# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. import os import numpy as np import torch import nvdiffrast.torch as dr import imageio #---------------------------------------------------------------------------- # Vector operations #---------------------------------------------------------------------------- def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return torch.sum(x*y, -1, keepdim=True) def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor: return 2*dot(x, n)*n - x def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: return x / length(x, eps) def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor: return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w) #---------------------------------------------------------------------------- # sRGB color transforms #---------------------------------------------------------------------------- def _rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: return torch.where(f <= 0.0031308, f * 12.92, torch.pow(torch.clamp(f, 0.0031308), 1.0/2.4)*1.055 - 0.055) def rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: assert f.shape[-1] == 3 or f.shape[-1] == 4 out = torch.cat((_rgb_to_srgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _rgb_to_srgb(f) assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] return out def _srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: return torch.where(f <= 0.04045, f / 12.92, torch.pow((torch.clamp(f, 0.04045) + 0.055) / 1.055, 2.4)) def srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: assert f.shape[-1] == 3 or f.shape[-1] == 4 out = torch.cat((_srgb_to_rgb(f[..., 0:3]), f[..., 3:4]), dim=-1) if f.shape[-1] == 4 else _srgb_to_rgb(f) assert out.shape[0] == f.shape[0] and out.shape[1] == f.shape[1] and out.shape[2] == f.shape[2] return out def reinhard(f: torch.Tensor) -> torch.Tensor: return f/(1+f) #----------------------------------------------------------------------------------- # Metrics (taken from jaxNerf source code, in order to replicate their measurements) # # https://github.com/google-research/google-research/blob/301451a62102b046bbeebff49a760ebeec9707b8/jaxnerf/nerf/utils.py#L266 # #----------------------------------------------------------------------------------- def mse_to_psnr(mse): """Compute PSNR given an MSE (we assume the maximum pixel value is 1).""" return -10. / np.log(10.) * np.log(mse) def psnr_to_mse(psnr): """Compute MSE given a PSNR (we assume the maximum pixel value is 1).""" return np.exp(-0.1 * np.log(10.) * psnr) #---------------------------------------------------------------------------- # Displacement texture lookup #---------------------------------------------------------------------------- def get_miplevels(texture: np.ndarray) -> float: minDim = min(texture.shape[0], texture.shape[1]) return np.floor(np.log2(minDim)) def tex_2d(tex_map : torch.Tensor, coords : torch.Tensor, filter='nearest') -> torch.Tensor: tex_map = tex_map[None, ...] # Add batch dimension tex_map = tex_map.permute(0, 3, 1, 2) # NHWC -> NCHW tex = torch.nn.functional.grid_sample(tex_map, coords[None, None, ...] * 2 - 1, mode=filter, align_corners=False) tex = tex.permute(0, 2, 3, 1) # NCHW -> NHWC return tex[0, 0, ...] #---------------------------------------------------------------------------- # Cubemap utility functions #---------------------------------------------------------------------------- def cube_to_dir(s, x, y): if s == 0: rx, ry, rz = torch.ones_like(x), -y, -x elif s == 1: rx, ry, rz = -torch.ones_like(x), -y, x elif s == 2: rx, ry, rz = x, torch.ones_like(x), y elif s == 3: rx, ry, rz = x, -torch.ones_like(x), -y elif s == 4: rx, ry, rz = x, -y, torch.ones_like(x) elif s == 5: rx, ry, rz = -x, -y, -torch.ones_like(x) return torch.stack((rx, ry, rz), dim=-1) def latlong_to_cubemap(latlong_map, res): cubemap = torch.zeros(6, res[0], res[1], latlong_map.shape[-1], dtype=torch.float32, device='cuda') for s in range(6): gy, gx = torch.meshgrid(torch.linspace(-1.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'), indexing='ij') v = safe_normalize(cube_to_dir(s, gx, gy)) tu = torch.atan2(v[..., 0:1], -v[..., 2:3]) / (2 * np.pi) + 0.5 tv = torch.acos(torch.clamp(v[..., 1:2], min=-1, max=1)) / np.pi texcoord = torch.cat((tu, tv), dim=-1) cubemap[s, ...] = dr.texture(latlong_map[None, ...], texcoord[None, ...], filter_mode='linear')[0] return cubemap def cubemap_to_latlong(cubemap, res): gy, gx = torch.meshgrid(torch.linspace( 0.0 + 1.0 / res[0], 1.0 - 1.0 / res[0], res[0], device='cuda'), torch.linspace(-1.0 + 1.0 / res[1], 1.0 - 1.0 / res[1], res[1], device='cuda'), indexing='ij') sintheta, costheta = torch.sin(gy*np.pi), torch.cos(gy*np.pi) sinphi, cosphi = torch.sin(gx*np.pi), torch.cos(gx*np.pi) reflvec = torch.stack(( sintheta*sinphi, costheta, -sintheta*cosphi ), dim=-1) return dr.texture(cubemap[None, ...], reflvec[None, ...].contiguous(), filter_mode='linear', boundary_mode='cube')[0] #---------------------------------------------------------------------------- # Image scaling #---------------------------------------------------------------------------- def scale_img_hwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: return scale_img_nhwc(x[None, ...], size, mag, min)[0] def scale_img_nhwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: size = tuple(int(s) for s in size) assert (x.shape[1] >= size[0] and x.shape[2] >= size[1]) or (x.shape[1] < size[0] and x.shape[2] < size[1]), "Trying to magnify image in one dimension and minify in the other" y = x.permute(0, 3, 1, 2) # NHWC -> NCHW if x.shape[1] > size[0] and x.shape[2] > size[1]: # Minification, previous size was bigger y = torch.nn.functional.interpolate(y, size, mode=min) else: # Magnification if mag == 'bilinear' or mag == 'bicubic': y = torch.nn.functional.interpolate(y, size, mode=mag, align_corners=True) else: y = torch.nn.functional.interpolate(y, size, mode=mag) return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC def avg_pool_nhwc(x : torch.Tensor, size) -> torch.Tensor: y = x.permute(0, 3, 1, 2) # NHWC -> NCHW y = torch.nn.functional.avg_pool2d(y, size) return y.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC #---------------------------------------------------------------------------- # Behaves similar to tf.segment_sum #---------------------------------------------------------------------------- def segment_sum(data: torch.Tensor, segment_ids: torch.Tensor) -> torch.Tensor: num_segments = torch.unique_consecutive(segment_ids).shape[0] # Repeats ids until same dimension as data if len(segment_ids.shape) == 1: s = torch.prod(torch.tensor(data.shape[1:], dtype=torch.int64, device='cuda')).long() segment_ids = segment_ids.repeat_interleave(s).view(segment_ids.shape[0], *data.shape[1:]) assert data.shape == segment_ids.shape, "data.shape and segment_ids.shape should be equal" shape = [num_segments] + list(data.shape[1:]) result = torch.zeros(*shape, dtype=torch.float32, device='cuda') result = result.scatter_add(0, segment_ids, data) return result #---------------------------------------------------------------------------- # Matrix helpers. #---------------------------------------------------------------------------- def fovx_to_fovy(fovx, aspect): return np.arctan(np.tan(fovx / 2) / aspect) * 2.0 def focal_length_to_fovy(focal_length, sensor_height): return 2 * np.arctan(0.5 * sensor_height / focal_length) # Reworked so this matches gluPerspective / glm::perspective, using fovy def perspective(fovy=0.7854, aspect=1.0, n=0.1, f=1000.0, device=None): y = np.tan(fovy / 2) return torch.tensor([[1/(y*aspect), 0, 0, 0], [ 0, 1/-y, 0, 0], [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], [ 0, 0, -1, 0]], dtype=torch.float32, device=device) # Reworked so this matches gluPerspective / glm::perspective, using fovy def perspective_offcenter(fovy, fraction, rx, ry, aspect=1.0, n=0.1, f=1000.0, device=None): y = np.tan(fovy / 2) # Full frustum R, L = aspect*y, -aspect*y T, B = y, -y # Create a randomized sub-frustum width = (R-L)*fraction height = (T-B)*fraction xstart = (R-L)*rx ystart = (T-B)*ry l = L + xstart r = l + width b = B + ystart t = b + height # https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/opengl-perspective-projection-matrix return torch.tensor([[2/(r-l), 0, (r+l)/(r-l), 0], [ 0, -2/(t-b), (t+b)/(t-b), 0], [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], [ 0, 0, -1, 0]], dtype=torch.float32, device=device) def translate(x, y, z, device=None): return torch.tensor([[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]], dtype=torch.float32, device=device) def rotate_x(a, device=None): s, c = np.sin(a), np.cos(a) return torch.tensor([[1, 0, 0, 0], [0, c,-s, 0], [0, s, c, 0], [0, 0, 0, 1]], dtype=torch.float32, device=device) def rotate_y(a, device=None): s, c = np.sin(a), np.cos(a) return torch.tensor([[ c, 0, s, 0], [ 0, 1, 0, 0], [-s, 0, c, 0], [ 0, 0, 0, 1]], dtype=torch.float32, device=device) def scale(s, device=None): return torch.tensor([[ s, 0, 0, 0], [ 0, s, 0, 0], [ 0, 0, s, 0], [ 0, 0, 0, 1]], dtype=torch.float32, device=device) def lookAt(eye, at, up): a = eye - at w = a / torch.linalg.norm(a) u = torch.cross(up, w) u = u / torch.linalg.norm(u) v = torch.cross(w, u) translate = torch.tensor([[1, 0, 0, -eye[0]], [0, 1, 0, -eye[1]], [0, 0, 1, -eye[2]], [0, 0, 0, 1]], dtype=eye.dtype, device=eye.device) rotate = torch.tensor([[u[0], u[1], u[2], 0], [v[0], v[1], v[2], 0], [w[0], w[1], w[2], 0], [0, 0, 0, 1]], dtype=eye.dtype, device=eye.device) return rotate @ translate @torch.no_grad() def random_rotation_translation(t, device=None): m = np.random.normal(size=[3, 3]) m[1] = np.cross(m[0], m[2]) m[2] = np.cross(m[0], m[1]) m = m / np.linalg.norm(m, axis=1, keepdims=True) m = np.pad(m, [[0, 1], [0, 1]], mode='constant') m[3, 3] = 1.0 m[:3, 3] = np.random.uniform(-t, t, size=[3]) return torch.tensor(m, dtype=torch.float32, device=device) @torch.no_grad() def random_rotation(device=None): m = np.random.normal(size=[3, 3]) m[1] = np.cross(m[0], m[2]) m[2] = np.cross(m[0], m[1]) m = m / np.linalg.norm(m, axis=1, keepdims=True) m = np.pad(m, [[0, 1], [0, 1]], mode='constant') m[3, 3] = 1.0 m[:3, 3] = np.array([0,0,0]).astype(np.float32) return torch.tensor(m, dtype=torch.float32, device=device) #---------------------------------------------------------------------------- # Compute focal points of a set of lines using least squares. # handy for poorly centered datasets #---------------------------------------------------------------------------- def lines_focal(o, d): d = safe_normalize(d) I = torch.eye(3, dtype=o.dtype, device=o.device) S = torch.sum(d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...], dim=0) C = torch.sum((d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...]) @ o[..., None], dim=0).squeeze(1) return torch.linalg.pinv(S) @ C #---------------------------------------------------------------------------- # Cosine sample around a vector N #---------------------------------------------------------------------------- @torch.no_grad() def cosine_sample(N, size=None): # construct local frame N = N/torch.linalg.norm(N) dx0 = torch.tensor([0, N[2], -N[1]], dtype=N.dtype, device=N.device) dx1 = torch.tensor([-N[2], 0, N[0]], dtype=N.dtype, device=N.device) dx = torch.where(dot(dx0, dx0) > dot(dx1, dx1), dx0, dx1) #dx = dx0 if np.dot(dx0,dx0) > np.dot(dx1,dx1) else dx1 dx = dx / torch.linalg.norm(dx) dy = torch.cross(N,dx) dy = dy / torch.linalg.norm(dy) # cosine sampling in local frame if size is None: phi = 2.0 * np.pi * np.random.uniform() s = np.random.uniform() else: phi = 2.0 * np.pi * torch.rand(*size, 1, dtype=N.dtype, device=N.device) s = torch.rand(*size, 1, dtype=N.dtype, device=N.device) costheta = np.sqrt(s) sintheta = np.sqrt(1.0 - s) # cartesian vector in local space x = np.cos(phi)*sintheta y = np.sin(phi)*sintheta z = costheta # local to world return dx*x + dy*y + N*z #---------------------------------------------------------------------------- # Bilinear downsample by 2x. #---------------------------------------------------------------------------- def bilinear_downsample(x : torch.tensor) -> torch.Tensor: w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 w = w.expand(x.shape[-1], 1, 4, 4) x = torch.nn.functional.conv2d(x.permute(0, 3, 1, 2), w, padding=1, stride=2, groups=x.shape[-1]) return x.permute(0, 2, 3, 1) #---------------------------------------------------------------------------- # Bilinear downsample log(spp) steps #---------------------------------------------------------------------------- def bilinear_downsample(x : torch.tensor, spp) -> torch.Tensor: w = torch.tensor([[1, 3, 3, 1], [3, 9, 9, 3], [3, 9, 9, 3], [1, 3, 3, 1]], dtype=torch.float32, device=x.device) / 64.0 g = x.shape[-1] w = w.expand(g, 1, 4, 4) x = x.permute(0, 3, 1, 2) # NHWC -> NCHW steps = int(np.log2(spp)) for _ in range(steps): xp = torch.nn.functional.pad(x, (1,1,1,1), mode='replicate') x = torch.nn.functional.conv2d(xp, w, padding=0, stride=2, groups=g) return x.permute(0, 2, 3, 1).contiguous() # NCHW -> NHWC #---------------------------------------------------------------------------- # Singleton initialize GLFW #---------------------------------------------------------------------------- _glfw_initialized = False def init_glfw(): global _glfw_initialized try: import glfw glfw.ERROR_REPORTING = 'raise' glfw.default_window_hints() glfw.window_hint(glfw.VISIBLE, glfw.FALSE) test = glfw.create_window(8, 8, "Test", None, None) # Create a window and see if not initialized yet except glfw.GLFWError as e: if e.error_code == glfw.NOT_INITIALIZED: glfw.init() _glfw_initialized = True #---------------------------------------------------------------------------- # Image display function using OpenGL. #---------------------------------------------------------------------------- _glfw_window = None def display_image(image, title=None): # Import OpenGL import OpenGL.GL as gl import glfw # Zoom image if requested. image = np.asarray(image[..., 0:3]) if image.shape[-1] == 4 else np.asarray(image) height, width, channels = image.shape # Initialize window. init_glfw() if title is None: title = 'Debug window' global _glfw_window if _glfw_window is None: glfw.default_window_hints() _glfw_window = glfw.create_window(width, height, title, None, None) glfw.make_context_current(_glfw_window) glfw.show_window(_glfw_window) glfw.swap_interval(0) else: glfw.make_context_current(_glfw_window) glfw.set_window_title(_glfw_window, title) glfw.set_window_size(_glfw_window, width, height) # Update window. glfw.poll_events() gl.glClearColor(0, 0, 0, 1) gl.glClear(gl.GL_COLOR_BUFFER_BIT) gl.glWindowPos2f(0, 0) gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1) gl_format = {3: gl.GL_RGB, 2: gl.GL_RG, 1: gl.GL_LUMINANCE}[channels] gl_dtype = {'uint8': gl.GL_UNSIGNED_BYTE, 'float32': gl.GL_FLOAT}[image.dtype.name] gl.glDrawPixels(width, height, gl_format, gl_dtype, image[::-1]) glfw.swap_buffers(_glfw_window) if glfw.window_should_close(_glfw_window): return False return True #---------------------------------------------------------------------------- # Image save/load helper. #---------------------------------------------------------------------------- def save_image(fn, x : np.ndarray): try: if os.path.splitext(fn)[1] == ".png": imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8), compress_level=3) # Low compression for faster saving else: imageio.imwrite(fn, np.clip(np.rint(x * 255.0), 0, 255).astype(np.uint8)) except: print("WARNING: FAILED to save image %s" % fn) def save_image_raw(fn, x : np.ndarray): try: imageio.imwrite(fn, x) except: print("WARNING: FAILED to save image %s" % fn) def load_image_raw(fn) -> np.ndarray: return imageio.imread(fn) def load_image(fn) -> np.ndarray: img = load_image_raw(fn) if img.dtype == np.float32: # HDR image return img else: # LDR image return img.astype(np.float32) / 255 #---------------------------------------------------------------------------- def time_to_text(x): if x > 3600: return "%.2f h" % (x / 3600) elif x > 60: return "%.2f m" % (x / 60) else: return "%.2f s" % x #---------------------------------------------------------------------------- def checkerboard(res, checker_size) -> np.ndarray: tiles_y = (res[0] + (checker_size*2) - 1) // (checker_size*2) tiles_x = (res[1] + (checker_size*2) - 1) // (checker_size*2) check = np.kron([[1, 0] * tiles_x, [0, 1] * tiles_x] * tiles_y, np.ones((checker_size, checker_size)))*0.33 + 0.33 check = check[:res[0], :res[1]] return np.stack((check, check, check), axis=-1)