File size: 8,039 Bytes
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8df14
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8df14
 
 
 
b34d1d6
 
 
 
 
1f8df14
b34d1d6
 
 
 
1f8df14
b34d1d6
1f8df14
b34d1d6
 
1f8df14
b34d1d6
 
 
 
 
 
1f8df14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8df14
 
 
 
 
 
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f8df14
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import gradio as gr

import numpy as np

import torch
import torch.nn.functional as F
from PIL import Image

# mm libs
from mmdet.registry import MODELS
from mmdet.structures import DetDataSample
from mmdet.visualization import DetLocalVisualizer
from mmengine import Config, print_log
from mmengine.structures import InstanceData

from mmdet.datasets.coco_panoptic import CocoPanopticDataset

from PIL import ImageDraw

IMG_SIZE = 1024

TITLE = "<center><strong><font size='8'>OMG-Seg: Is One Model Good Enough For All Segmentation?<font></strong></center>"
CSS = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"

model_cfg = Config.fromfile('app/configs/m2_convl.py')

model = MODELS.build(model_cfg.model)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device=device)
model = model.eval()
model.init_weights()

mean = torch.tensor([123.675, 116.28, 103.53], device=device)[:, None, None]
std = torch.tensor([58.395, 57.12, 57.375], device=device)[:, None, None]

visualizer = DetLocalVisualizer()

examples = [
    ["assets/000000000139.jpg"],
    ["assets/000000000285.jpg"],
    ["assets/000000000632.jpg"],
    ["assets/000000000724.jpg"],
]


class IMGState:
    def __init__(self):
        self.img = None
        self.selected_points = []
        self.available_to_set = True

    def set_img(self, img):
        self.img = img
        self.available_to_set = False

    def clear(self):
        self.img = None
        self.selected_points = []
        self.available_to_set = True

    def clean(self):
        self.selected_points = []

    @property
    def available(self):
        return self.available_to_set

    @classmethod
    def cls_clean(cls, state):
        state.clean()
        return Image.fromarray(state.img), None

    @classmethod
    def cls_clear(cls, state):
        state.clear()
        return None, None


def store_img(img, img_state):
    w, h = img.size
    scale = IMG_SIZE / max(w, h)
    new_w = int(w * scale)
    new_h = int(h * scale)
    img = img.resize((new_w, new_h), resample=Image.Resampling.BILINEAR)
    img_numpy = np.array(img)
    img_state.set_img(img_numpy)
    print_log(f"Successfully loaded an image with size {new_w} x {new_h}", logger='current')

    return img, None


def get_points_with_draw(image, img_state, evt: gr.SelectData):
    x, y = evt.index[0], evt.index[1]
    print_log(f"Point: {x}_{y}", logger='current')
    point_radius, point_color = 10, (97, 217, 54)

    img_state.selected_points.append([x, y])
    if len(img_state.selected_points) > 0:
        img_state.selected_points = img_state.selected_points[-1:]
        image = Image.fromarray(img_state.img)

    draw = ImageDraw.Draw(image)
    draw.ellipse(
        [(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
        fill=point_color,
    )
    return image


def segment_point(image, img_state, mode):
    output_img = img_state.img
    h, w = output_img.shape[:2]

    img_tensor = torch.tensor(output_img, device=device, dtype=torch.float32).permute((2, 0, 1))[None]
    img_tensor = (img_tensor - mean) / std

    im_w = w if w % 32 == 0 else w // 32 * 32 + 32
    im_h = h if h % 32 == 0 else h // 32 * 32 + 32
    img_tensor = F.pad(img_tensor, (0, im_w - w, 0, im_h - h), 'constant', 0)

    if len(img_state.selected_points) > 0:
        input_points = torch.tensor(img_state.selected_points, dtype=torch.float32, device=device)
        batch_data_samples = [DetDataSample()]
        selected_point = torch.cat([input_points - 3, input_points + 3], 1)
        gt_instances = InstanceData(
            point_coords=selected_point,
        )
        pb_labels = torch.zeros(len(gt_instances), dtype=torch.long, device=device)
        gt_instances.bp = pb_labels
        batch_data_samples[0].gt_instances = gt_instances
        batch_data_samples[0].data_tag = 'sam'
        batch_data_samples[0].set_metainfo(dict(batch_input_shape=(im_h, im_w)))
        batch_data_samples[0].set_metainfo(dict(img_shape=(h, w)))
        is_prompt = True
    else:
        batch_data_samples = [DetDataSample()]
        batch_data_samples[0].data_tag = 'coco'
        batch_data_samples[0].set_metainfo(dict(batch_input_shape=(im_h, im_w)))
        batch_data_samples[0].set_metainfo(dict(img_shape=(h, w)))
        is_prompt = False
    with torch.no_grad():
        results = model.predict(img_tensor, batch_data_samples, rescale=False)

    masks = results[0]
    if is_prompt:
        masks = masks[0, :h, :w]
        masks = masks > 0.  # no sigmoid
        rgb_shape = tuple(list(masks.shape) + [3])
        color = np.zeros(rgb_shape, dtype=np.uint8)
        color[masks] = np.array([97, 217, 54])
        output_img = (output_img * 0.7 + color * 0.3).astype(np.uint8)
        output_img = Image.fromarray(output_img)
    else:
        if mode == 'Panoptic Segmentation':
            output_img = visualizer._draw_panoptic_seg(
                output_img,
                masks['pan_results'].to('cpu').numpy(),
                classes=CocoPanopticDataset.METAINFO['classes'],
                palette=CocoPanopticDataset.METAINFO['palette']
            )
        elif mode == 'Instance Segmentation':
            masks['ins_results'] = masks['ins_results'][masks['ins_results'].scores > .2]
            output_img = visualizer._draw_instances(
                output_img,
                masks['ins_results'].to('cpu').numpy(),
                classes=CocoPanopticDataset.METAINFO['classes'],
                palette=CocoPanopticDataset.METAINFO['palette']
            )
    return image, output_img


def register_title():
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown(TITLE)


def register_point_mode():
    with gr.Tab("Point mode"):
        img_state = gr.State(IMGState())
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                img_p = gr.Image(label="Input Image", type="pil")

            with gr.Column(scale=1):
                segm_p = gr.Image(label="Segment", interactive=False, type="pil")

        with gr.Row():
            with gr.Column():
                mode = gr.Radio(
                    ["Panoptic Segmentation", "Instance Segmentation"],
                    label="Mode",
                    value="Panoptic Segmentation",
                    info="Please select the segmentation mode. (Ignored if provided with prompt.)"
                )
                with gr.Row():
                    with gr.Column():
                        segment_btn = gr.Button("Segment", variant="primary")
                    with gr.Column():
                        clean_btn = gr.Button("Clean Prompts", variant="secondary")

        with gr.Row():
            with gr.Column():
                gr.Markdown("Try some of the examples below ⬇️")
                gr.Examples(
                    examples=examples,
                    inputs=[img_p, img_state],
                    outputs=[img_p, segm_p],
                    examples_per_page=4,
                    fn=store_img,
                    run_on_click=True
                )

        img_p.upload(
            store_img,
            [img_p, img_state],
            [img_p, segm_p]
        )

        img_p.select(
            get_points_with_draw,
            [img_p, img_state],
            img_p
        )

        segment_btn.click(
            segment_point,
            [img_p, img_state, mode],
            [img_p, segm_p]
        )

        clean_btn.click(
            IMGState.cls_clean,
            img_state,
            [img_p, segm_p]
        )

        img_p.clear(
            IMGState.cls_clear,
            img_state,
            [img_p, segm_p]
        )


def build_demo():
    with gr.Blocks(css=CSS, title="RAP-SAM") as _demo:
        register_title()
        register_point_mode()
    return _demo


if __name__ == '__main__':
    demo = build_demo()

    demo.queue(api_open=False)
    demo.launch(server_name='0.0.0.0')