Spaces:
Sleeping
Sleeping
File size: 50,651 Bytes
b34d1d6 976cbed b34d1d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from mmcv.cnn import Conv2d
from mmcv.ops import point_sample
from mmdet.models import Mask2FormerTransformerDecoder, inverse_sigmoid, coordinate_to_encoding
from mmdet.structures.bbox import bbox_xyxy_to_cxcywh
from mmengine import print_log
from mmengine.dist import get_dist_info
from mmengine.model import caffe2_xavier_init, ModuleList
from mmengine.structures import InstanceData, PixelData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import SampleList, TrackDataSample
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
OptMultiConfig, reduce_mean)
from mmdet.models.layers import SinePositionalEncoding3D
from mmdet.models.utils import multi_apply, preprocess_panoptic_gt, get_uncertain_point_coords_with_randomness
from mmdet.models.dense_heads.anchor_free_head import AnchorFreeHead
from seg.models.utils import preprocess_video_panoptic_gt, mask_pool
from seg.models.utils.load_checkpoint import load_checkpoint_with_prefix
@MODELS.register_module()
class Mask2FormerVideoHead(AnchorFreeHead):
"""Implements the Mask2Former head.
See `Masked-attention Mask Transformer for Universal Image
Segmentation <https://arxiv.org/pdf/2112.01527>`_ for details.
Args:
in_channels (list[int]): Number of channels in the input feature map.
feat_channels (int): Number of channels for features.
out_channels (int): Number of channels for output.
num_things_classes (int): Number of things.
num_stuff_classes (int): Number of stuff.
num_queries (int): Number of query in Transformer decoder.
pixel_decoder (:obj:`ConfigDict` or dict): Config for pixel
decoder. Defaults to None.
enforce_decoder_input_project (bool, optional): Whether to add
a layer to change the embed_dim of tranformer encoder in
pixel decoder to the embed_dim of transformer decoder.
Defaults to False.
transformer_decoder (:obj:`ConfigDict` or dict): Config for
transformer decoder. Defaults to None.
positional_encoding (:obj:`ConfigDict` or dict): Config for
transformer decoder position encoding. Defaults to
dict(num_feats=128, normalize=True).
loss_cls (:obj:`ConfigDict` or dict): Config of the classification
loss. Defaults to None.
loss_mask (:obj:`ConfigDict` or dict): Config of the mask loss.
Defaults to None.
loss_dice (:obj:`ConfigDict` or dict): Config of the dice loss.
Defaults to None.
train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
Mask2Former head.
test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
Mask2Former head.
init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
dict], optional): Initialization config dict. Defaults to None.
"""
def __init__(self,
in_channels: List[int],
feat_channels: int,
out_channels: int,
num_things_classes: int = 80,
num_stuff_classes: int = 53,
num_queries: int = 100,
num_transformer_feat_level: int = 3,
pixel_decoder: ConfigType = ...,
enforce_decoder_input_project: bool = False,
transformer_decoder: ConfigType = ...,
positional_encoding: ConfigType = None,
loss_cls: ConfigType = None,
loss_mask: ConfigType = None,
loss_dice: ConfigType = None,
loss_iou: ConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
init_cfg: OptMultiConfig = None,
# ov configs
sphere_cls: bool = False,
ov_classifier_name: Optional[str] = None,
logit: Optional[int] = None,
# box sup
matching_whole_map: bool = False,
# box query
enable_box_query: bool = False,
group_assigner: OptConfigType = None,
**kwargs) -> None:
super(AnchorFreeHead, self).__init__(init_cfg=init_cfg)
self.num_things_classes = num_things_classes
self.num_stuff_classes = num_stuff_classes
self.num_classes = self.num_things_classes + self.num_stuff_classes
self.num_queries = num_queries
self.num_transformer_feat_level = num_transformer_feat_level
self.num_heads = transformer_decoder.layer_cfg.cross_attn_cfg.num_heads
self.num_transformer_decoder_layers = transformer_decoder.num_layers
assert pixel_decoder.encoder.layer_cfg. \
self_attn_cfg.num_levels == num_transformer_feat_level
pixel_decoder_ = copy.deepcopy(pixel_decoder)
pixel_decoder_.update(
in_channels=in_channels,
feat_channels=feat_channels,
out_channels=out_channels)
self.pixel_decoder = MODELS.build(pixel_decoder_)
self.transformer_decoder = Mask2FormerTransformerDecoder(
**transformer_decoder)
self.decoder_embed_dims = self.transformer_decoder.embed_dims
self.decoder_input_projs = ModuleList()
# from low resolution to high resolution
for _ in range(num_transformer_feat_level):
if (self.decoder_embed_dims != feat_channels
or enforce_decoder_input_project):
self.decoder_input_projs.append(
Conv2d(
feat_channels, self.decoder_embed_dims, kernel_size=1))
else:
self.decoder_input_projs.append(nn.Identity())
self.decoder_positional_encoding = SinePositionalEncoding3D(
**positional_encoding)
self.query_embed = nn.Embedding(self.num_queries, feat_channels)
self.query_feat = nn.Embedding(self.num_queries, feat_channels)
# from low resolution to high resolution
self.level_embed = nn.Embedding(self.num_transformer_feat_level,
feat_channels)
if not sphere_cls:
self.cls_embed = nn.Linear(feat_channels, self.num_classes + 1)
self.mask_embed = nn.Sequential(
nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
nn.Linear(feat_channels, out_channels))
if loss_iou is not None:
self.iou_embed = nn.Sequential(
nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
nn.Linear(feat_channels, 1))
else:
self.iou_embed = None
self.test_cfg = test_cfg
self.train_cfg = train_cfg
if train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
self.sampler = TASK_UTILS.build(
self.train_cfg['sampler'], default_args=dict(context=self))
self.num_points = self.train_cfg.get('num_points', 12544)
self.oversample_ratio = self.train_cfg.get('oversample_ratio', 3.0)
self.importance_sample_ratio = self.train_cfg.get(
'importance_sample_ratio', 0.75)
self.class_weight = loss_cls.class_weight
self.loss_cls = MODELS.build(loss_cls)
self.loss_mask = MODELS.build(loss_mask)
self.loss_dice = MODELS.build(loss_dice)
if loss_iou is not None:
self.loss_iou = MODELS.build(loss_iou)
else:
self.loss_iou = None
# prepare OV things
# OV cls embed
if sphere_cls:
rank, world_size = get_dist_info()
if ov_classifier_name is None:
_dim = 1024 # temporally hard code
cls_embed = torch.empty(self.num_classes, _dim)
torch.nn.init.orthogonal_(cls_embed)
cls_embed = cls_embed[:, None]
else:
# ov_path = os.path.join(os.path.expanduser('~/.cache/embd'), f"{ov_classifier_name}.pth")
ov_path = os.path.join(os.path.expanduser('./models/'), f"{ov_classifier_name}.pth")
cls_embed = torch.load(ov_path)
cls_embed_norm = cls_embed.norm(p=2, dim=-1)
assert torch.allclose(cls_embed_norm, torch.ones_like(cls_embed_norm))
if self.loss_cls and self.loss_cls.use_sigmoid:
pass
else:
_dim = cls_embed.size(2)
_prototypes = cls_embed.size(1)
# if rank == 0:
# back_token = torch.zeros(1, _dim, dtype=torch.float32, device='cuda')
# # back_token = back_token / back_token.norm(p=2, dim=-1, keepdim=True)
# else:
# back_token = torch.empty(1, _dim, dtype=torch.float32, device='cuda')
# if world_size > 1:
# dist.broadcast(back_token, src=0)
# back_token = back_token.to(device='cpu')
back_token = torch.zeros(1, _dim, dtype=torch.float32, device='cpu')
cls_embed = torch.cat([
cls_embed, back_token.repeat(_prototypes, 1)[None]
], dim=0)
self.register_buffer('cls_embed', cls_embed.permute(2, 0, 1).contiguous(), persistent=False)
# cls embd proj
cls_embed_dim = self.cls_embed.size(0)
self.cls_proj = nn.Sequential(
nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
nn.Linear(feat_channels, cls_embed_dim)
)
# Haobo Yuan:
# For the logit_scale, I refer to this issue.
# https://github.com/openai/CLIP/issues/46#issuecomment-945062212
# https://github.com/openai/CLIP/issues/46#issuecomment-782558799
# Based on my understanding, it is a mistake of CLIP.
# Because they mention that they refer to InstDisc (Wu, 2018) paper.
# InstDisc set a non-learnable temperature to np.log(1 / 0.07).
# 4.6052 is np.log(1 / 0.01)
# np.log(1 / 0.07) will be fast converged to np.log(1 / 0.01)
if logit is None:
logit_scale = torch.tensor(4.6052, dtype=torch.float32)
else:
logit_scale = torch.tensor(logit, dtype=torch.float32)
self.register_buffer('logit_scale', logit_scale, persistent=False)
# Mask Pooling
self.mask_pooling = mask_pool
self.mask_pooling_proj = nn.Sequential(
nn.LayerNorm(feat_channels),
nn.Linear(feat_channels, feat_channels)
)
# box inst
self.matching_whole_map = matching_whole_map
# enable box query
self.enable_box_query = enable_box_query
if self.enable_box_query:
self.num_mask_tokens = 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, feat_channels)
self.pb_embedding = nn.Embedding(2, feat_channels)
self.pos_linear = nn.Linear(2 * feat_channels, feat_channels)
def init_weights(self) -> None:
if self.init_cfg['type'] == 'Pretrained':
checkpoint_path = self.init_cfg['checkpoint']
state_dict = load_checkpoint_with_prefix(checkpoint_path, prefix=self.init_cfg['prefix'])
msg = self.load_state_dict(state_dict, strict=False)
print_log(f"m: {msg[0]} \n u: {msg[1]}", logger='current')
return None
for m in self.decoder_input_projs:
if isinstance(m, Conv2d):
caffe2_xavier_init(m, bias=0)
self.pixel_decoder.init_weights()
for p in self.transformer_decoder.parameters():
if p.dim() > 1:
nn.init.xavier_normal_(p)
def preprocess_gt(
self, batch_gt_instances: InstanceList,
batch_gt_semantic_segs: List[Optional[PixelData]]) -> InstanceList:
"""Preprocess the ground truth for all images.
Args:
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``labels``, each is
ground truth labels of each bbox, with shape (num_gts, )
and ``masks``, each is ground truth masks of each instances
of a image, shape (num_gts, h, w).
batch_gt_semantic_segs (list[Optional[PixelData]]): Ground truth of
semantic segmentation, each with the shape (1, h, w).
[0, num_thing_class - 1] means things,
[num_thing_class, num_class-1] means stuff,
255 means VOID. It's None when training instance segmentation.
Returns:
list[obj:`InstanceData`]: each contains the following keys
- labels (Tensor): Ground truth class indices\
for a image, with shape (n, ), n is the sum of\
number of stuff type and number of instance in a image.
- masks (Tensor): Ground truth mask for a\
image, with shape (n, h, w).
"""
num_things_list = [self.num_things_classes] * len(batch_gt_instances)
num_stuff_list = [self.num_stuff_classes] * len(batch_gt_instances)
if isinstance(batch_gt_instances[0], List):
gt_labels_list = [
[torch.stack([torch.ones_like(gt_instances['labels']) * frame_id, gt_instances['labels']], dim=1)
for frame_id, gt_instances in enumerate(gt_vid_instances)]
for gt_vid_instances in batch_gt_instances
]
gt_labels_list = [torch.cat(gt_labels, dim=0) for gt_labels in gt_labels_list]
gt_masks_list = [
[gt_instances['masks'] for gt_instances in gt_vid_instances]
for gt_vid_instances in batch_gt_instances
]
gt_semantic_segs = [
[None if gt_semantic_seg is None else gt_semantic_seg.sem_seg
for gt_semantic_seg in gt_vid_semantic_segs]
for gt_vid_semantic_segs in batch_gt_semantic_segs
]
if gt_semantic_segs[0][0] is None:
gt_semantic_segs = [None] * len(batch_gt_instances)
else:
gt_semantic_segs = [torch.stack(gt_sem_seg, dim=0) for gt_sem_seg in gt_semantic_segs]
gt_instance_ids_list = [
[torch.stack([torch.ones_like(gt_instances['instances_ids']) * frame_id, gt_instances['instances_ids']],
dim=1)
for frame_id, gt_instances in enumerate(gt_vid_instances)]
for gt_vid_instances in batch_gt_instances
]
gt_instance_ids_list = [torch.cat(gt_instance_ids, dim=0) for gt_instance_ids in gt_instance_ids_list]
targets = multi_apply(preprocess_video_panoptic_gt, gt_labels_list,
gt_masks_list, gt_semantic_segs, gt_instance_ids_list,
num_things_list, num_stuff_list)
else:
gt_labels_list = [
gt_instances['labels'] for gt_instances in batch_gt_instances
]
gt_masks_list = [
gt_instances['masks'] for gt_instances in batch_gt_instances
]
gt_semantic_segs = [
None if gt_semantic_seg is None else gt_semantic_seg.sem_seg
for gt_semantic_seg in batch_gt_semantic_segs
]
targets = multi_apply(preprocess_panoptic_gt, gt_labels_list,
gt_masks_list, gt_semantic_segs, num_things_list,
num_stuff_list)
labels, masks = targets
batch_gt_instances = [
InstanceData(labels=label, masks=mask)
for label, mask in zip(labels, masks)
]
return batch_gt_instances
def get_queries(self, batch_data_samples):
img_size = batch_data_samples[0].batch_input_shape
query_feat_list = []
bp_list = []
for idx, data_sample in enumerate(batch_data_samples):
is_box = data_sample.gt_instances.bp.eq(0)
is_point = data_sample.gt_instances.bp.eq(1)
assert is_box.any()
sparse_embed, _ = self.pe(
data_sample.gt_instances[is_box],
image_size=img_size,
with_bboxes=True,
with_points=False,
)
sparse_embed = [sparse_embed]
if is_point.any():
_sparse_embed, _ = self.pe(
data_sample.gt_instances[is_point],
image_size=img_size,
with_bboxes=False,
with_points=True,
)
sparse_embed.append(_sparse_embed)
sparse_embed = torch.cat(sparse_embed)
assert len(sparse_embed) == len(data_sample.gt_instances)
query_feat_list.append(self.query_proj(sparse_embed.flatten(1, 2)))
bp_list.append(data_sample.gt_instances.bp)
query_feat = torch.stack(query_feat_list)
bp_labels = torch.stack(bp_list).to(dtype=torch.long)
bp_embed = self.bp_embedding.weight[bp_labels]
bp_embed = bp_embed.repeat_interleave(self.num_mask_tokens, dim=1)
query_feat = query_feat + bp_embed
return query_feat, None
def get_targets(
self,
cls_scores_list: List[Tensor],
mask_preds_list: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
return_sampling_results: bool = False
) -> Tuple[List[Union[Tensor, int]]]:
"""Compute classification and mask targets for all images for a decoder
layer.
Args:
cls_scores_list (list[Tensor]): Mask score logits from a single
decoder layer for all images. Each with shape (num_queries,
cls_out_channels).
mask_preds_list (list[Tensor]): Mask logits from a single decoder
layer for all images. Each with shape (num_queries, h, w).
batch_gt_instances (list[obj:`InstanceData`]): each contains
``labels`` and ``masks``.
batch_img_metas (list[dict]): List of image meta information.
return_sampling_results (bool): Whether to return the sampling
results. Defaults to False.
Returns:
tuple: a tuple containing the following targets.
- labels_list (list[Tensor]): Labels of all images.\
Each with shape (num_queries, ).
- label_weights_list (list[Tensor]): Label weights\
of all images. Each with shape (num_queries, ).
- mask_targets_list (list[Tensor]): Mask targets of\
all images. Each with shape (num_queries, h, w).
- mask_weights_list (list[Tensor]): Mask weights of\
all images. Each with shape (num_queries, ).
- avg_factor (int): Average factor that is used to average\
the loss. When using sampling method, avg_factor is
usually the sum of positive and negative priors. When
using `MaskPseudoSampler`, `avg_factor` is usually equal
to the number of positive priors.
additional_returns: This function enables user-defined returns from
`self._get_targets_single`. These returns are currently refined
to properties at each feature map (i.e. having HxW dimension).
The results will be concatenated after the end.
"""
results = multi_apply(
self._get_targets_single, cls_scores_list, mask_preds_list, batch_gt_instances, batch_img_metas
)
labels_list, label_weights_list, mask_targets_list, mask_weights_list, \
pos_inds_list, neg_inds_list, sampling_results_list = results[:7]
rest_results = list(results[7:])
avg_factor = sum([results.avg_factor for results in sampling_results_list])
res = (labels_list, label_weights_list, mask_targets_list, mask_weights_list, avg_factor)
if return_sampling_results:
res = res + sampling_results_list
return res + tuple(rest_results)
def _get_targets_single(self, cls_score: Tensor, mask_pred: Tensor,
gt_instances: InstanceData,
img_meta: dict) -> Tuple[Tensor]:
"""Compute classification and mask targets for one image.
Args:
cls_score (Tensor): Mask score logits from a single decoder layer
for one image. Shape (num_queries, cls_out_channels).
mask_pred (Tensor): Mask logits for a single decoder layer for one
image. Shape (num_queries, h, w).
gt_instances (:obj:`InstanceData`): It contains ``labels`` and
``masks``.
img_meta (dict): Image informtation.
Returns:
tuple[Tensor]: A tuple containing the following for one image.
- labels (Tensor): Labels of each image. \
shape (num_queries, ).
- label_weights (Tensor): Label weights of each image. \
shape (num_queries, ).
- mask_targets (Tensor): Mask targets of each image. \
shape (num_queries, h, w).
- mask_weights (Tensor): Mask weights of each image. \
shape (num_queries, ).
- pos_inds (Tensor): Sampled positive indices for each \
image.
- neg_inds (Tensor): Sampled negative indices for each \
image.
- sampling_result (:obj:`SamplingResult`): Sampling results.
"""
gt_labels = gt_instances.labels
gt_masks = gt_instances.masks
# sample points
num_queries = cls_score.shape[0]
num_gts = gt_labels.shape[0]
if not self.matching_whole_map:
point_coords = torch.rand((1, self.num_points, 2), device=cls_score.device)
# shape (num_queries, num_points)
mask_points_pred = point_sample(mask_pred.unsqueeze(1),
point_coords.repeat(num_queries, 1, 1)).squeeze(1)
# shape (num_gts, num_points)
gt_points_masks = point_sample(gt_masks.unsqueeze(1).float(),
point_coords.repeat(num_gts, 1, 1)).squeeze(1)
else:
mask_points_pred = mask_pred
gt_points_masks = gt_masks
sampled_gt_instances = InstanceData(
labels=gt_labels, masks=gt_points_masks)
sampled_pred_instances = InstanceData(
scores=cls_score, masks=mask_points_pred)
# assign and sample
assign_result = self.assigner.assign(
pred_instances=sampled_pred_instances,
gt_instances=sampled_gt_instances,
img_meta=img_meta
)
pred_instances = InstanceData(scores=cls_score, masks=mask_pred)
sampling_result = self.sampler.sample(
assign_result=assign_result,
pred_instances=pred_instances,
gt_instances=gt_instances)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
# label target
labels = gt_labels.new_full((num_queries,), self.num_classes, dtype=torch.long)
labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
label_weights = gt_labels.new_ones((num_queries,))
# mask target
mask_targets = gt_masks[sampling_result.pos_assigned_gt_inds]
mask_weights = mask_pred.new_zeros((num_queries,))
mask_weights[pos_inds] = 1.0
return labels, label_weights, mask_targets, mask_weights, pos_inds, neg_inds, sampling_result
def loss_by_feat(self, all_cls_scores: Tensor, all_mask_preds: Tensor,
batch_gt_instances: List[InstanceData],
batch_img_metas: List[dict]) -> Dict[str, Tensor]:
"""Loss function.
Args:
all_cls_scores (Tensor): Classification scores for all decoder
layers with shape (num_decoder, batch_size, num_queries,
cls_out_channels). Note `cls_out_channels` should includes
background.
all_mask_preds (Tensor): Mask scores for all decoder layers with
shape (num_decoder, batch_size, num_queries, h, w).
batch_gt_instances (list[obj:`InstanceData`]): each contains
``labels`` and ``masks``.
batch_img_metas (list[dict]): List of image meta information.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
num_dec_layers = len(all_cls_scores)
batch_gt_instances_list = [
batch_gt_instances for _ in range(num_dec_layers)
]
img_metas_list = [batch_img_metas for _ in range(num_dec_layers)]
losses_cls, losses_mask, losses_dice = multi_apply(
self._loss_by_feat_single, all_cls_scores, all_mask_preds, batch_gt_instances_list, img_metas_list
)
loss_dict = dict()
# loss from other decoder layers
num_dec_layer = 0
for loss_cls_i, loss_mask_i, loss_dice_i in zip(losses_cls[:-1], losses_mask[:-1], losses_dice[:-1]):
loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
loss_dict[f'd{num_dec_layer}.loss_mask'] = loss_mask_i
loss_dict[f'd{num_dec_layer}.loss_dice'] = loss_dice_i
num_dec_layer += 1
# loss from the last decoder layer
loss_dict['loss_cls'] = losses_cls[-1]
loss_dict['loss_mask'] = losses_mask[-1]
loss_dict['loss_dice'] = losses_dice[-1]
return loss_dict
def _loss_by_feat_single(self, cls_scores: Tensor, mask_preds: Tensor,
batch_gt_instances: List[InstanceData],
batch_img_metas: List[dict]) -> Tuple[Tensor]:
"""Loss function for outputs from a single decoder layer.
Args:
cls_scores (Tensor): Mask score logits from a single decoder layer
for all images. Shape (batch_size, num_queries,
cls_out_channels). Note `cls_out_channels` should includes
background.
mask_preds (Tensor): Mask logits for a pixel decoder for all
images. Shape (batch_size, num_queries, h, w).
batch_gt_instances (list[obj:`InstanceData`]): each contains
``labels`` and ``masks``.
batch_img_metas (list[dict]): List of image meta information.
Returns:
tuple[Tensor]: Loss components for outputs from a single \
decoder layer.
"""
batch_size, num_ins = cls_scores.size(0), cls_scores.size(1)
# hack here:
is_sam = num_ins != self.num_queries
if not is_sam:
cls_scores_list = [cls_scores[i] for i in range(batch_size)]
mask_preds_list = [mask_preds[i] for i in range(batch_size)]
labels_list, label_weights_list, mask_targets_list, mask_weights_list, avg_factor = \
self.get_targets(cls_scores_list, mask_preds_list, batch_gt_instances, batch_img_metas)
labels = torch.stack(labels_list, dim=0)
label_weights = torch.stack(label_weights_list, dim=0)
mask_targets = torch.cat(mask_targets_list, dim=0)
mask_weights = torch.stack(mask_weights_list, dim=0)
else:
labels = torch.stack([item.labels for item in batch_gt_instances])
label_weights = labels.new_ones((batch_size, num_ins), dtype=torch.float)
mask_targets = torch.cat([item.masks for item in batch_gt_instances])
mask_weights = mask_targets.new_ones((batch_size, num_ins), dtype=torch.float)
avg_factor = cls_scores.size(1)
# classification loss
# shape (batch_size * num_queries, )
cls_scores = cls_scores.flatten(0, 1)
labels = labels.flatten(0, 1)
label_weights = label_weights.flatten(0, 1)
class_weight = cls_scores.new_tensor(self.class_weight)
ignore_inds = labels.eq(-1.)
# zero will not be involved in the loss cal
labels[ignore_inds] = 0
label_weights[ignore_inds] = 0.
obj_inds = labels.eq(self.num_classes)
if is_sam:
cls_avg_factor = cls_scores.new_tensor([0])
else:
cls_avg_factor = class_weight[labels].sum()
cls_avg_factor = reduce_mean(cls_avg_factor)
cls_avg_factor = max(cls_avg_factor, 1)
if self.loss_iou is not None:
loss_cls = self.loss_cls(
cls_scores[..., :-1],
labels,
label_weights,
avg_factor=cls_avg_factor
)
loss_iou = self.loss_iou(
cls_scores[..., -1:],
obj_inds.to(dtype=torch.long),
avg_factor=cls_avg_factor
)
if is_sam:
loss_iou = loss_iou * 0
loss_cls = loss_cls + loss_iou
else:
loss_cls = self.loss_cls(
cls_scores,
labels,
label_weights,
avg_factor=cls_avg_factor
)
# loss_mask
num_total_masks = reduce_mean(cls_scores.new_tensor([avg_factor]))
num_total_masks = max(num_total_masks, 1)
# extract positive ones
# shape (batch_size, num_queries, h, w) -> (num_total_gts, h, w)
mask_preds = mask_preds[mask_weights > 0]
if mask_targets.shape[0] == 0:
# zero match
loss_dice = mask_preds.sum()
loss_mask = mask_preds.sum()
return loss_cls, loss_mask, loss_dice
if not self.matching_whole_map:
with torch.no_grad():
points_coords = get_uncertain_point_coords_with_randomness(
mask_preds.unsqueeze(1), None, self.num_points,
self.oversample_ratio, self.importance_sample_ratio)
# shape (num_total_gts, h, w) -> (num_total_gts, num_points)
mask_point_targets = point_sample(
mask_targets.unsqueeze(1).float(), points_coords).squeeze(1)
# shape (num_queries, h, w) -> (num_queries, num_points)
mask_point_preds = point_sample(
mask_preds.unsqueeze(1), points_coords).squeeze(1)
else:
mask_point_targets = mask_targets
mask_point_preds = mask_preds
# dice loss
loss_dice = self.loss_dice(
mask_point_preds, mask_point_targets, avg_factor=num_total_masks)
# mask loss
# shape (num_queries, num_points) -> (num_queries * num_points, )
mask_point_preds = mask_point_preds.reshape(-1)
# shape (num_total_gts, num_points) -> (num_total_gts * num_points, )
mask_point_targets = mask_point_targets.reshape(-1)
loss_mask = self.loss_mask(
mask_point_preds,
mask_point_targets,
avg_factor=num_total_masks * self.num_points
)
return loss_cls, loss_mask, loss_dice
def forward_logit(self, cls_embd):
cls_pred = torch.einsum('bnc,ckp->bnkp', F.normalize(cls_embd, dim=-1), self.cls_embed)
cls_pred = cls_pred.max(-1).values
cls_pred = self.logit_scale.exp() * cls_pred
return cls_pred
def _forward_head(self, decoder_out: Tensor, mask_feature: Tensor,
attn_mask_target_size: Tuple[int, int],
num_frames: int = 0) -> Tuple[Tensor]:
"""Forward for head part which is called after every decoder layer.
Args:
decoder_out (Tensor): in shape (batch_size, num_queries, c).
mask_feature (Tensor): in shape (batch_size, c, h, w).
attn_mask_target_size (tuple[int, int]): target attention
mask size.
Returns:
tuple: A tuple contain three elements.
- cls_pred (Tensor): Classification scores in shape \
(batch_size, num_queries, cls_out_channels). \
Note `cls_out_channels` should includes background.
- mask_pred (Tensor): Mask scores in shape \
(batch_size, num_queries,h, w).
- attn_mask (Tensor): Attention mask in shape \
(batch_size * num_heads, num_queries, h, w).
- num_frames: How many frames are there in video.
"""
decoder_out = self.transformer_decoder.post_norm(decoder_out)
# shape (num_queries, batch_size, c)
if isinstance(self.cls_embed, nn.Module):
cls_pred = self.cls_embed(decoder_out)
# shape (num_queries, batch_size, c)
mask_embed = self.mask_embed(decoder_out)
# shape (num_queries, batch_size, h, w)
mask_pred = torch.einsum('bqc,bchw->bqhw', mask_embed, mask_feature)
if not isinstance(self.cls_embed, nn.Module):
maskpool_embd = self.mask_pooling(x=mask_feature, mask=mask_pred.detach())
maskpool_embd = self.mask_pooling_proj(maskpool_embd)
cls_embd = self.cls_proj(maskpool_embd + decoder_out)
cls_pred = self.forward_logit(cls_embd)
if self.iou_embed is not None:
iou_pred = self.iou_embed(decoder_out)
cls_pred = torch.cat([cls_pred, iou_pred], dim=-1)
if num_frames > 0:
assert len(mask_pred.shape) == 4
assert mask_pred.shape[2] % num_frames == 0
frame_h = mask_pred.shape[2] // num_frames
num_q = mask_pred.shape[1]
_mask_pred = mask_pred.unflatten(-2, (num_frames, frame_h)).flatten(1, 2)
attn_mask = F.interpolate(
_mask_pred,
attn_mask_target_size,
mode='bilinear',
align_corners=False)
attn_mask = attn_mask.unflatten(1, (num_q, num_frames)).flatten(2, 3)
else:
attn_mask = F.interpolate(
mask_pred,
attn_mask_target_size,
mode='bilinear',
align_corners=False)
# shape (num_queries, batch_size, h, w) ->
# (batch_size * num_head, num_queries, h, w)
attn_mask = attn_mask.flatten(2).unsqueeze(1).repeat(
(1, self.num_heads, 1, 1)).flatten(0, 1)
attn_mask = attn_mask.sigmoid() < 0.5
attn_mask = attn_mask.detach()
return cls_pred, mask_pred, attn_mask
def forward(self, x: List[Tensor], batch_data_samples: SampleList) -> Tuple[List[Tensor]]:
"""Forward function.
Args:
x (list[Tensor]): Multi scale Features from the
upstream network, each is a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
Returns:
tuple[list[Tensor]]: A tuple contains two elements.
- cls_pred_list (list[Tensor)]: Classification logits \
for each decoder layer. Each is a 3D-tensor with shape \
(batch_size, num_queries, cls_out_channels). \
Note `cls_out_channels` should includes background.
- mask_pred_list (list[Tensor]): Mask logits for each \
decoder layer. Each with shape (batch_size, num_queries, \
h, w).
"""
batch_img_metas = []
if isinstance(batch_data_samples[0], TrackDataSample):
for track_sample in batch_data_samples:
cur_list = []
for det_sample in track_sample:
cur_list.append(det_sample.metainfo)
batch_img_metas.append(cur_list)
num_frames = len(batch_img_metas[0])
else:
for data_sample in batch_data_samples:
batch_img_metas.append(data_sample.metainfo)
num_frames = 0
batch_size = len(batch_img_metas)
mask_features, multi_scale_memorys = self.pixel_decoder(x)
if num_frames > 0:
mask_features = mask_features.unflatten(0, (batch_size, num_frames))
mask_features = mask_features.transpose(1, 2).flatten(2, 3)
decoder_inputs = []
decoder_positional_encodings = []
for i in range(self.num_transformer_feat_level):
decoder_input = self.decoder_input_projs[i](multi_scale_memorys[i])
# shape (batch_size, c, h, w) -> (batch_size, h*w, c)
decoder_input = decoder_input.flatten(2).permute(0, 2, 1)
if num_frames > 0:
decoder_input = decoder_input.unflatten(0, (batch_size, num_frames))
decoder_input = decoder_input.flatten(1, 2)
level_embed = self.level_embed.weight[i].view(1, 1, -1)
decoder_input = decoder_input + level_embed
# shape (batch_size, c, h, w) -> (batch_size, h*w, c)
num_frames_real = 1 if num_frames == 0 else num_frames
mask = decoder_input.new_zeros(
(batch_size, num_frames_real) + multi_scale_memorys[i].shape[-2:],
dtype=torch.bool)
decoder_positional_encoding = self.decoder_positional_encoding(
mask)
decoder_positional_encoding = decoder_positional_encoding.transpose(
1, 2).flatten(2).permute(0, 2, 1)
decoder_inputs.append(decoder_input)
decoder_positional_encodings.append(decoder_positional_encoding)
if self.enable_box_query and batch_data_samples[0].data_tag in ['sam_mul', 'sam']:
query_feat, input_query_bbox, self_attn_mask, _ = self.prepare_for_dn_mo(batch_data_samples)
query_embed = coordinate_to_encoding(input_query_bbox.sigmoid())
query_embed = self.pos_linear(query_embed)
else:
# coco style query generation
# shape (num_queries, c) -> (batch_size, num_queries, c)
query_feat = self.query_feat.weight.unsqueeze(0).repeat((batch_size, 1, 1))
query_embed = self.query_embed.weight.unsqueeze(0).repeat((batch_size, 1, 1))
self_attn_mask = None
cls_pred_list = []
mask_pred_list = []
cls_pred, mask_pred, attn_mask = self._forward_head(
query_feat, mask_features, multi_scale_memorys[0].shape[-2:],
num_frames=num_frames
)
cls_pred_list.append(cls_pred)
if num_frames > 0:
mask_pred = mask_pred.unflatten(2, (num_frames, -1))
mask_pred_list.append(mask_pred)
for i in range(self.num_transformer_decoder_layers):
level_idx = i % self.num_transformer_feat_level
# if a mask is all True(all background), then set it all False.
attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
# cross_attn + self_attn
layer = self.transformer_decoder.layers[i]
query_feat = layer(
query=query_feat,
key=decoder_inputs[level_idx],
value=decoder_inputs[level_idx],
query_pos=query_embed,
key_pos=decoder_positional_encodings[level_idx],
cross_attn_mask=attn_mask,
self_attn_mask=self_attn_mask,
query_key_padding_mask=None,
# here we do not apply masking on padded region
key_padding_mask=None)
cls_pred, mask_pred, attn_mask = self._forward_head(
query_feat, mask_features, multi_scale_memorys[(i + 1) % self.num_transformer_feat_level].shape[-2:],
num_frames=num_frames
)
cls_pred_list.append(cls_pred)
if num_frames > 0:
mask_pred = mask_pred.unflatten(2, (num_frames, -1))
mask_pred_list.append(mask_pred)
return cls_pred_list, mask_pred_list, query_feat
def loss(
self,
x: Tuple[Tensor],
batch_data_samples: SampleList,
) -> Dict[str, Tensor]:
"""Perform forward propagation and loss calculation of the panoptic
head on the features of the upstream network.
Args:
x (tuple[Tensor]): Multi-level features from the upstream
network, each is a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
batch_img_metas = []
batch_gt_instances = []
batch_gt_semantic_segs = []
for data_sample in batch_data_samples:
if isinstance(data_sample, TrackDataSample):
clip_meta = []
clip_instances = []
clip_sem_seg = []
for det_sample in data_sample:
clip_meta.append(det_sample.metainfo)
clip_instances.append(det_sample.gt_instances)
if 'gt_sem_seg' in det_sample:
clip_sem_seg.append(det_sample.gt_sem_seg)
else:
clip_sem_seg.append(None)
batch_img_metas.append(clip_meta)
batch_gt_instances.append(clip_instances)
batch_gt_semantic_segs.append(clip_sem_seg)
else:
batch_img_metas.append(data_sample.metainfo)
batch_gt_instances.append(data_sample.gt_instances)
if 'gt_sem_seg' in data_sample:
batch_gt_semantic_segs.append(data_sample.gt_sem_seg)
else:
batch_gt_semantic_segs.append(None)
# forward
all_cls_scores, all_mask_preds, _ = self(x, batch_data_samples)
# preprocess ground truth
if not self.enable_box_query or batch_data_samples[0].data_tag in ['coco', 'sam']:
batch_gt_instances = self.preprocess_gt(batch_gt_instances, batch_gt_semantic_segs)
# loss
if isinstance(batch_data_samples[0], TrackDataSample):
num_frames = len(batch_img_metas[0])
all_mask_preds = [mask.flatten(2, 3) for mask in all_mask_preds]
for instance in batch_gt_instances:
instance['masks'] = instance['masks'].flatten(1, 2)
film_metas = [
{
'img_shape': (meta[0]['img_shape'][0] * num_frames,
meta[0]['img_shape'][1])
} for meta in batch_img_metas
]
batch_img_metas = film_metas
losses = self.loss_by_feat(all_cls_scores, all_mask_preds, batch_gt_instances, batch_img_metas)
if self.enable_box_query:
losses['loss_zero'] = 0 * self.query_feat.weight.sum() + 0 * self.query_embed.weight.sum()
losses['loss_zero'] += 0 * self.pb_embedding.weight.sum()
losses['loss_zero'] += 0 * self.mask_tokens.weight.sum()
for name, param in self.pos_linear.named_parameters():
losses['loss_zero'] += 0 * param.sum()
return losses
def predict(self, x: Tuple[Tensor],
batch_data_samples: SampleList,
return_query=False,
) -> Tuple[Tensor, ...]:
"""Test without augmentaton.
Args:
return_query:
x (tuple[Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
batch_data_samples (List[:obj:`DetDataSample`]): The Data
Samples. It usually includes information such as
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
Returns:
tuple[Tensor]: A tuple contains two tensors.
- mask_cls_results (Tensor): Mask classification logits,\
shape (batch_size, num_queries, cls_out_channels).
Note `cls_out_channels` should includes background.
- mask_pred_results (Tensor): Mask logits, shape \
(batch_size, num_queries, h, w).
"""
data_sample = batch_data_samples[0]
if isinstance(data_sample, TrackDataSample):
img_shape = data_sample[0].metainfo['batch_input_shape']
num_frames = len(data_sample)
else:
img_shape = data_sample.metainfo['batch_input_shape']
num_frames = 0
all_cls_scores, all_mask_preds, query_feat = self(x, batch_data_samples)
if self.iou_embed is not None:
_all_cls_scores = [cls_score[..., :-1] for cls_score in all_cls_scores]
iou_results = [cls_score[..., -1:] for cls_score in all_cls_scores]
all_cls_scores = _all_cls_scores
else:
iou_results = None
mask_cls_results = all_cls_scores[-1]
mask_pred_results = all_mask_preds[-1]
if iou_results is not None:
iou_results = iou_results[-1]
if num_frames > 0:
mask_pred_results = mask_pred_results.flatten(1, 2)
mask_pred_results = F.interpolate(
mask_pred_results,
size=(img_shape[0], img_shape[1]),
mode='bilinear',
align_corners=False)
if num_frames > 0:
num_queries = mask_cls_results.shape[1]
mask_pred_results = mask_pred_results.unflatten(1, (num_queries, num_frames))
if iou_results is None:
return mask_cls_results, mask_pred_results
if return_query:
return mask_cls_results, mask_pred_results, query_feat, iou_results
else:
return mask_cls_results, mask_pred_results, iou_results
def prepare_for_dn_mo(self, batch_data_samples):
scalar, noise_scale = 100, 0.4
gt_instances = [t.gt_instances for t in batch_data_samples]
point_coords = torch.stack([inst.point_coords for inst in gt_instances])
pb_labels = torch.stack([inst['bp'] for inst in gt_instances])
labels = torch.zeros_like(pb_labels).long()
boxes = point_coords # + boxes
factors = []
for i, data_sample in enumerate(batch_data_samples):
h, w, = data_sample.metainfo['img_shape']
factor = boxes[i].new_tensor([w, h, w, h]).unsqueeze(0).repeat(boxes[i].size(0), 1)
factors.append(factor)
factors = torch.stack(factors, 0)
boxes = bbox_xyxy_to_cxcywh(boxes / factors) # xyxy / factor or xywh / factor ????
# box_start = [t['box_start'] for t in targets]
box_start = [len(point) for point in point_coords]
known_labels = labels
known_pb_labels = pb_labels
known_bboxs = boxes
known_labels_expaned = known_labels.clone()
known_pb_labels_expaned = known_pb_labels.clone()
known_bbox_expand = known_bboxs.clone()
if noise_scale > 0 and self.training:
diff = torch.zeros_like(known_bbox_expand)
diff[:, :, :2] = known_bbox_expand[:, :, 2:] / 2
diff[:, :, 2:] = known_bbox_expand[:, :, 2:]
# add very small noise to input points; no box
sc = 0.01
for i, st in enumerate(box_start):
diff[i, :st] = diff[i, :st] * sc
known_bbox_expand += torch.mul(
(torch.rand_like(known_bbox_expand) * 2 - 1.0),
diff) * noise_scale
known_bbox_expand = known_bbox_expand.clamp(min=0.0, max=1.0)
input_label_embed = self.pb_embedding(known_pb_labels_expaned)
input_bbox_embed = inverse_sigmoid(known_bbox_expand)
input_label_embed = input_label_embed.repeat_interleave(
self.num_mask_tokens,
1) + self.mask_tokens.weight.unsqueeze(0).repeat(
input_label_embed.shape[0], input_label_embed.shape[1], 1)
input_bbox_embed = input_bbox_embed.repeat_interleave(
self.num_mask_tokens, 1)
single_pad = self.num_mask_tokens
# NOTE scalar is modified to 100, each click cannot see each other
scalar = int(input_label_embed.shape[1] / self.num_mask_tokens)
pad_size = input_label_embed.shape[1]
if input_label_embed.shape[1] > 0:
input_query_label = input_label_embed
input_query_bbox = input_bbox_embed
tgt_size = pad_size
attn_mask = torch.ones(tgt_size, tgt_size).to('cuda') < 0
# match query cannot see the reconstruct
attn_mask[pad_size:, :pad_size] = True
# reconstruct cannot see each other
for i in range(scalar):
if i == 0:
attn_mask[single_pad * i:single_pad * (i + 1), single_pad * (i + 1):pad_size] = True
if i == scalar - 1:
attn_mask[single_pad * i:single_pad * (i + 1), :single_pad * i] = True
else:
attn_mask[single_pad * i:single_pad * (i + 1), single_pad * (i + 1):pad_size] = True
attn_mask[single_pad * i:single_pad * (i + 1), :single_pad * i] = True
mask_dict = {
'known_lbs_bboxes': (known_labels, known_bboxs),
'pad_size': pad_size,
'scalar': scalar,
}
return input_query_label, input_query_bbox, attn_mask, mask_dict
|