File size: 11,976 Bytes
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright (c) OpenMMLab. All rights reserved.
import os

import torch
from scipy.optimize import linear_sum_assignment
from torch import Tensor
import torch.nn.functional as F

from mmdet.registry import MODELS
from mmdet.structures import SampleList, TrackDataSample

from seg.models.detectors import Mask2formerVideo
from seg.models.utils import mask_pool

BACKBONE_BATCH = 50


def video_split(total, tube_size, overlap=0):
    assert tube_size > overlap
    total -= overlap
    tube_size -= overlap

    if total % tube_size == 0:
        splits = total // tube_size
    else:
        splits = (total // tube_size) + 1

    ind_list = []
    for i in range(splits):
        ind_list.append((i + 1) * tube_size)

    diff = ind_list[-1] - total

    # currently only supports diff < splits
    if diff < splits:
        for i in range(diff):
            ind_list[splits - 1 - i] -= diff - i
    else:
        ind_list[splits - 1] -= diff
        assert ind_list[splits - 1] > 0
        print("Warning: {} / {}".format(total, tube_size))

    for idx in range(len(ind_list)):
        ind_list[idx] += overlap

    return ind_list


def match_from_embeds(tgt_embds, cur_embds):
    cur_embds = cur_embds / cur_embds.norm(dim=-1, keepdim=True)
    tgt_embds = tgt_embds / tgt_embds.norm(dim=-1, keepdim=True)
    cos_sim = torch.bmm(cur_embds, tgt_embds.transpose(1, 2))

    cost_embd = 1 - cos_sim

    C = 1.0 * cost_embd
    C = C.cpu()

    indices = []
    for i in range(len(cur_embds)):
        indice = linear_sum_assignment(C[i].transpose(0, 1))  # target x current
        indice = indice[1]  # permutation that makes current aligns to target
        indices.append(indice)

    return indices


@MODELS.register_module()
class Mask2formerVideoMinVIS(Mask2formerVideo):
    r"""Implementation of `Per-Pixel Classification is
    NOT All You Need for Semantic Segmentation
    <https://arxiv.org/pdf/2107.06278>`_."""
    OVERLAPPING = None

    def __init__(self,
                 *args,
                 clip_size=6,
                 clip_size_small=3,
                 whole_clip_thr=0,
                 small_clip_thr=12,
                 overlap=0,
                 **kwargs,
                 ):
        super().__init__(*args, **kwargs)
        self.clip_size = clip_size
        self.clip_size_small = clip_size_small
        self.overlap = overlap
        self.whole_clip_thr = whole_clip_thr
        self.small_clip_thr = small_clip_thr

    def predict(self,
                batch_inputs: Tensor,
                batch_data_samples: SampleList,
                rescale: bool = True) -> SampleList:
        """Predict results from a batch of inputs and data samples with post-
        processing.

        Args:
            batch_inputs (Tensor): Inputs with shape (N, C, H, W).
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
            rescale (bool): Whether to rescale the results.
                Defaults to True.

        Returns:
            list[:obj:`DetDataSample`]: Detection results of the
            input images. Each DetDataSample usually contain
            'pred_instances' and `pred_panoptic_seg`. And the
            ``pred_instances`` usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                    (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                    (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                    the last dimension 4 arrange as (x1, y1, x2, y2).
                - masks (Tensor): Has a shape (num_instances, H, W).

            And the ``pred_panoptic_seg`` contains the following key

                - sem_seg (Tensor): panoptic segmentation mask, has a
                    shape (1, h, w).
        """
        assert isinstance(batch_data_samples[0], TrackDataSample)

        bs, num_frames, three, h, w = batch_inputs.shape
        assert three == 3, "Only supporting images with 3 channels."
        if num_frames <= self.whole_clip_thr:
            return super().predict(batch_inputs, batch_data_samples, rescale)

        device = batch_inputs.device

        if num_frames > self.small_clip_thr:
            tube_inds = video_split(num_frames, self.clip_size, self.overlap)
        else:
            tube_inds = video_split(num_frames, self.clip_size_small, self.overlap)
        if num_frames > BACKBONE_BATCH:
            feat_bins = [[], [], [], []]
            num_clip = num_frames // BACKBONE_BATCH + 1
            step_size = num_frames // num_clip + 1
            for i in range(num_clip):
                start = i * step_size
                end = min(num_frames, (i + 1) * step_size)
                inputs = batch_inputs[:, start:end].reshape(
                    (bs * (end - start), three, h, w))
                _feats = self.extract_feat(inputs)
                assert len(_feats) == 4
                for idx, item in enumerate(_feats):
                    feat_bins[idx].append(item.to('cpu'))
            feats = []
            for item in feat_bins:
                feat = torch.cat(item, dim=0)
                assert feat.size(0) == bs * num_frames, "{} vs {}".format(feat.size(0), bs * num_frames)
                feats.append(feat)
        else:
            x = batch_inputs.reshape((bs * num_frames, three, h, w))
            feats = self.extract_feat(x)
        assert len(feats[0]) == bs * num_frames

        del batch_inputs

        ind_pre = 0
        cls_list = []
        mask_list = []
        query_list = []
        iou_list = []
        flag = False
        for ind in tube_inds:
            tube_feats = [itm[ind_pre:ind].to(device=device) for itm in feats]
            tube_data_samples = [TrackDataSample(video_data_samples=itm[ind_pre:ind]) for itm in batch_data_samples]
            _mask_cls_results, _mask_pred_results, _query_feat, _iou_results = \
                self.panoptic_head.predict(tube_feats, tube_data_samples, return_query=True)
            cls_list.append(_mask_cls_results)
            if not flag:
                mask_list.append(_mask_pred_results.cpu())
                flag = True
            else:
                mask_list.append(_mask_pred_results[:, self.overlap:].cpu())
            query_list.append(_query_feat.cpu())
            iou_list.append(_iou_results)

            ind_pre = ind
            ind_pre -= self.overlap

        num_tubes = len(tube_inds)

        out_cls = [cls_list[0]]
        out_mask = [mask_list[0]]
        out_embed = [query_list[0]]
        ious = [iou_list[0]]

        for i in range(1, num_tubes):
            indices = match_from_embeds(out_embed[-1], query_list[i])
            indices = indices[0]  # since bs == 1

            out_cls.append(cls_list[i][:, indices])
            out_mask.append(mask_list[i][:, indices])
            out_embed.append(query_list[i][:, indices])
            ious.append(iou_list[i][:, indices])

        del mask_list
        del out_embed
        mask_cls_results = sum(out_cls) / num_tubes
        mask_pred_results = torch.cat(out_mask, dim=2)
        iou_results = sum(ious) / num_tubes

        if self.OVERLAPPING is not None:
            assert len(self.OVERLAPPING) == self.num_classes
            mask_cls_results = self.open_voc_inference(feats, mask_cls_results, mask_pred_results)

        del feats
        mask_cls_results = mask_cls_results.to(device='cpu')
        iou_results = iou_results.to(device='cpu')

        id_assigner = [{} for _ in range(bs)]

        for frame_id in range(num_frames):
            results_list_img = self.panoptic_fusion_head.predict(
                mask_cls_results,
                mask_pred_results[:, :, frame_id],
                [batch_data_samples[idx][frame_id] for idx in range(bs)],
                iou_results=iou_results,
                rescale=rescale
            )
            if frame_id == 0 and 'pro_results' in results_list_img[0]:
                for batch_id in range(bs):
                    mask = results_list_img[batch_id]['pro_results'].to(dtype=torch.int32)
                    mask_gt = torch.tensor(batch_data_samples[batch_id][frame_id].gt_instances.masks.masks, dtype=torch.int32)
                    a, b = mask.flatten(1), mask_gt.flatten(1)
                    intersection = torch.einsum('nc,mc->nm', a, b)
                    union = (a[:, None] + b[None]).clamp(min=0, max=1).sum(-1)
                    iou_cost = intersection / union
                    a_indices, b_indices = linear_sum_assignment(-iou_cost.numpy())

                    for a_ind, b_ind in zip(a_indices, b_indices):
                        id_assigner[batch_id][a_ind] = batch_data_samples[batch_id][frame_id].gt_instances.instances_ids[b_ind].item()

            if 'pro_results' in results_list_img[0]:
                h, w = results_list_img[batch_id]['pro_results'].shape[-2:]
                seg_map = torch.full((h, w), 0, dtype=torch.int32, device='cpu')
                for ind in id_assigner[batch_id]:
                    seg_map[results_list_img[batch_id]['pro_results'][ind]] = id_assigner[batch_id][ind]
                results_list_img[batch_id]['pro_results'] = seg_map.cpu().numpy()

            _ = self.add_track_pred_to_datasample(
                [batch_data_samples[idx][frame_id] for idx in range(bs)], results_list_img
            )
        results = batch_data_samples

        return results

    def open_voc_inference(self, feats, mask_cls_results, mask_pred_results):
        if len(mask_pred_results.shape) == 5:
            batch_size = mask_cls_results.shape[0]
            num_frames = mask_pred_results.shape[2]
            mask_pred_results = mask_pred_results.permute(0, 2, 1, 3, 4).flatten(0, 1)
        else:
            batch_size = mask_cls_results.shape[0]
            num_frames = 0
        clip_feat = self.backbone.get_clip_feature(feats[-1]).to(device=mask_cls_results.device)
        clip_feat_mask = F.interpolate(
            mask_pred_results,
            size=clip_feat.shape[-2:],
            mode='bilinear',
            align_corners=False
        ).to(device=mask_cls_results.device)
        if num_frames > 0:
            clip_feat_mask = clip_feat_mask.unflatten(0, (batch_size, num_frames)).permute(0, 2, 1, 3, 4).flatten(2, 3)
            clip_feat = clip_feat.unflatten(0, (batch_size, num_frames)).permute(0, 2, 1, 3, 4).flatten(2, 3)
        instance_feat = mask_pool(clip_feat, clip_feat_mask)
        instance_feat = self.backbone.forward_feat(instance_feat)
        clip_logit = self.panoptic_head.forward_logit(instance_feat)
        clip_logit = clip_logit[..., :-1]
        query_logit = mask_cls_results[..., :-1]

        clip_logit = clip_logit.softmax(-1)
        query_logit = query_logit.softmax(-1)
        overlapping_mask = torch.tensor(self.OVERLAPPING, dtype=torch.float32, device=clip_logit.device)

        valid_masking = ((clip_feat_mask > 0).to(dtype=torch.float32).flatten(-2).sum(-1) > 0).to(
            torch.float32)[..., None]
        alpha = torch.ones_like(clip_logit) * self.alpha * valid_masking
        beta = torch.ones_like(clip_logit) * self.beta * valid_masking

        cls_logits_seen = (
                (query_logit ** (1 - alpha) * clip_logit ** alpha).log()
                * overlapping_mask
        )
        cls_logits_unseen = (
                (query_logit ** (1 - beta) * clip_logit ** beta).log()
                * (1 - overlapping_mask)
        )
        cls_results = cls_logits_seen + cls_logits_unseen
        is_void_prob = F.softmax(mask_cls_results, dim=-1)[..., -1:]
        mask_cls_results = torch.cat([
            cls_results.softmax(-1) * (1.0 - is_void_prob), is_void_prob], dim=-1)
        mask_cls_results = torch.log(mask_cls_results + 1e-8)
        return mask_cls_results