|
import torch |
|
from torch.nn import functional as F |
|
from PIL import Image |
|
import numpy as np |
|
import cv2 |
|
|
|
from rrdbnet_arch import RRDBNet |
|
from utils_sr import * |
|
|
|
|
|
class RealESRGAN: |
|
def __init__(self, device, scale=4): |
|
self.device = device |
|
self.scale = scale |
|
self.model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=scale) |
|
|
|
def load_weights(self, model_path): |
|
loadnet = torch.load(model_path) |
|
if 'params' in loadnet: |
|
self.model.load_state_dict(loadnet['params'], strict=True) |
|
elif 'params_ema' in loadnet: |
|
self.model.load_state_dict(loadnet['params_ema'], strict=True) |
|
else: |
|
self.model.load_state_dict(loadnet, strict=True) |
|
self.model.eval() |
|
self.model.to(self.device) |
|
|
|
@torch.cuda.amp.autocast() |
|
def predict(self, lr_image, batch_size=4, patches_size=192, |
|
padding=24, pad_size=15): |
|
scale = self.scale |
|
device = self.device |
|
lr_image = np.array(lr_image) |
|
lr_image = pad_reflect(lr_image, pad_size) |
|
|
|
patches, p_shape = split_image_into_overlapping_patches(lr_image, patch_size=patches_size, |
|
padding_size=padding) |
|
img = torch.FloatTensor(patches/255).permute((0,3,1,2)).to(device).detach() |
|
|
|
with torch.no_grad(): |
|
res = self.model(img[0:batch_size]) |
|
for i in range(batch_size, img.shape[0], batch_size): |
|
res = torch.cat((res, self.model(img[i:i+batch_size])), 0) |
|
|
|
sr_image = res.permute((0,2,3,1)).clamp_(0, 1).cpu() |
|
np_sr_image = sr_image.numpy() |
|
|
|
padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,) |
|
scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,) |
|
np_sr_image = stich_together(np_sr_image, padded_image_shape=padded_size_scaled, |
|
target_shape=scaled_image_shape, padding_size=padding * scale) |
|
sr_img = (np_sr_image*255).astype(np.uint8) |
|
sr_img = unpad_image(sr_img, pad_size*scale) |
|
sr_img = Image.fromarray(sr_img) |
|
|
|
return sr_img |