File size: 7,259 Bytes
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
from typing import Tuple, List

import pycocotools.mask as maskUtils

import mmcv
import numpy as np
from mmdet.registry import DATASETS
from mmdet.datasets.base_video_dataset import BaseVideoDataset
from mmengine import fileio, join_path, scandir, track_parallel_progress, dump, list_from_file, print_log, exists, load
from mmengine.dist import master_only, dist


def mask2bbox(mask):
    bbox = np.zeros((4,), dtype=np.float32)
    x_any = np.any(mask, axis=0)
    y_any = np.any(mask, axis=1)
    x = np.where(x_any)[0]
    y = np.where(y_any)[0]
    if len(x) > 0 and len(y) > 0:
        bbox = np.array((x[0], y[0], x[-1], y[-1]), dtype=np.float32)
    return bbox


def video_parser(params):
    seq_id, vid_folder, ann_folder = params
    images = []
    assert os.path.basename(vid_folder) == os.path.basename(ann_folder)
    _tmp_img_id = -1
    imgs_cur = sorted(list(map(
        lambda x: str(x), scandir(vid_folder, recursive=False, suffix='.jpg')
    )))
    pans_cur = sorted(list(map(
        lambda x: str(x), scandir(ann_folder, recursive=False, suffix='.png')
    )))
    for img_cur, pan_cur in zip(imgs_cur, pans_cur):
        assert img_cur.split('.')[0] == pan_cur.split('.')[0]
        _tmp_img_id += 1
        img_id = _tmp_img_id
        item_full = os.path.join(vid_folder, img_cur)
        inst_map = os.path.join(ann_folder, pan_cur)
        img_dict = {
            'img_path': item_full,
            'ann_path': inst_map,
        }
        assert os.path.exists(img_dict['img_path'])
        assert os.path.exists(img_dict['ann_path'])
        instances = []
        ann_map = mmcv.imread(img_dict['ann_path'], flag='unchanged').astype(np.uint32)
        ann_map = ann_map[..., 0] * 1000000 + ann_map[..., 1] * 1000 + ann_map[..., 2]
        img_dict['height'], img_dict['width'] = ann_map.shape

        for pan_seg_id in np.unique(ann_map):
            if pan_seg_id == 0:
                continue
            instance = {}
            mask = (ann_map == pan_seg_id).astype(np.uint8)
            instance['instance_id'] = pan_seg_id
            instance['bbox'] = mask2bbox(mask)
            instance['bbox_label'] = 0
            instance['ignore_flag'] = 0
            instance['mask'] = maskUtils.encode(np.asfortranarray(mask))
            instance['mask']['counts'] = instance['mask']['counts'].decode()
            instances.append(instance)
        img_dict['instances'] = instances
        img_dict['video_id'] = seq_id
        img_dict['frame_id'] = img_id
        img_dict['img_id'] = seq_id * 10000 + img_id
        images.append(img_dict)
    return {
        'video_id': seq_id,
        'images': images,
        'video_length': len(images)
    }


@DATASETS.register_module()
class DAVIS(BaseVideoDataset):
    METAINFO = {
        'classes': {},
        'palette': {},
    }

    def __init__(self, dataset_version: str, *args, **kwargs):
        self.__class__.__name__ = f'DVAIS_{dataset_version}'
        super().__init__(*args, **kwargs)

    @master_only
    def build_cache(self, ann_json_path, video_folders, ann_folders) -> None:
        vid_ids = range(len(video_folders))

        data_list = track_parallel_progress(
            video_parser,
            tasks=list(zip(vid_ids, video_folders, ann_folders)),
            nproc=20,
            keep_order=False,
        )
        data_list = sorted(data_list, key=lambda x: x['video_id'])
        dump(data_list, ann_json_path)

    def load_data_list(self) -> List[dict]:
        """Load annotations from an annotation file named as ``self.ann_file``.

        Returns:
            tuple(list[dict], list): A list of annotation and a list of
            valid data indices.
        """
        with fileio.get_local_path(self.ann_file) as local_path:
            video_folders = list_from_file(local_path, prefix=self.data_prefix['img'])
            ann_folders = list_from_file(local_path, prefix=self.data_prefix['ann'])
        assert len(video_folders) == len(ann_folders)
        print_log(f"#videos : {len(video_folders)} ", logger='current')

        split = os.path.basename(self.ann_file).split('.')[0]
        ann_json_path = f"{split}_annotations.json"
        ann_json_path = join_path(self.data_root, ann_json_path)
        if not exists(ann_json_path):
            self.build_cache(ann_json_path, video_folders, ann_folders)
        dist.barrier()
        raw_data_list = load(ann_json_path)
        data_list = []
        for raw_data_info in raw_data_list:
            data_info = self.parse_data_info(raw_data_info)
            data_list.append(data_info)
        vid_len_list = [itm['video_length'] for itm in data_list]
        max_vid_len = max(vid_len_list)
        min_vid_len = min(vid_len_list)
        print_log(
            f"Max video len : {max_vid_len}; "
            f"Min video len : {min_vid_len}."
            ,
            logger='current',
        )
        return data_list

    def parse_data_info(self, raw_data_info: dict) -> dict:
        data_info = {
            'video_id': raw_data_info['video_id'],
            'video_length': raw_data_info['video_length']
        }
        images = []
        for raw_img_data_info in raw_data_info['images']:
            img_data_info = {
                'img_path': raw_img_data_info['img_path'],
                'height': raw_img_data_info['height'],
                'width': raw_img_data_info['width'],
                'video_id': raw_img_data_info['video_id'],
                'frame_id': raw_img_data_info['frame_id'],
                'img_id': raw_img_data_info['img_id']
            }
            instances = []
            segments_info = []
            for ann in raw_img_data_info['instances']:
                instance = {}
                category_id = ann['bbox_label']
                bbox = ann['bbox']
                is_thing = 1
                if is_thing:
                    instance['bbox'] = bbox
                    instance['bbox_label'] = category_id
                    instance['ignore_flag'] = ann['ignore_flag']
                    instance['instance_id'] = ann['instance_id']

                segment_info = {
                    'mask': ann['mask'],
                    'category': category_id,
                    'is_thing': is_thing
                }
                segments_info.append(segment_info)
                if len(instance) > 0 and is_thing:
                    instances.append(instance)
            img_data_info['instances'] = instances
            img_data_info['segments_info'] = segments_info
            images.append(img_data_info)
        data_info['images'] = images
        return data_info

    def filter_data(self) -> List[dict]:
        """Filter image annotations according to filter_cfg.

        Returns:
            list[int]: Filtered results.
        """
        if self.test_mode:
            return self.data_list

        num_imgs_before_filter = sum([len(info['images']) for info in self.data_list])
        num_imgs_after_filter = num_imgs_before_filter

        new_data_list = self.data_list

        print_log(
            'The number of samples before and after filtering: '
            f'{num_imgs_before_filter} / {num_imgs_after_filter}', 'current')
        return new_data_list