File size: 6,013 Bytes
b34d1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import errno
import numpy as np
from PIL import Image
import warnings
from ext.davis2017.davis import DAVIS


def _pascal_color_map(N=256, normalized=False):
    """
    Python implementation of the color map function for the PASCAL VOC data set.
    Official Matlab version can be found in the PASCAL VOC devkit
    http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html#devkit
    """

    def bitget(byteval, idx):
        return (byteval & (1 << idx)) != 0

    dtype = 'float32' if normalized else 'uint8'
    cmap = np.zeros((N, 3), dtype=dtype)
    for i in range(N):
        r = g = b = 0
        c = i
        for j in range(8):
            r = r | (bitget(c, 0) << 7 - j)
            g = g | (bitget(c, 1) << 7 - j)
            b = b | (bitget(c, 2) << 7 - j)
            c = c >> 3

        cmap[i] = np.array([r, g, b])

    cmap = cmap / 255 if normalized else cmap
    return cmap


def overlay_semantic_mask(im, ann, alpha=0.5, colors=None, contour_thickness=None):
    im, ann = np.asarray(im, dtype=np.uint8), np.asarray(ann, dtype=np.int)
    if im.shape[:-1] != ann.shape:
        raise ValueError('First two dimensions of `im` and `ann` must match')
    if im.shape[-1] != 3:
        raise ValueError('im must have three channels at the 3 dimension')

    colors = colors or _pascal_color_map()
    colors = np.asarray(colors, dtype=np.uint8)

    mask = colors[ann]
    fg = im * alpha + (1 - alpha) * mask

    img = im.copy()
    img[ann > 0] = fg[ann > 0]

    if contour_thickness:  # pragma: no cover
        import cv2
        for obj_id in np.unique(ann[ann > 0]):
            contours = cv2.findContours((ann == obj_id).astype(
                np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:]
            cv2.drawContours(img, contours[0], -1, colors[obj_id].tolist(),
                             contour_thickness)
    return img


def generate_obj_proposals(davis_root, subset, num_proposals, save_path):
    dataset = DAVIS(davis_root, subset=subset, codalab=True)
    for seq in dataset.get_sequences():
        save_dir = os.path.join(save_path, seq)
        if os.path.exists(save_dir):
            continue
        all_gt_masks, all_masks_id = dataset.get_all_masks(seq, True)
        img_size = all_gt_masks.shape[2:]
        num_rows = int(np.ceil(np.sqrt(num_proposals)))
        proposals = np.zeros((num_proposals, len(all_masks_id), *img_size))
        height_slices = np.floor(np.arange(0, img_size[0] + 1, img_size[0]/num_rows)).astype(np.uint).tolist()
        width_slices = np.floor(np.arange(0, img_size[1] + 1, img_size[1]/num_rows)).astype(np.uint).tolist()
        ii = 0
        prev_h, prev_w = 0, 0
        for h in height_slices[1:]:
            for w in width_slices[1:]:
                proposals[ii, :, prev_h:h, prev_w:w] = 1
                prev_w = w
                ii += 1
                if ii == num_proposals:
                    break
            prev_h, prev_w = h, 0
            if ii == num_proposals:
                break

        os.makedirs(save_dir, exist_ok=True)
        for i, mask_id in enumerate(all_masks_id):
            mask = np.sum(proposals[:, i, ...] * np.arange(1, proposals.shape[0] + 1)[:, None, None], axis=0)
            save_mask(mask, os.path.join(save_dir, f'{mask_id}.png'))


def generate_random_permutation_gt_obj_proposals(davis_root, subset, save_path):
    dataset = DAVIS(davis_root, subset=subset, codalab=True)
    for seq in dataset.get_sequences():
        gt_masks, all_masks_id = dataset.get_all_masks(seq, True)
        obj_swap = np.random.permutation(np.arange(gt_masks.shape[0]))
        gt_masks = gt_masks[obj_swap, ...]
        save_dir = os.path.join(save_path, seq)
        os.makedirs(save_dir, exist_ok=True)
        for i, mask_id in enumerate(all_masks_id):
            mask = np.sum(gt_masks[:, i, ...] * np.arange(1, gt_masks.shape[0] + 1)[:, None, None], axis=0)
            save_mask(mask, os.path.join(save_dir, f'{mask_id}.png'))


def color_map(N=256, normalized=False):
    def bitget(byteval, idx):
        return ((byteval & (1 << idx)) != 0)

    dtype = 'float32' if normalized else 'uint8'
    cmap = np.zeros((N, 3), dtype=dtype)
    for i in range(N):
        r = g = b = 0
        c = i
        for j in range(8):
            r = r | (bitget(c, 0) << 7-j)
            g = g | (bitget(c, 1) << 7-j)
            b = b | (bitget(c, 2) << 7-j)
            c = c >> 3

        cmap[i] = np.array([r, g, b])

    cmap = cmap/255 if normalized else cmap
    return cmap


def save_mask(mask, img_path):
    if np.max(mask) > 255:
        raise ValueError('Maximum id pixel value is 255')
    mask_img = Image.fromarray(mask.astype(np.uint8))
    mask_img.putpalette(color_map().flatten().tolist())
    mask_img.save(img_path)


def db_statistics(per_frame_values):
    """ Compute mean,recall and decay from per-frame evaluation.
    Arguments:
        per_frame_values (ndarray): per-frame evaluation

    Returns:
        M,O,D (float,float,float):
            return evaluation statistics: mean,recall,decay.
    """

    # strip off nan values
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", category=RuntimeWarning)
        M = np.nanmean(per_frame_values)
        O = np.nanmean(per_frame_values > 0.5)

    N_bins = 4
    ids = np.round(np.linspace(1, len(per_frame_values), N_bins + 1) + 1e-10) - 1
    ids = ids.astype(np.uint8)

    D_bins = [per_frame_values[ids[i]:ids[i + 1] + 1] for i in range(0, 4)]

    with warnings.catch_warnings():
        warnings.simplefilter("ignore", category=RuntimeWarning)
        D = np.nanmean(D_bins[0]) - np.nanmean(D_bins[3])

    return M, O, D


def list_files(dir, extension=".png"):
    return [os.path.splitext(file_)[0] for file_ in os.listdir(dir) if file_.endswith(extension)]


def force_symlink(file1, file2):
    try:
        os.symlink(file1, file2)
    except OSError as e:
        if e.errno == errno.EEXIST:
            os.remove(file2)
        os.symlink(file1, file2)