Spaces:
Runtime error
Runtime error
File size: 14,009 Bytes
b34d1d6 1f8df14 b34d1d6 1f8df14 b34d1d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Tuple
import torch
from mmengine.structures import InstanceData
from torch import Tensor
import torch.nn.functional as F
from mmdet.registry import MODELS
from mmdet.structures import SampleList, OptSampleList, TrackDataSample
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig
from mmdet.models.detectors.single_stage import SingleStageDetector
from seg.models.utils import mask_pool
@MODELS.register_module()
class Mask2formerVideo(SingleStageDetector):
r"""Implementation of `Per-Pixel Classification is
NOT All You Need for Semantic Segmentation
<https://arxiv.org/pdf/2107.06278>`_."""
OVERLAPPING = None
def __init__(self,
backbone: ConfigType,
neck: OptConfigType = None,
panoptic_head: OptConfigType = None,
panoptic_fusion_head: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
inference_sam: bool = False,
init_cfg: OptMultiConfig = None
):
super(SingleStageDetector, self).__init__(
data_preprocessor=data_preprocessor, init_cfg=init_cfg)
self.backbone = MODELS.build(backbone)
if neck is not None:
self.neck = MODELS.build(neck)
panoptic_head_ = panoptic_head.deepcopy()
panoptic_head_.update(train_cfg=train_cfg)
panoptic_head_.update(test_cfg=test_cfg)
self.panoptic_head = MODELS.build(panoptic_head_)
panoptic_fusion_head_ = panoptic_fusion_head.deepcopy()
panoptic_fusion_head_.update(test_cfg=test_cfg)
self.panoptic_fusion_head = MODELS.build(panoptic_fusion_head_)
self.num_things_classes = self.panoptic_head.num_things_classes
self.num_stuff_classes = self.panoptic_head.num_stuff_classes
self.num_classes = self.panoptic_head.num_classes
self.train_cfg = train_cfg
self.test_cfg = test_cfg
self.alpha = 0.4
self.beta = 0.8
self.inference_sam = inference_sam
def loss(self, batch_inputs: Tensor,
batch_data_samples: SampleList) -> Dict[str, Tensor]:
"""
Args:
batch_inputs (Tensor): Input images of shape (N, C, H, W).
These should usually be mean centered and std scaled.
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
if isinstance(batch_data_samples[0], TrackDataSample):
bs, num_frames, three, h, w = batch_inputs.shape
assert three == 3, "Only supporting images with 3 channels."
x = batch_inputs.reshape((bs * num_frames, three, h, w))
x = self.extract_feat(x)
else:
x = self.extract_feat(batch_inputs)
losses = self.panoptic_head.loss(x, batch_data_samples)
return losses
def predict(self,
batch_inputs: Tensor,
batch_data_samples: SampleList,
rescale: bool = True) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
Args:
batch_inputs (Tensor): Inputs with shape (N, C, H, W).
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
rescale (bool): Whether to rescale the results.
Defaults to True.
Returns:
list[:obj:`DetDataSample`]: Detection results of the
input images. Each DetDataSample usually contain
'pred_instances' and `pred_panoptic_seg`. And the
``pred_instances`` usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
And the ``pred_panoptic_seg`` contains the following key
- sem_seg (Tensor): panoptic segmentation mask, has a
shape (1, h, w).
"""
if isinstance(batch_data_samples[0], TrackDataSample):
bs, num_frames, three, h, w = batch_inputs.shape
assert three == 3, "Only supporting images with 3 channels."
x = batch_inputs.reshape((bs * num_frames, three, h, w))
feats = self.extract_feat(x)
else:
num_frames = 0
bs = batch_inputs.shape[0]
feats = self.extract_feat(batch_inputs)
# in case no queries are provided for prompt.
if self.inference_sam and len(batch_data_samples[0].gt_instances) == 0:
for idx, data_sample in enumerate(batch_data_samples):
results = InstanceData()
data_sample.pred_instances = results
return batch_data_samples
mask_cls_results, mask_pred_results, iou_results = self.panoptic_head.predict(feats, batch_data_samples)
if self.OVERLAPPING is not None:
assert len(self.OVERLAPPING) == self.num_classes
mask_cls_results = self.open_voc_inference(feats, mask_cls_results, mask_pred_results)
if batch_data_samples[0].data_tag == 'sam':
return mask_pred_results.cpu().numpy()
# # if self.inference_sam:
# for idx, data_sample in enumerate(batch_data_samples):
# results = InstanceData()
# mask = mask_pred_results[idx]
# img_height, img_width = data_sample.metainfo['img_shape'][:2]
# mask = mask[:, :img_height, :img_width]
# ori_height, ori_width = data_sample.metainfo['ori_shape'][:2]
# mask = F.interpolate(
# mask[:, None],
# size=(ori_height, ori_width),
# mode='bilinear',
# align_corners=False)[:, 0]
# results.masks = mask.sigmoid() > 0.5
# data_sample.pred_instances = results
# return batch_data_samples
if num_frames > 0:
for frame_id in range(num_frames):
results_list_img = self.panoptic_fusion_head.predict(
mask_cls_results,
mask_pred_results[:, :, frame_id],
[batch_data_samples[idx][frame_id] for idx in range(bs)],
rescale=rescale
)
_ = self.add_track_pred_to_datasample(
[batch_data_samples[idx][frame_id] for idx in range(bs)], results_list_img
)
results = batch_data_samples
else:
results_list = self.panoptic_fusion_head.predict(
mask_cls_results,
mask_pred_results,
batch_data_samples,
iou_results=iou_results,
rescale=rescale
)
results = self.add_pred_to_datasample(batch_data_samples, results_list)
return results_list
def add_pred_to_datasample(self, data_samples: SampleList,
results_list: List[dict]) -> SampleList:
"""Add predictions to `DetDataSample`.
Args:
data_samples (list[:obj:`DetDataSample`], optional): A batch of
data samples that contain annotations and predictions.
results_list (List[dict]): Instance segmentation, segmantic
segmentation and panoptic segmentation results.
Returns:
list[:obj:`DetDataSample`]: Detection results of the
input images. Each DetDataSample usually contain
'pred_instances' and `pred_panoptic_seg`. And the
``pred_instances`` usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- masks (Tensor): Has a shape (num_instances, H, W).
And the ``pred_panoptic_seg`` contains the following key
- sem_seg (Tensor): panoptic segmentation mask, has a
shape (1, h, w).
"""
for data_sample, pred_results in zip(data_samples, results_list):
if 'pan_results' in pred_results:
data_sample.pred_panoptic_seg = pred_results['pan_results']
if 'ins_results' in pred_results:
data_sample.pred_instances = pred_results['ins_results']
assert 'sem_results' not in pred_results
return data_samples
def add_track_pred_to_datasample(self, data_samples: SampleList, results_list: List[dict]) -> SampleList:
for data_sample, pred_results in zip(data_samples, results_list):
if 'pan_results' in pred_results:
assert self.num_stuff_classes > 0
pred_results['pan_results'].sem_seg = pred_results['pan_results'].sem_seg.cpu()
data_sample.pred_track_panoptic_seg = pred_results['pan_results']
if 'ins_results' in pred_results:
bboxes = pred_results['ins_results']['bboxes']
labels = pred_results['ins_results']['labels']
track_ids = torch.arange(len(bboxes), dtype=labels.dtype, device=bboxes.device) + 1
pred_results['ins_results']['instances_id'] = track_ids
data_sample.pred_track_instances = pred_results['ins_results']
if 'pro_results' in pred_results:
data_sample.pred_track_proposal = pred_results['pro_results']
assert 'sem_results' not in pred_results
return data_samples
def _forward(
self,
batch_inputs: Tensor,
batch_data_samples: OptSampleList = None) -> Tuple[List[Tensor]]:
"""Network forward process. Usually includes backbone, neck and head
forward without any post-processing.
Args:
batch_inputs (Tensor): Inputs with shape (N, C, H, W).
batch_data_samples (list[:obj:`DetDataSample`]): The batch
data samples. It usually includes information such
as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
Returns:
tuple[List[Tensor]]: A tuple of features from ``panoptic_head``
forward.
"""
if isinstance(batch_data_samples[0], TrackDataSample):
bs, num_frames, three, h, w = batch_inputs.shape
assert three == 3, "Only supporting images with 3 channels."
x = batch_inputs.reshape((bs * num_frames, three, h, w))
feats = self.extract_feat(x)
else:
feats = self.extract_feat(batch_inputs)
results = self.panoptic_head.forward(feats, batch_data_samples)
return results
def open_voc_inference(self, feats, mask_cls_results, mask_pred_results):
if len(mask_pred_results.shape) == 5:
batch_size = mask_cls_results.shape[0]
num_frames = mask_pred_results.shape[2]
mask_pred_results = mask_pred_results.permute(0, 2, 1, 3, 4).flatten(0, 1)
else:
batch_size = mask_cls_results.shape[0]
num_frames = 0
clip_feat = self.backbone.get_clip_feature(feats[-1])
clip_feat_mask = F.interpolate(
mask_pred_results,
size=clip_feat.shape[-2:],
mode='bilinear',
align_corners=False
)
if num_frames > 0:
clip_feat_mask = clip_feat_mask.unflatten(0, (batch_size, num_frames)).permute(0, 2, 1, 3, 4).flatten(2, 3)
clip_feat = clip_feat.unflatten(0, (batch_size, num_frames)).permute(0, 2, 1, 3, 4).flatten(2, 3)
instance_feat = mask_pool(clip_feat, clip_feat_mask)
instance_feat = self.backbone.forward_feat(instance_feat)
clip_logit = self.panoptic_head.forward_logit(instance_feat)
clip_logit = clip_logit[..., :-1]
query_logit = mask_cls_results[..., :-1]
clip_logit = clip_logit.softmax(-1)
query_logit = query_logit.softmax(-1)
overlapping_mask = torch.tensor(self.OVERLAPPING, dtype=torch.float32, device=clip_logit.device)
valid_masking = ((clip_feat_mask > 0).to(dtype=torch.float32).flatten(-2).sum(-1) > 0).to(
torch.float32)[..., None]
alpha = torch.ones_like(clip_logit) * self.alpha * valid_masking
beta = torch.ones_like(clip_logit) * self.beta * valid_masking
cls_logits_seen = (
(query_logit ** (1 - alpha) * clip_logit ** alpha).log()
* overlapping_mask
)
cls_logits_unseen = (
(query_logit ** (1 - beta) * clip_logit ** beta).log()
* (1 - overlapping_mask)
)
cls_results = cls_logits_seen + cls_logits_unseen
is_void_prob = F.softmax(mask_cls_results, dim=-1)[..., -1:]
mask_cls_results = torch.cat([
cls_results.softmax(-1) * (1.0 - is_void_prob), is_void_prob], dim=-1)
mask_cls_results = torch.log(mask_cls_results + 1e-8)
return mask_cls_results
|