File size: 14,515 Bytes
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import json
import logging
import os
import pathlib
import re
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, Optional, Tuple, Union

import torch

from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
from .model import CLIP, CustomTextCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\
    resize_pos_embed, get_cast_dtype
from .coca_model import CoCa
from .loss import ClipLoss, DistillClipLoss, CoCaLoss
from .openai import load_openai_model
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained,\
    list_pretrained_tags_by_model, download_pretrained_from_hf
from .transform import image_transform, AugmentationCfg
from .tokenizer import HFTokenizer, tokenize


HF_HUB_PREFIX = 'hf-hub:'
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
_MODEL_CONFIGS = {}  # directory (model_name: config) of model architecture configs


def _natural_key(string_):
    return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())]


def _rescan_model_configs():
    global _MODEL_CONFIGS

    config_ext = ('.json',)
    config_files = []
    for config_path in _MODEL_CONFIG_PATHS:
        if config_path.is_file() and config_path.suffix in config_ext:
            config_files.append(config_path)
        elif config_path.is_dir():
            for ext in config_ext:
                config_files.extend(config_path.glob(f'*{ext}'))

    for cf in config_files:
        with open(cf, 'r') as f:
            model_cfg = json.load(f)
            if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')):
                _MODEL_CONFIGS[cf.stem] = model_cfg

    _MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))}


_rescan_model_configs()  # initial populate of model config registry


def list_models():
    """ enumerate available model architectures based on config files """
    return list(_MODEL_CONFIGS.keys())


def add_model_config(path):
    """ add model config path or file and update registry """
    if not isinstance(path, Path):
        path = Path(path)
    _MODEL_CONFIG_PATHS.append(path)
    _rescan_model_configs()


def get_model_config(model_name):
    if model_name in _MODEL_CONFIGS:
        return deepcopy(_MODEL_CONFIGS[model_name])
    else:
        return None


def get_tokenizer(model_name):
    if model_name.startswith(HF_HUB_PREFIX):
        tokenizer = HFTokenizer(model_name[len(HF_HUB_PREFIX):])
    else:
        config = get_model_config(model_name)
        tokenizer = HFTokenizer(
            config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize
    return tokenizer


def load_state_dict(checkpoint_path: str, map_location='cpu'):
    checkpoint = torch.load(checkpoint_path, map_location=map_location)
    if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
        state_dict = checkpoint['state_dict']
    else:
        state_dict = checkpoint
    if next(iter(state_dict.items()))[0].startswith('module'):
        state_dict = {k[7:]: v for k, v in state_dict.items()}
    return state_dict


def load_checkpoint(model, checkpoint_path, strict=True):
    state_dict = load_state_dict(checkpoint_path)
    # detect old format and make compatible with new format
    if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'):
        state_dict = convert_to_custom_text_state_dict(state_dict)
    resize_pos_embed(state_dict, model)
    incompatible_keys = model.load_state_dict(state_dict, strict=strict)
    return incompatible_keys


def create_model(
        model_name: str,
        pretrained: Optional[str] = None,
        precision: str = 'fp32',
        device: Union[str, torch.device] = 'cpu',
        jit: bool = False,
        force_quick_gelu: bool = False,
        force_custom_text: bool = False,
        force_patch_dropout: Optional[float] = None,
        force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
        pretrained_image: bool = False,
        pretrained_hf: bool = True,
        cache_dir: Optional[str] = None,
        output_dict: Optional[bool] = None,
        require_pretrained: bool = False,
        logger: logging.Logger = logging,
):
    has_hf_hub_prefix = model_name.startswith(HF_HUB_PREFIX)
    if has_hf_hub_prefix:
        model_id = model_name[len(HF_HUB_PREFIX):]
        checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
        config_path = download_pretrained_from_hf(model_id, filename='open_clip_config.json', cache_dir=cache_dir)

        with open(config_path, 'r', encoding='utf-8') as f:
            config = json.load(f)
        pretrained_cfg = config['preprocess_cfg']
        model_cfg = config['model_cfg']
    else:
        model_name = model_name.replace('/', '-')  # for callers using old naming with / in ViT names
        checkpoint_path = None
        pretrained_cfg = {}
        model_cfg = None

    if isinstance(device, str):
        device = torch.device(device)

    if pretrained and pretrained.lower() == 'openai':
        logger.info(f'Loading pretrained {model_name} from OpenAI.')
        model = load_openai_model(
            model_name,
            precision=precision,
            device=device,
            cache_dir=cache_dir,
        )
    else:
        model_cfg = model_cfg or get_model_config(model_name)
        if model_cfg is not None:
            logger.info(f'Loaded {model_name} model config.')
        else:
            logger.error(f'Model config for {model_name} not found; available models {list_models()}.')
            raise RuntimeError(f'Model config for {model_name} not found.')

        if force_quick_gelu:
            # override for use of QuickGELU on non-OpenAI transformer models
            model_cfg["quick_gelu"] = True

        if force_patch_dropout is not None:
            # override the default patch dropout value
            model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout

        if force_image_size is not None:
            # override model config's image size
            model_cfg["vision_cfg"]["image_size"] = force_image_size

        is_timm_model = 'timm_model_name' in model_cfg.get('vision_cfg', {})
        if pretrained_image:
            if is_timm_model:
                # pretrained weight loading for timm models set via vision_cfg
                model_cfg['vision_cfg']['timm_model_pretrained'] = True
            else:
                assert False, 'pretrained image towers currently only supported for timm models'

        # cast_dtype set for fp16 and bf16 (manual mixed-precision), not set for 'amp' or 'pure' modes
        cast_dtype = get_cast_dtype(precision)
        is_hf_model = 'hf_model_name' in model_cfg.get('text_cfg', {})
        custom_text = model_cfg.pop('custom_text', False) or force_custom_text or is_hf_model

        if custom_text:
            if is_hf_model:
                model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf
            if "coca" in model_name:
                model = CoCa(**model_cfg, cast_dtype=cast_dtype)
            else:
                model = CustomTextCLIP(**model_cfg, cast_dtype=cast_dtype)
        else:
            model = CLIP(**model_cfg, cast_dtype=cast_dtype)

        if precision in ("fp16", "bf16"):
            dtype = torch.float16 if 'fp16' in precision else torch.bfloat16
            # manual mixed precision that matches original OpenAI behaviour
            if is_timm_model:
                # FIXME this is a bit janky, create timm based model in low-precision and
                # then cast only LayerNormFp32 instances back to float32 so they don't break.
                # Why? The convert_weights_to_lp fn only works with native models.
                model.to(device=device, dtype=dtype)
                from .transformer import LayerNormFp32
                def _convert_ln(m):
                    if isinstance(m, LayerNormFp32):
                        m.weight.data = m.weight.data.to(torch.float32)
                        m.bias.data = m.bias.data.to(torch.float32)
                model.apply(_convert_ln)
            else:
                model.to(device=device)
                convert_weights_to_lp(model, dtype=dtype)
        elif precision in ("pure_fp16", "pure_bf16"):
            dtype = torch.float16 if 'fp16' in precision else torch.bfloat16
            model.to(device=device, dtype=dtype)
        else:
            model.to(device=device)

        pretrained_loaded = False
        if pretrained:
            checkpoint_path = ''
            pretrained_cfg = get_pretrained_cfg(model_name, pretrained)
            if pretrained_cfg:
                checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir)
            elif os.path.exists(pretrained):
                checkpoint_path = pretrained

            if checkpoint_path:
                logger.info(f'Loading pretrained {model_name} weights ({pretrained}).')
                load_checkpoint(model, checkpoint_path)
            else:
                error_str = (
                    f'Pretrained weights ({pretrained}) not found for model {model_name}.'
                    f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.')
                logger.warning(error_str)
                raise RuntimeError(error_str)
            pretrained_loaded = True
        elif has_hf_hub_prefix:
            logger.info(f'Loading pretrained {model_name} weights ({pretrained}).')
            load_checkpoint(model, checkpoint_path)
            pretrained_loaded = True

        if require_pretrained and not pretrained_loaded:
            # callers of create_model_from_pretrained always expect pretrained weights
            raise RuntimeError(
                f'Pretrained weights were required for (model: {model_name}, pretrained: {pretrained}) but not loaded.')

        # set image / mean metadata from pretrained_cfg if available, or use default
        model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN
        model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD

    if output_dict and hasattr(model, "output_dict"):
        model.output_dict = True

    if jit:
        model = torch.jit.script(model)

    return model


def create_loss(args):
    if args.distill:
        return DistillClipLoss(
            local_loss=args.local_loss,
            gather_with_grad=args.gather_with_grad,
            cache_labels=True,
            rank=args.rank,
            world_size=args.world_size,
            use_horovod=args.horovod,
        )
    elif "coca" in args.model.lower():
        return CoCaLoss(
            caption_loss_weight=args.coca_caption_loss_weight,
            clip_loss_weight=args.coca_contrastive_loss_weight,
            local_loss=args.local_loss,
            gather_with_grad=args.gather_with_grad,
            cache_labels=True,
            rank=args.rank,
            world_size=args.world_size,
            use_horovod=args.horovod,
        )
    return ClipLoss(
        local_loss=args.local_loss,
        gather_with_grad=args.gather_with_grad,
        cache_labels=True,
        rank=args.rank,
        world_size=args.world_size,
        use_horovod=args.horovod,
    )


def create_model_and_transforms(
        model_name: str,
        pretrained: Optional[str] = None,
        precision: str = 'fp32',
        device: Union[str, torch.device] = 'cpu',
        jit: bool = False,
        force_quick_gelu: bool = False,
        force_custom_text: bool = False,
        force_patch_dropout: Optional[float] = None,
        force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
        pretrained_image: bool = False,
        pretrained_hf: bool = True,
        image_mean: Optional[Tuple[float, ...]] = None,
        image_std: Optional[Tuple[float, ...]] = None,
        aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
        cache_dir: Optional[str] = None,
        output_dict: Optional[bool] = None,
        logger: logging.Logger = logging,
):
    model = create_model(
        model_name,
        pretrained,
        precision=precision,
        device=device,
        jit=jit,
        force_quick_gelu=force_quick_gelu,
        force_custom_text=force_custom_text,
        force_patch_dropout=force_patch_dropout,
        force_image_size=force_image_size,
        pretrained_image=pretrained_image,
        pretrained_hf=pretrained_hf,
        cache_dir=cache_dir,
        output_dict=output_dict,
        logger=logger,
    )

    image_mean = image_mean or getattr(model.visual, 'image_mean', None)
    image_std = image_std or getattr(model.visual, 'image_std', None)
    preprocess_train = image_transform(
        model.visual.image_size,
        is_train=True,
        mean=image_mean,
        std=image_std,
        aug_cfg=aug_cfg,
    )
    preprocess_val = image_transform(
        model.visual.image_size,
        is_train=False,
        mean=image_mean,
        std=image_std,
    )

    return model, preprocess_train, preprocess_val


def create_model_from_pretrained(
        model_name: str,
        pretrained: Optional[str] = None,
        precision: str = 'fp32',
        device: Union[str, torch.device] = 'cpu',
        jit: bool = False,
        force_quick_gelu: bool = False,
        force_custom_text: bool = False,
        force_image_size: Optional[Union[int, Tuple[int, int]]] = None,
        return_transform: bool = True,
        image_mean: Optional[Tuple[float, ...]] = None,
        image_std: Optional[Tuple[float, ...]] = None,
        cache_dir: Optional[str] = None,
        logger: logging.Logger = logging,
):
    model = create_model(
        model_name,
        pretrained,
        precision=precision,
        device=device,
        jit=jit,
        force_quick_gelu=force_quick_gelu,
        force_custom_text=force_custom_text,
        force_image_size=force_image_size,
        cache_dir=cache_dir,
        require_pretrained=True,
        logger=logger,
    )

    if not return_transform:
        return model

    image_mean = image_mean or getattr(model.visual, 'image_mean', None)
    image_std = image_std or getattr(model.visual, 'image_std', None)
    preprocess = image_transform(
        model.visual.image_size,
        is_train=False,
        mean=image_mean,
        std=image_std,
    )

    return model, preprocess