e-4) fg_uv = torch.cat((NdotV, roughness), dim=-1) if not hasattr(self, '_FG_LUT'): self._FG_LUT = torch.as_tensor(np.fromfile('data/irrmaps/bsdf_256_256.bin', dtype=np.float32).reshape(1, 256, 256, 2), dtype=torch.float32, device='cuda') fg_lookup = dr.texture(self._FG_LUT, fg_uv, filter_mode='linear', boundary_mode='clamp') # Roughness adjusted specular env lookup miplevel = self.get_mip(roughness) spec = dr.texture(self.specular[0][None, ...], reflvec.contiguous(), mip=list(m[None, ...] for m in self.specular[1:]), mip_level_bias=miplevel[..., 0], filter_mode='linear-mipmap-linear', boundary_mode='cube') # Compute aggregate lighting reflectance = spec_col * fg_lookup[...,0:1] + fg_lookup[...,1:2] shaded_col += spec * reflectance return shaded_col * (1.0 - ks[..., 0:1]) # Modulate by hemisphere visibility ###################################################################################### # Load and store ###################################################################################### # Load from latlong .HDR file def _load_env_hdr(fn, scale=1.0): latlong_img = torch.tensor(util.load_image(fn), dtype=torch.float32, device='cuda')*scale cubemap = util.latlong_to_cubemap(latlong_img, [512, 512]) l = EnvironmentLight(cubemap) l.build_mips() return l def load_env(fn, scale=1.0): if os.path.splitext(fn)[1].lower() == ".hdr": return _load_env_hdr(fn, scale) else: assert False, "Unknown envlight extension %s" % os.path.splitext(fn)[1] def save_env_map(fn, light): assert isinstance(light, EnvironmentLight), "Can only save EnvironmentLight currently" if isinstance(light, EnvironmentLight): color = util.cubemap_to_latlong(light.base, [512, 1024]) util.save_image_raw(fn, color.detach().cpu().numpy()) ###################################################################################### # Create trainable env map with random initialization ###################################################################################### def create_trainable_env_rnd(base_res, scale=0.5, bias=0.25): base = torch.rand(6, base_res, base_res, 3, dtype=torch.float32, device='cuda') * scale + bias return EnvironmentLight(base)