Spaces:
Sleeping
Sleeping
""" huggingface model adapter | |
Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model. | |
""" | |
import re | |
import torch | |
import torch.nn as nn | |
from torch import TensorType | |
try: | |
import transformers | |
from transformers import AutoModel, AutoTokenizer, AutoConfig, PretrainedConfig | |
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \ | |
BaseModelOutputWithPoolingAndCrossAttentions | |
except ImportError as e: | |
transformers = None | |
class BaseModelOutput: | |
pass | |
class PretrainedConfig: | |
pass | |
from .hf_configs import arch_dict | |
# utils | |
def _camel2snake(s): | |
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower() | |
# TODO: ?last - for gpt-like models | |
_POOLERS = {} | |
def register_pooler(cls): | |
"""Decorator registering pooler class""" | |
_POOLERS[_camel2snake(cls.__name__)] = cls | |
return cls | |
class MeanPooler(nn.Module): | |
"""Mean pooling""" | |
def forward(self, x: BaseModelOutput, attention_mask: TensorType): | |
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1) | |
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True) | |
class MaxPooler(nn.Module): | |
"""Max pooling""" | |
def forward(self, x: BaseModelOutput, attention_mask: TensorType): | |
masked_output = x.last_hidden_state.masked_fill(attention_mask.unsqueeze(-1), -torch.inf) | |
return masked_output.max(1).values | |
class ClsPooler(nn.Module): | |
"""CLS token pooling""" | |
def __init__(self, use_pooler_output=True): | |
super().__init__() | |
self.cls_token_position = 0 | |
self.use_pooler_output = use_pooler_output | |
def forward(self, x: BaseModelOutput, attention_mask: TensorType): | |
if (self.use_pooler_output and | |
isinstance(x, (BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions)) and | |
(x.pooler_output is not None) | |
): | |
return x.pooler_output | |
return x.last_hidden_state[:, self.cls_token_position, :] | |
class ClsLastHiddenStatePooler(nn.Module): | |
"""CLS token pooling | |
NOTE: this is equivalent to ClsPooler above with use_pooler_output=False | |
""" | |
def __init__(self): | |
super().__init__() | |
self.cls_token_position = 0 | |
def forward(self, x: BaseModelOutput, attention_mask: TensorType): | |
return x.last_hidden_state[:, self.cls_token_position, :] | |
class HFTextEncoder(nn.Module): | |
"""HuggingFace model adapter""" | |
output_tokens: torch.jit.Final[bool] | |
def __init__( | |
self, | |
model_name_or_path: str, | |
output_dim: int, | |
config: PretrainedConfig = None, | |
pooler_type: str = None, | |
proj: str = None, | |
pretrained: bool = True, | |
output_tokens: bool = False, | |
): | |
super().__init__() | |
self.output_tokens = output_tokens | |
self.output_dim = output_dim | |
# TODO: find better way to get this information | |
uses_transformer_pooler = (pooler_type == "cls_pooler") | |
if transformers is None: | |
raise RuntimeError("Please `pip install transformers` to use pre-trained HuggingFace models") | |
if config is None: | |
self.config = AutoConfig.from_pretrained(model_name_or_path) | |
create_func, model_args = (AutoModel.from_pretrained, model_name_or_path) if pretrained else ( | |
AutoModel.from_config, self.config) | |
# TODO: do all model configs have this attribute? PretrainedConfig does so yes?? | |
if hasattr(self.config, "is_encoder_decoder") and self.config.is_encoder_decoder: | |
self.transformer = create_func(model_args) | |
self.transformer = self.transformer.encoder | |
else: | |
self.transformer = create_func(model_args, add_pooling_layer=uses_transformer_pooler) | |
else: | |
self.config = config | |
self.transformer = AutoModel.from_config(config) | |
if pooler_type is None: # get default arch pooler | |
pooler_type = (arch_dict[self.config.model_type]["pooler"]) | |
# FIXME downstream users of OpenCLIP models use these attr, need to verify valid across all models | |
self.vocab_size = getattr(self.config, 'vocab_size', 0) | |
self.context_length = getattr(self.config, 'max_position_embeddings', 0) | |
self.pooler = _POOLERS[pooler_type]() | |
d_model = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["width"]) | |
if (d_model == output_dim) and (proj is None): # do we always need a proj? | |
self.proj = nn.Identity() | |
elif proj == 'linear': | |
self.proj = nn.Linear(d_model, output_dim, bias=False) | |
elif proj == 'mlp': | |
hidden_size = (d_model + output_dim) // 2 | |
self.proj = nn.Sequential( | |
nn.Linear(d_model, hidden_size, bias=False), | |
nn.GELU(), | |
nn.Linear(hidden_size, output_dim, bias=False), | |
) | |
def forward(self, x: TensorType): | |
attn_mask = (x != self.config.pad_token_id).long() | |
out = self.transformer(input_ids=x, attention_mask=attn_mask) | |
pooled_out = self.pooler(out, attn_mask) | |
projected = self.proj(pooled_out) | |
seq_len = out.last_hidden_state.shape[1] | |
tokens = ( | |
out.last_hidden_state[:, torch.arange(seq_len) != self.pooler.cls_token_position, :] | |
if type(self.pooler) == ClsPooler | |
else out.last_hidden_state | |
) | |
if self.output_tokens: | |
return projected, tokens | |
return projected | |
def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True): | |
if not unlocked_layers: # full freezing | |
for n, p in self.transformer.named_parameters(): | |
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False | |
return | |
encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer | |
layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"]) | |
print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model") | |
embeddings = getattr( | |
self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"]) | |
modules = [embeddings, *layer_list][:-unlocked_layers] | |
# freeze layers | |
for module in modules: | |
for n, p in module.named_parameters(): | |
p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False | |
def set_grad_checkpointing(self, enable=True): | |
self.transformer.gradient_checkpointing_enable() | |
def init_parameters(self): | |
pass | |