# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. import os import numpy as np import torch from . import obj from . import util ###################################################################################### # Base mesh class ###################################################################################### class Mesh: def __init__(self, v_pos=None, t_pos_idx=None, v_nrm=None, t_nrm_idx=None, v_tex=None, t_tex_idx=None, v_tng=None, t_tng_idx=None, material=None, base=None): self.v_pos = v_pos self.v_nrm = v_nrm self.v_tex = v_tex self.v_tng = v_tng self.t_pos_idx = t_pos_idx self.t_nrm_idx = t_nrm_idx self.t_tex_idx = t_tex_idx self.t_tng_idx = t_tng_idx self.material = material if base is not None: self.copy_none(base) def copy_none(self, other): if self.v_pos is None: self.v_pos = other.v_pos if self.t_pos_idx is None: self.t_pos_idx = other.t_pos_idx if self.v_nrm is None: self.v_nrm = other.v_nrm if self.t_nrm_idx is None: self.t_nrm_idx = other.t_nrm_idx if self.v_tex is None: self.v_tex = other.v_tex if self.t_tex_idx is None: self.t_tex_idx = other.t_tex_idx if self.v_tng is None: self.v_tng = other.v_tng if self.t_tng_idx is None: self.t_tng_idx = other.t_tng_idx if self.material is None: self.material = other.material def clone(self): out = Mesh(base=self) if out.v_pos is not None: out.v_pos = out.v_pos.clone().detach() if out.t_pos_idx is not None: out.t_pos_idx = out.t_pos_idx.clone().detach() if out.v_nrm is not None: out.v_nrm = out.v_nrm.clone().detach() if out.t_nrm_idx is not None: out.t_nrm_idx = out.t_nrm_idx.clone().detach() if out.v_tex is not None: out.v_tex = out.v_tex.clone().detach() if out.t_tex_idx is not None: out.t_tex_idx = out.t_tex_idx.clone().detach() if out.v_tng is not None: out.v_tng = out.v_tng.clone().detach() if out.t_tng_idx is not None: out.t_tng_idx = out.t_tng_idx.clone().detach() return out ###################################################################################### # Mesh loeading helper ###################################################################################### def load_mesh(filename, mtl_override=None): name, ext = os.path.splitext(filename) if ext == ".obj": return obj.load_obj(filename, clear_ks=True, mtl_override=mtl_override) assert False, "Invalid mesh file extension" ###################################################################################### # Compute AABB ###################################################################################### def aabb(mesh): return torch.min(mesh.v_pos, dim=0).values, torch.max(mesh.v_pos, dim=0).values ###################################################################################### # Compute unique edge list from attribute/vertex index list ###################################################################################### def compute_edges(attr_idx, return_inverse=False): with torch.no_grad(): # Create all edges, packed by triangle all_edges = torch.cat(( torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1), torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1), torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1), ), dim=-1).view(-1, 2) # Swap edge order so min index is always first order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) sorted_edges = torch.cat(( torch.gather(all_edges, 1, order), torch.gather(all_edges, 1, 1 - order) ), dim=-1) # Eliminate duplicates and return inverse mapping return torch.unique(sorted_edges, dim=0, return_inverse=return_inverse) ###################################################################################### # Compute unique edge to face mapping from attribute/vertex index list ###################################################################################### def compute_edge_to_face_mapping(attr_idx, return_inverse=False): with torch.no_grad(): # Get unique edges # Create all edges, packed by triangle all_edges = torch.cat(( torch.stack((attr_idx[:, 0], attr_idx[:, 1]), dim=-1), torch.stack((attr_idx[:, 1], attr_idx[:, 2]), dim=-1), torch.stack((attr_idx[:, 2], attr_idx[:, 0]), dim=-1), ), dim=-1).view(-1, 2) # Swap edge order so min index is always first order = (all_edges[:, 0] > all_edges[:, 1]).long().unsqueeze(dim=1) sorted_edges = torch.cat(( torch.gather(all_edges, 1, order), torch.gather(all_edges, 1, 1 - order) ), dim=-1) # Elliminate duplicates and return inverse mapping unique_edges, idx_map = torch.unique(sorted_edges, dim=0, return_inverse=True) tris = torch.arange(attr_idx.shape[0]).repeat_interleave(3).cuda() tris_per_edge = torch.zeros((unique_edges.shape[0], 2), dtype=torch.int64).cuda() # Compute edge to face table mask0 = order[:,0] == 0 mask1 = order[:,0] == 1 tris_per_edge[idx_map[mask0], 0] = tris[mask0] tris_per_edge[idx_map[mask1], 1] = tris[mask1] return tris_per_edge ###################################################################################### # Align base mesh to reference mesh:move & rescale to match bounding boxes. ###################################################################################### def unit_size(mesh): with torch.no_grad(): vmin, vmax = aabb(mesh) scale = 2 / torch.max(vmax - vmin).item() v_pos = mesh.v_pos - (vmax + vmin) / 2 # Center mesh on origin v_pos = v_pos * scale # Rescale to unit size return Mesh(v_pos, base=mesh) ###################################################################################### # Center & scale mesh for rendering ###################################################################################### def center_by_reference(base_mesh, ref_aabb, scale): center = (ref_aabb[0] + ref_aabb[1]) * 0.5 scale = scale / torch.max(ref_aabb[1] - ref_aabb[0]).item() v_pos = (base_mesh.v_pos - center[None, ...]) * scale return Mesh(v_pos, base=base_mesh) ###################################################################################### # Simple smooth vertex normal computation ###################################################################################### def auto_normals(imesh): i0 = imesh.t_pos_idx[:, 0] i1 = imesh.t_pos_idx[:, 1] i2 = imesh.t_pos_idx[:, 2] v0 = imesh.v_pos[i0, :] v1 = imesh.v_pos[i1, :] v2 = imesh.v_pos[i2, :] face_normals = torch.cross(v1 - v0, v2 - v0) # Splat face normals to vertices v_nrm = torch.zeros_like(imesh.v_pos) v_nrm.scatter_add_(0, i0[:, None].repeat(1,3), face_normals) v_nrm.scatter_add_(0, i1[:, None].repeat(1,3), face_normals) v_nrm.scatter_add_(0, i2[:, None].repeat(1,3), face_normals) # Normalize, replace zero (degenerated) normals with some default value v_nrm = torch.where(util.dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')) v_nrm = util.safe_normalize(v_nrm) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(v_nrm)) return Mesh(v_nrm=v_nrm, t_nrm_idx=imesh.t_pos_idx, base=imesh) ###################################################################################### # Compute tangent space from texture map coordinates # Follows http://www.mikktspace.com/ conventions ###################################################################################### def compute_tangents(imesh): vn_idx = [None] * 3 pos = [None] * 3 tex = [None] * 3 for i in range(0,3): pos[i] = imesh.v_pos[imesh.t_pos_idx[:, i]] tex[i] = imesh.v_tex[imesh.t_tex_idx[:, i]] vn_idx[i] = imesh.t_nrm_idx[:, i] tangents = torch.zeros_like(imesh.v_nrm) # Compute tangent space for each triangle uve1 = tex[1] - tex[0] uve2 = tex[2] - tex[0] pe1 = pos[1] - pos[0] pe2 = pos[2] - pos[0] nom = (pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2]) denom = (uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1]) # Avoid division by zero for degenerated texture coordinates tang = nom / torch.where(denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6)) # Update all 3 vertices for i in range(0,3): idx = vn_idx[i][:, None].repeat(1,3) tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang # Normalize and make sure tangent is perpendicular to normal tangents = util.safe_normalize(tangents) tangents = util.safe_normalize(tangents - util.dot(tangents, imesh.v_nrm) * imesh.v_nrm) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(tangents)) return Mesh(v_tng=tangents, t_tng_idx=imesh.t_nrm_idx, base=imesh)