# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. import math import torch NORMAL_THRESHOLD = 0.1 ################################################################################ # Vector utility functions ################################################################################ def _dot(x, y): return torch.sum(x*y, -1, keepdim=True) def _reflect(x, n): return 2*_dot(x, n)*n - x def _safe_normalize(x): return torch.nn.functional.normalize(x, dim = -1) def _bend_normal(view_vec, smooth_nrm, geom_nrm, two_sided_shading): # Swap normal direction for backfacing surfaces if two_sided_shading: smooth_nrm = torch.where(_dot(geom_nrm, view_vec) > 0, smooth_nrm, -smooth_nrm) geom_nrm = torch.where(_dot(geom_nrm, view_vec) > 0, geom_nrm, -geom_nrm) t = torch.clamp(_dot(view_vec, smooth_nrm) / NORMAL_THRESHOLD, min=0, max=1) return torch.lerp(geom_nrm, smooth_nrm, t) def _perturb_normal(perturbed_nrm, smooth_nrm, smooth_tng, opengl): smooth_bitang = _safe_normalize(torch.cross(smooth_tng, smooth_nrm)) if opengl: shading_nrm = smooth_tng * perturbed_nrm[..., 0:1] - smooth_bitang * perturbed_nrm[..., 1:2] + smooth_nrm * torch.clamp(perturbed_nrm[..., 2:3], min=0.0) else: shading_nrm = smooth_tng * perturbed_nrm[..., 0:1] + smooth_bitang * perturbed_nrm[..., 1:2] + smooth_nrm * torch.clamp(perturbed_nrm[..., 2:3], min=0.0) return _safe_normalize(shading_nrm) def bsdf_prepare_shading_normal(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl): smooth_nrm = _safe_normalize(smooth_nrm) smooth_tng = _safe_normalize(smooth_tng) view_vec = _safe_normalize(view_pos - pos) shading_nrm = _perturb_normal(perturbed_nrm, smooth_nrm, smooth_tng, opengl) return _bend_normal(view_vec, shading_nrm, geom_nrm, two_sided_shading) ################################################################################ # Simple lambertian diffuse BSDF ################################################################################ def bsdf_lambert(nrm, wi): return torch.clamp(_dot(nrm, wi), min=0.0) / math.pi ################################################################################ # Frostbite diffuse ################################################################################ def bsdf_frostbite(nrm, wi, wo, linearRoughness): wiDotN = _dot(wi, nrm) woDotN = _dot(wo, nrm) h = _safe_normalize(wo + wi) wiDotH = _dot(wi, h) energyBias = 0.5 * linearRoughness energyFactor = 1.0 - (0.51 / 1.51) * linearRoughness f90 = energyBias + 2.0 * wiDotH * wiDotH * linearRoughness f0 = 1.0 wiScatter = bsdf_fresnel_shlick(f0, f90, wiDotN) woScatter = bsdf_fresnel_shlick(f0, f90, woDotN) res = wiScatter * woScatter * energyFactor return torch.where((wiDotN > 0.0) & (woDotN > 0.0), res, torch.zeros_like(res)) ################################################################################ # Phong specular, loosely based on mitsuba implementation ################################################################################ def bsdf_phong(nrm, wo, wi, N): dp_r = torch.clamp(_dot(_reflect(wo, nrm), wi), min=0.0, max=1.0) dp_l = torch.clamp(_dot(nrm, wi), min=0.0, max=1.0) return (dp_r ** N) * dp_l * (N + 2) / (2 * math.pi) ################################################################################ # PBR's implementation of GGX specular ################################################################################ specular_epsilon = 1e-4 def bsdf_fresnel_shlick(f0, f90, cosTheta): _cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon) return f0 + (f90 - f0) * (1.0 - _cosTheta) ** 5.0 def bsdf_ndf_ggx(alphaSqr, cosTheta): _cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon) d = (_cosTheta * alphaSqr - _cosTheta) * _cosTheta + 1 return alphaSqr / (d * d * math.pi) def bsdf_lambda_ggx(alphaSqr, cosTheta): _cosTheta = torch.clamp(cosTheta, min=specular_epsilon, max=1.0 - specular_epsilon) cosThetaSqr = _cosTheta * _cosTheta tanThetaSqr = (1.0 - cosThetaSqr) / cosThetaSqr res = 0.5 * (torch.sqrt(1 + alphaSqr * tanThetaSqr) - 1.0) return res def bsdf_masking_smith_ggx_correlated(alphaSqr, cosThetaI, cosThetaO): lambdaI = bsdf_lambda_ggx(alphaSqr, cosThetaI) lambdaO = bsdf_lambda_ggx(alphaSqr, cosThetaO) return 1 / (1 + lambdaI + lambdaO) def bsdf_pbr_specular(col, nrm, wo, wi, alpha, min_roughness=0.08): _alpha = torch.clamp(alpha, min=min_roughness*min_roughness, max=1.0) alphaSqr = _alpha * _alpha h = _safe_normalize(wo + wi) woDotN = _dot(wo, nrm) wiDotN = _dot(wi, nrm) woDotH = _dot(wo, h) nDotH = _dot(nrm, h) D = bsdf_ndf_ggx(alphaSqr, nDotH) G = bsdf_masking_smith_ggx_correlated(alphaSqr, woDotN, wiDotN) F = bsdf_fresnel_shlick(col, 1, woDotH) w = F * D * G * 0.25 / torch.clamp(woDotN, min=specular_epsilon) frontfacing = (woDotN > specular_epsilon) & (wiDotN > specular_epsilon) return torch.where(frontfacing, w, torch.zeros_like(w)) def bsdf_pbr(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF): wo = _safe_normalize(view_pos - pos) wi = _safe_normalize(light_pos - pos) spec_str = arm[..., 0:1] # x component roughness = arm[..., 1:2] # y component metallic = arm[..., 2:3] # z component ks = (0.04 * (1.0 - metallic) + kd * metallic) * (1 - spec_str) kd = kd * (1.0 - metallic) if BSDF == 0: diffuse = kd * bsdf_lambert(nrm, wi) else: diffuse = kd * bsdf_frostbite(nrm, wi, wo, roughness) specular = bsdf_pbr_specular(ks, nrm, wo, wi, roughness*roughness, min_roughness=min_roughness) return diffuse + specular