# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # NVIDIA CORPORATION, its affiliates and licensors retain all intellectual # property and proprietary rights in and to this material, related # documentation and any modifications thereto. Any use, reproduction, # disclosure or distribution of this material and related documentation # without an express license agreement from NVIDIA CORPORATION or # its affiliates is strictly prohibited. import numpy as np import os os.environ['CUDA_HOME'] = '/usr/local/cuda-12.1' os.environ['PATH'] += ':/usr/local/cuda-12.1/bin' os.environ['LD_LIBRARY_PATH'] += ':/usr/local/cuda-12.1/lib64' import sys import torch import torch.utils.cpp_extension from .bsdf import * from .loss import * #---------------------------------------------------------------------------- # C++/Cuda plugin compiler/loader. _cached_plugin = None def _get_plugin(): # Return cached plugin if already loaded. global _cached_plugin if _cached_plugin is not None: return _cached_plugin # Make sure we can find the necessary compiler and libary binaries. if os.name == 'nt': def find_cl_path(): import glob for edition in ['Enterprise', 'Professional', 'BuildTools', 'Community']: paths = sorted(glob.glob(r"C:\Program Files (x86)\Microsoft Visual Studio\*\%s\VC\Tools\MSVC\*\bin\Hostx64\x64" % edition), reverse=True) if paths: return paths[0] # If cl.exe is not on path, try to find it. if os.system("where cl.exe >nul 2>nul") != 0: cl_path = find_cl_path() if cl_path is None: raise RuntimeError("Could not locate a supported Microsoft Visual C++ installation") os.environ['PATH'] += ';' + cl_path # Compiler options. opts = ['-DNVDR_TORCH'] # Linker options. if os.name == 'posix': ldflags = ['-lcuda', '-lnvrtc'] elif os.name == 'nt': ldflags = ['cuda.lib', 'advapi32.lib', 'nvrtc.lib'] # List of sources. source_files = [ 'c_src/mesh.cu', 'c_src/loss.cu', 'c_src/bsdf.cu', 'c_src/normal.cu', 'c_src/cubemap.cu', 'c_src/common.cpp', 'c_src/torch_bindings.cpp' ] # Some containers set this to contain old architectures that won't compile. We only need the one installed in the machine. os.environ['TORCH_CUDA_ARCH_LIST'] = '' # Try to detect if a stray lock file is left in cache directory and show a warning. This sometimes happens on Windows if the build is interrupted at just the right moment. try: lock_fn = os.path.join(torch.utils.cpp_extension._get_build_directory('renderutils_plugin', False), 'lock') if os.path.exists(lock_fn): print("Warning: Lock file exists in build directory: '%s'" % lock_fn) except: pass # Compile and load. # source_paths = [os.path.join(os.path.dirname(__file__), fn) for fn in source_files] # torch.utils.cpp_extension.load(name='renderutils_plugin', sources=source_paths, extra_cflags=opts, # extra_cuda_cflags=opts, extra_ldflags=ldflags, with_cuda=True, verbose=True) # Import, cache, and return the compiled module. import renderutils_plugin _cached_plugin = renderutils_plugin return _cached_plugin #---------------------------------------------------------------------------- # Internal kernels, just used for testing functionality class _fresnel_shlick_func(torch.autograd.Function): @staticmethod def forward(ctx, f0, f90, cosTheta): out = _get_plugin().fresnel_shlick_fwd(f0, f90, cosTheta, False) ctx.save_for_backward(f0, f90, cosTheta) return out @staticmethod def backward(ctx, dout): f0, f90, cosTheta = ctx.saved_variables return _get_plugin().fresnel_shlick_bwd(f0, f90, cosTheta, dout) + (None,) def _fresnel_shlick(f0, f90, cosTheta, use_python=False): if use_python: out = bsdf_fresnel_shlick(f0, f90, cosTheta) else: out = _fresnel_shlick_func.apply(f0, f90, cosTheta) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of _fresnel_shlick contains inf or NaN" return out class _ndf_ggx_func(torch.autograd.Function): @staticmethod def forward(ctx, alphaSqr, cosTheta): out = _get_plugin().ndf_ggx_fwd(alphaSqr, cosTheta, False) ctx.save_for_backward(alphaSqr, cosTheta) return out @staticmethod def backward(ctx, dout): alphaSqr, cosTheta = ctx.saved_variables return _get_plugin().ndf_ggx_bwd(alphaSqr, cosTheta, dout) + (None,) def _ndf_ggx(alphaSqr, cosTheta, use_python=False): if use_python: out = bsdf_ndf_ggx(alphaSqr, cosTheta) else: out = _ndf_ggx_func.apply(alphaSqr, cosTheta) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of _ndf_ggx contains inf or NaN" return out class _lambda_ggx_func(torch.autograd.Function): @staticmethod def forward(ctx, alphaSqr, cosTheta): out = _get_plugin().lambda_ggx_fwd(alphaSqr, cosTheta, False) ctx.save_for_backward(alphaSqr, cosTheta) return out @staticmethod def backward(ctx, dout): alphaSqr, cosTheta = ctx.saved_variables return _get_plugin().lambda_ggx_bwd(alphaSqr, cosTheta, dout) + (None,) def _lambda_ggx(alphaSqr, cosTheta, use_python=False): if use_python: out = bsdf_lambda_ggx(alphaSqr, cosTheta) else: out = _lambda_ggx_func.apply(alphaSqr, cosTheta) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of _lambda_ggx contains inf or NaN" return out class _masking_smith_func(torch.autograd.Function): @staticmethod def forward(ctx, alphaSqr, cosThetaI, cosThetaO): ctx.save_for_backward(alphaSqr, cosThetaI, cosThetaO) out = _get_plugin().masking_smith_fwd(alphaSqr, cosThetaI, cosThetaO, False) return out @staticmethod def backward(ctx, dout): alphaSqr, cosThetaI, cosThetaO = ctx.saved_variables return _get_plugin().masking_smith_bwd(alphaSqr, cosThetaI, cosThetaO, dout) + (None,) def _masking_smith(alphaSqr, cosThetaI, cosThetaO, use_python=False): if use_python: out = bsdf_masking_smith_ggx_correlated(alphaSqr, cosThetaI, cosThetaO) else: out = _masking_smith_func.apply(alphaSqr, cosThetaI, cosThetaO) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of _masking_smith contains inf or NaN" return out #---------------------------------------------------------------------------- # Shading normal setup (bump mapping + bent normals) class _prepare_shading_normal_func(torch.autograd.Function): @staticmethod def forward(ctx, pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl): ctx.two_sided_shading, ctx.opengl = two_sided_shading, opengl out = _get_plugin().prepare_shading_normal_fwd(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl, False) ctx.save_for_backward(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm) return out @staticmethod def backward(ctx, dout): pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm = ctx.saved_variables return _get_plugin().prepare_shading_normal_bwd(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, dout, ctx.two_sided_shading, ctx.opengl) + (None, None, None) def prepare_shading_normal(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading=True, opengl=True, use_python=False): '''Takes care of all corner cases and produces a final normal used for shading: - Constructs tangent space - Flips normal direction based on geometric normal for two sided Shading - Perturbs shading normal by normal map - Bends backfacing normals towards the camera to avoid shading artifacts All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent. Args: pos: World space g-buffer position. view_pos: Camera position in world space (typically using broadcasting). perturbed_nrm: Trangent-space normal perturbation from normal map lookup. smooth_nrm: Interpolated vertex normals. smooth_tng: Interpolated vertex tangents. geom_nrm: Geometric (face) normals. two_sided_shading: Use one/two sided shading opengl: Use OpenGL/DirectX normal map conventions use_python: Use PyTorch implementation (for validation) Returns: Final shading normal ''' if perturbed_nrm is None: perturbed_nrm = torch.tensor([0, 0, 1], dtype=torch.float32, device='cuda', requires_grad=False)[None, None, None, ...] if use_python: out = bsdf_prepare_shading_normal(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl) else: out = _prepare_shading_normal_func.apply(pos, view_pos, perturbed_nrm, smooth_nrm, smooth_tng, geom_nrm, two_sided_shading, opengl) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of prepare_shading_normal contains inf or NaN" return out #---------------------------------------------------------------------------- # BSDF functions class _lambert_func(torch.autograd.Function): @staticmethod def forward(ctx, nrm, wi): out = _get_plugin().lambert_fwd(nrm, wi, False) ctx.save_for_backward(nrm, wi) return out @staticmethod def backward(ctx, dout): nrm, wi = ctx.saved_variables return _get_plugin().lambert_bwd(nrm, wi, dout) + (None,) def lambert(nrm, wi, use_python=False): '''Lambertian bsdf. All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent. Args: nrm: World space shading normal. wi: World space light vector. use_python: Use PyTorch implementation (for validation) Returns: Shaded diffuse value with shape [minibatch_size, height, width, 1] ''' if use_python: out = bsdf_lambert(nrm, wi) else: out = _lambert_func.apply(nrm, wi) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of lambert contains inf or NaN" return out class _frostbite_diffuse_func(torch.autograd.Function): @staticmethod def forward(ctx, nrm, wi, wo, linearRoughness): out = _get_plugin().frostbite_fwd(nrm, wi, wo, linearRoughness, False) ctx.save_for_backward(nrm, wi, wo, linearRoughness) return out @staticmethod def backward(ctx, dout): nrm, wi, wo, linearRoughness = ctx.saved_variables return _get_plugin().frostbite_bwd(nrm, wi, wo, linearRoughness, dout) + (None,) def frostbite_diffuse(nrm, wi, wo, linearRoughness, use_python=False): '''Frostbite, normalized Disney Diffuse bsdf. All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent. Args: nrm: World space shading normal. wi: World space light vector. wo: World space camera vector. linearRoughness: Material roughness use_python: Use PyTorch implementation (for validation) Returns: Shaded diffuse value with shape [minibatch_size, height, width, 1] ''' if use_python: out = bsdf_frostbite(nrm, wi, wo, linearRoughness) else: out = _frostbite_diffuse_func.apply(nrm, wi, wo, linearRoughness) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of lambert contains inf or NaN" return out class _pbr_specular_func(torch.autograd.Function): @staticmethod def forward(ctx, col, nrm, wo, wi, alpha, min_roughness): ctx.save_for_backward(col, nrm, wo, wi, alpha) ctx.min_roughness = min_roughness out = _get_plugin().pbr_specular_fwd(col, nrm, wo, wi, alpha, min_roughness, False) return out @staticmethod def backward(ctx, dout): col, nrm, wo, wi, alpha = ctx.saved_variables return _get_plugin().pbr_specular_bwd(col, nrm, wo, wi, alpha, ctx.min_roughness, dout) + (None, None) def pbr_specular(col, nrm, wo, wi, alpha, min_roughness=0.08, use_python=False): '''Physically-based specular bsdf. All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent unless otherwise noted. Args: col: Specular lobe color nrm: World space shading normal. wo: World space camera vector. wi: World space light vector alpha: Specular roughness parameter with shape [minibatch_size, height, width, 1] min_roughness: Scalar roughness clamping threshold use_python: Use PyTorch implementation (for validation) Returns: Shaded specular color ''' if use_python: out = bsdf_pbr_specular(col, nrm, wo, wi, alpha, min_roughness=min_roughness) else: out = _pbr_specular_func.apply(col, nrm, wo, wi, alpha, min_roughness) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of pbr_specular contains inf or NaN" return out class _pbr_bsdf_func(torch.autograd.Function): @staticmethod def forward(ctx, kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF): ctx.save_for_backward(kd, arm, pos, nrm, view_pos, light_pos) ctx.min_roughness = min_roughness ctx.BSDF = BSDF out = _get_plugin().pbr_bsdf_fwd(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF, False) return out @staticmethod def backward(ctx, dout): kd, arm, pos, nrm, view_pos, light_pos = ctx.saved_variables return _get_plugin().pbr_bsdf_bwd(kd, arm, pos, nrm, view_pos, light_pos, ctx.min_roughness, ctx.BSDF, dout) + (None, None, None) def pbr_bsdf(kd, arm, pos, nrm, view_pos, light_pos, min_roughness=0.08, bsdf="lambert", use_python=False): '''Physically-based bsdf, both diffuse & specular lobes All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent unless otherwise noted. Args: kd: Diffuse albedo. arm: Specular parameters (attenuation, linear roughness, metalness). pos: World space position. nrm: World space shading normal. view_pos: Camera position in world space, typically using broadcasting. light_pos: Light position in world space, typically using broadcasting. min_roughness: Scalar roughness clamping threshold bsdf: Controls diffuse BSDF, can be either 'lambert' or 'frostbite' use_python: Use PyTorch implementation (for validation) Returns: Shaded color. ''' BSDF = 0 if bsdf == 'frostbite': BSDF = 1 if use_python: out = bsdf_pbr(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF) else: out = _pbr_bsdf_func.apply(kd, arm, pos, nrm, view_pos, light_pos, min_roughness, BSDF) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of pbr_bsdf contains inf or NaN" return out #---------------------------------------------------------------------------- # cubemap filter with filtering across edges class _diffuse_cubemap_func(torch.autograd.Function): @staticmethod def forward(ctx, cubemap): out = _get_plugin().diffuse_cubemap_fwd(cubemap) ctx.save_for_backward(cubemap) return out @staticmethod def backward(ctx, dout): cubemap, = ctx.saved_variables cubemap_grad = _get_plugin().diffuse_cubemap_bwd(cubemap, dout) return cubemap_grad, None def diffuse_cubemap(cubemap, use_python=False): if use_python: assert False else: out = _diffuse_cubemap_func.apply(cubemap) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of diffuse_cubemap contains inf or NaN" return out class _specular_cubemap(torch.autograd.Function): @staticmethod def forward(ctx, cubemap, roughness, costheta_cutoff, bounds): out = _get_plugin().specular_cubemap_fwd(cubemap, bounds, roughness, costheta_cutoff) ctx.save_for_backward(cubemap, bounds) ctx.roughness, ctx.theta_cutoff = roughness, costheta_cutoff return out @staticmethod def backward(ctx, dout): cubemap, bounds = ctx.saved_variables cubemap_grad = _get_plugin().specular_cubemap_bwd(cubemap, bounds, dout, ctx.roughness, ctx.theta_cutoff) return cubemap_grad, None, None, None # Compute the bounds of the GGX NDF lobe to retain "cutoff" percent of the energy def __ndfBounds(res, roughness, cutoff): def ndfGGX(alphaSqr, costheta): costheta = np.clip(costheta, 0.0, 1.0) d = (costheta * alphaSqr - costheta) * costheta + 1.0 return alphaSqr / (d * d * np.pi) # Sample out cutoff angle nSamples = 1000000 costheta = np.cos(np.linspace(0, np.pi/2.0, nSamples)) D = np.cumsum(ndfGGX(roughness**4, costheta)) idx = np.argmax(D >= D[..., -1] * cutoff) # Brute force compute lookup table with bounds bounds = _get_plugin().specular_bounds(res, costheta[idx]) return costheta[idx], bounds __ndfBoundsDict = {} def specular_cubemap(cubemap, roughness, cutoff=0.99, use_python=False): assert cubemap.shape[0] == 6 and cubemap.shape[1] == cubemap.shape[2], "Bad shape for cubemap tensor: %s" % str(cubemap.shape) if use_python: assert False else: key = (cubemap.shape[1], roughness, cutoff) if key not in __ndfBoundsDict: __ndfBoundsDict[key] = __ndfBounds(*key) out = _specular_cubemap.apply(cubemap, roughness, *__ndfBoundsDict[key]) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of specular_cubemap contains inf or NaN" return out[..., 0:3] / out[..., 3:] #---------------------------------------------------------------------------- # Fast image loss function class _image_loss_func(torch.autograd.Function): @staticmethod def forward(ctx, img, target, loss, tonemapper): ctx.loss, ctx.tonemapper = loss, tonemapper ctx.save_for_backward(img, target) out = _get_plugin().image_loss_fwd(img, target, loss, tonemapper, False) return out @staticmethod def backward(ctx, dout): img, target = ctx.saved_variables return _get_plugin().image_loss_bwd(img, target, dout, ctx.loss, ctx.tonemapper) + (None, None, None) def image_loss(img, target, loss='l1', tonemapper='none', use_python=False): '''Compute HDR image loss. Combines tonemapping and loss into a single kernel for better perf. All tensors assume a shape of [minibatch_size, height, width, 3] or broadcastable equivalent unless otherwise noted. Args: img: Input image. target: Target (reference) image. loss: Type of loss. Valid options are ['l1', 'mse', 'smape', 'relmse'] tonemapper: Tonemapping operations. Valid options are ['none', 'log_srgb'] use_python: Use PyTorch implementation (for validation) Returns: Image space loss (scalar value). ''' if use_python: out = image_loss_fn(img, target, loss, tonemapper) else: out = _image_loss_func.apply(img, target, loss, tonemapper) out = torch.sum(out) / (img.shape[0]*img.shape[1]*img.shape[2]) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of image_loss contains inf or NaN" return out #---------------------------------------------------------------------------- # Transform points function class _xfm_func(torch.autograd.Function): @staticmethod def forward(ctx, points, matrix, isPoints): ctx.save_for_backward(points, matrix) ctx.isPoints = isPoints return _get_plugin().xfm_fwd(points, matrix, isPoints, False) @staticmethod def backward(ctx, dout): points, matrix = ctx.saved_variables return (_get_plugin().xfm_bwd(points, matrix, dout, ctx.isPoints),) + (None, None, None) def xfm_points(points, matrix, use_python=False): '''Transform points. Args: points: Tensor containing 3D points with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3] matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4] use_python: Use PyTorch's torch.matmul (for validation) Returns: Transformed points in homogeneous 4D with shape [minibatch_size, num_vertices, 4]. ''' if use_python: out = torch.matmul(torch.nn.functional.pad(points, pad=(0,1), mode='constant', value=1.0), torch.transpose(matrix, 1, 2)) else: out = _xfm_func.apply(points, matrix, True) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of xfm_points contains inf or NaN" return out def xfm_vectors(vectors, matrix, use_python=False): '''Transform vectors. Args: vectors: Tensor containing 3D vectors with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3] matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4] use_python: Use PyTorch's torch.matmul (for validation) Returns: Transformed vectors in homogeneous 4D with shape [minibatch_size, num_vertices, 4]. ''' if use_python: out = torch.matmul(torch.nn.functional.pad(vectors, pad=(0,1), mode='constant', value=0.0), torch.transpose(matrix, 1, 2))[..., 0:3].contiguous() else: out = _xfm_func.apply(vectors, matrix, False) if torch.is_anomaly_enabled(): assert torch.all(torch.isfinite(out)), "Output of xfm_vectors contains inf or NaN" return out