Spaces:
Sleeping
Sleeping
File size: 7,259 Bytes
b34d1d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
from typing import Tuple, List
import pycocotools.mask as maskUtils
import mmcv
import numpy as np
from mmdet.registry import DATASETS
from mmdet.datasets.base_video_dataset import BaseVideoDataset
from mmengine import fileio, join_path, scandir, track_parallel_progress, dump, list_from_file, print_log, exists, load
from mmengine.dist import master_only, dist
def mask2bbox(mask):
bbox = np.zeros((4,), dtype=np.float32)
x_any = np.any(mask, axis=0)
y_any = np.any(mask, axis=1)
x = np.where(x_any)[0]
y = np.where(y_any)[0]
if len(x) > 0 and len(y) > 0:
bbox = np.array((x[0], y[0], x[-1], y[-1]), dtype=np.float32)
return bbox
def video_parser(params):
seq_id, vid_folder, ann_folder = params
images = []
assert os.path.basename(vid_folder) == os.path.basename(ann_folder)
_tmp_img_id = -1
imgs_cur = sorted(list(map(
lambda x: str(x), scandir(vid_folder, recursive=False, suffix='.jpg')
)))
pans_cur = sorted(list(map(
lambda x: str(x), scandir(ann_folder, recursive=False, suffix='.png')
)))
for img_cur, pan_cur in zip(imgs_cur, pans_cur):
assert img_cur.split('.')[0] == pan_cur.split('.')[0]
_tmp_img_id += 1
img_id = _tmp_img_id
item_full = os.path.join(vid_folder, img_cur)
inst_map = os.path.join(ann_folder, pan_cur)
img_dict = {
'img_path': item_full,
'ann_path': inst_map,
}
assert os.path.exists(img_dict['img_path'])
assert os.path.exists(img_dict['ann_path'])
instances = []
ann_map = mmcv.imread(img_dict['ann_path'], flag='unchanged').astype(np.uint32)
ann_map = ann_map[..., 0] * 1000000 + ann_map[..., 1] * 1000 + ann_map[..., 2]
img_dict['height'], img_dict['width'] = ann_map.shape
for pan_seg_id in np.unique(ann_map):
if pan_seg_id == 0:
continue
instance = {}
mask = (ann_map == pan_seg_id).astype(np.uint8)
instance['instance_id'] = pan_seg_id
instance['bbox'] = mask2bbox(mask)
instance['bbox_label'] = 0
instance['ignore_flag'] = 0
instance['mask'] = maskUtils.encode(np.asfortranarray(mask))
instance['mask']['counts'] = instance['mask']['counts'].decode()
instances.append(instance)
img_dict['instances'] = instances
img_dict['video_id'] = seq_id
img_dict['frame_id'] = img_id
img_dict['img_id'] = seq_id * 10000 + img_id
images.append(img_dict)
return {
'video_id': seq_id,
'images': images,
'video_length': len(images)
}
@DATASETS.register_module()
class DAVIS(BaseVideoDataset):
METAINFO = {
'classes': {},
'palette': {},
}
def __init__(self, dataset_version: str, *args, **kwargs):
self.__class__.__name__ = f'DVAIS_{dataset_version}'
super().__init__(*args, **kwargs)
@master_only
def build_cache(self, ann_json_path, video_folders, ann_folders) -> None:
vid_ids = range(len(video_folders))
data_list = track_parallel_progress(
video_parser,
tasks=list(zip(vid_ids, video_folders, ann_folders)),
nproc=20,
keep_order=False,
)
data_list = sorted(data_list, key=lambda x: x['video_id'])
dump(data_list, ann_json_path)
def load_data_list(self) -> List[dict]:
"""Load annotations from an annotation file named as ``self.ann_file``.
Returns:
tuple(list[dict], list): A list of annotation and a list of
valid data indices.
"""
with fileio.get_local_path(self.ann_file) as local_path:
video_folders = list_from_file(local_path, prefix=self.data_prefix['img'])
ann_folders = list_from_file(local_path, prefix=self.data_prefix['ann'])
assert len(video_folders) == len(ann_folders)
print_log(f"#videos : {len(video_folders)} ", logger='current')
split = os.path.basename(self.ann_file).split('.')[0]
ann_json_path = f"{split}_annotations.json"
ann_json_path = join_path(self.data_root, ann_json_path)
if not exists(ann_json_path):
self.build_cache(ann_json_path, video_folders, ann_folders)
dist.barrier()
raw_data_list = load(ann_json_path)
data_list = []
for raw_data_info in raw_data_list:
data_info = self.parse_data_info(raw_data_info)
data_list.append(data_info)
vid_len_list = [itm['video_length'] for itm in data_list]
max_vid_len = max(vid_len_list)
min_vid_len = min(vid_len_list)
print_log(
f"Max video len : {max_vid_len}; "
f"Min video len : {min_vid_len}."
,
logger='current',
)
return data_list
def parse_data_info(self, raw_data_info: dict) -> dict:
data_info = {
'video_id': raw_data_info['video_id'],
'video_length': raw_data_info['video_length']
}
images = []
for raw_img_data_info in raw_data_info['images']:
img_data_info = {
'img_path': raw_img_data_info['img_path'],
'height': raw_img_data_info['height'],
'width': raw_img_data_info['width'],
'video_id': raw_img_data_info['video_id'],
'frame_id': raw_img_data_info['frame_id'],
'img_id': raw_img_data_info['img_id']
}
instances = []
segments_info = []
for ann in raw_img_data_info['instances']:
instance = {}
category_id = ann['bbox_label']
bbox = ann['bbox']
is_thing = 1
if is_thing:
instance['bbox'] = bbox
instance['bbox_label'] = category_id
instance['ignore_flag'] = ann['ignore_flag']
instance['instance_id'] = ann['instance_id']
segment_info = {
'mask': ann['mask'],
'category': category_id,
'is_thing': is_thing
}
segments_info.append(segment_info)
if len(instance) > 0 and is_thing:
instances.append(instance)
img_data_info['instances'] = instances
img_data_info['segments_info'] = segments_info
images.append(img_data_info)
data_info['images'] = images
return data_info
def filter_data(self) -> List[dict]:
"""Filter image annotations according to filter_cfg.
Returns:
list[int]: Filtered results.
"""
if self.test_mode:
return self.data_list
num_imgs_before_filter = sum([len(info['images']) for info in self.data_list])
num_imgs_after_filter = num_imgs_before_filter
new_data_list = self.data_list
print_log(
'The number of samples before and after filtering: '
f'{num_imgs_before_filter} / {num_imgs_after_filter}', 'current')
return new_data_list
|